A NOTE ON SIMPLE ANTI-COMMUTATIVE
ALGEBRAS OBTAINED FROM REDUCTIVE
HOMOGENEOUS SPACES

ARTHUR A. SAGLE

1. Basics. Let G be a connected Lie group and H a closed sub-
group, then the homogeneous space M= G/H is called reductive if there
exists a decomposition g =m 1§ (subspace direct sum) with [m,§] < m where
g (resp. §) is the Lie algebra of G (resp. H); in this case the pair (g,9) is
called a reductive pair. For x,y€m an anti-commutative multiplication zy
is defined in m by [z y] = 2y + A(x,y) where xy (resp. h(x,y)) is the compo-
nent of [z y]eg in m (resp. §) relative to a fixed decomposition g=m + 5.
The study of these algebras is motivated by the work of K. Nomizu where
this multiplication is related to the canonical G-invariant connection F of
the first kind on G/ H by [F (y*)ls = %xy where p, = HeM. There is a
correspondence between holonomy irreducible non-symmetric spaces M and
simple algebras m with the above connection and multiplication, see. [11].
Using this the holonomy algebra is easily determined by showing certain
derivations induced by #i(x,y)€b are inner. Thus in this paper we study
the simplicity of the algebra m and its derivations subject to “irreducibility”
conditions on ¢,% and m; in particular when m is H-irreducible and when
g and § are simple Lie algebras. Applications are given to Lie admissible

algebras and to homogeneous spaces M with a group-like (non-associative)

multiplication.
The Lie algebra identities in g yield the following identities for m and
.
1) xy = —yz
(2) h(z y) = — h(y, )
(3) [z h(y,2)] + [y Az, )] + [z Az y)] = J(xy,2)
(4) h(zy,2) + h(yz, z) + h(zx,y) = 0
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(5) (h(z, y) k] = h([z k], y) + h(x,[y R])
(6) [y k] =[x hly + aly K]

where J(x,y,2) = (xy)z + (yz)z + (za)y . Thus if H(m, m) = linear space span-
ned by all the i(z,y)’s, we have from (5) that Hh(m, m) is an ideal in § and
from (6) that the mappings D(k) = adwh are contained in the derivation
algebra D(m) of m. From these we see that m 3 h(m,m) is an ideal in g
and if there exists an ideal <) of g such that g=m +Hmm) + £ (e.g. g
semi-simple) then the derivations induced by f are zero (m¥flcmnf=0
using f is an ideal of g and (g,0) is a reductive pair). These considerations
lead to the study of the “minimal” reductive pair (m,H(m,m)) and if we
write D(x,y) = adwh(x, y) then the relations (1)—(6) can be rewritten in terms
of these derivations of m to yield the axioms of a general Lie triple system
(g.L.ts.) for g=m 9 [9, 11, 13]

(1) Y = — Yz

(2) D(z,y) = — D(y, 2)

(3) xD(y, 2) + yD(2, x) + 2D(2, y) = J (%, Y, 2)

(4" D(2y, 2) + D(yz, z) + D(z2, ) = 0

&) [D(w, x), D(y, 2)] = D(wD(y, 2), x) + D(w, xD(y, 2))
(6) (xy)D(u, v) = (xD(u, v))y + x(y D(u, v))

where [A,B] = AB — BA.
Note that when ay =0 for all z,yem then m i H(m,m) is a L.t.s. where
[#, y, 2] = xD(y, z) is the trilinear operation on m [6].

There are many examples of g.L.ts. (section 2) but we shall be
primarily concerned with a g.L.t.s. m 4+ H(m, m) where m is §(m, m)-irreducible
or m is a simple algebra. Algebraically this is motivated by the seven
dimensional Malcev algebra in [8] which gives rise to the g.L.t.s. g = m+H(m, m)
where g is of type B, § of type G, [14] m is P-irreducible and a simple
algebra. We shall assume throughout this paper that the base field F is
of characteristic zero and in section 2 we shall show that if (g,5) is a
reductive pair with g =m + 9 where m is §-irreducible and mm 0, then m
is a simple algebra and adwh is semi-simple under certain conditions (if F
is algebraically closed). We also consider the reductive pair (g,§) where g
and § are simple Lie algebras; in this case if mm <0, then m is simple
and the derivations induced by § are inner.
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In (6] the analysis of a L.ts. ¥ depends on the study of automorphisms
of the Lie algebra & =@ [T €] which are of period 2. We now describe
this for the more general case of a reductive pair (g,5).

PropositioN 1. Let g be a Lie algebra and Yy a subspace of ¢. Let s be an
endomorphism of @ such that s2=1 and s ts a maximal Y-endomorphism i.e.
hs = h for all heh, [lhls =[ls k] for all Ieg, h€h and h={leg: Is=1}.
Then if m={leg:ls=—1} we have (8,9) ts a reductive pair which uniquely
determines s.  Furthermore if p=x+h,q=y+k, g=m1Y, then [ps qs]—
[p qls = 2xy; thus g ts a L.t.s. of and only if s is an automorphism of o if and
only if m®=0.

Proof. Since s> =1 we have g =19, 9, where v, ={leg:[s=(—1)"[}
so that h=v,, m=v, and g=m 4 5H. Next [mhlcm and [ h]lc)h; for if
xem, heh, then [z Als = [xs £l = — [z £] and similarly [§ ] c h. Conversely
if (g,9) is a reductive pair and g =m 45, then the endomorphism s: x4+ &
—~—2x+ & is a maximal B-endomorphism so that s?=7. Furthermore if
g=m+H is determined by two h-endomorphism s and ¢ as above, then
clearly s=1¢. The formula [ps gs] —[p ¢ls =2xy is a straightforward
computation.

We shall want to consider Lie algebras g which are semi-simple and
as an application of the above result we have the following theorem.

THEOREM 2. Let g=m Y be a semi-simple g.L.t.s. (i.e. § = H(m,n))
defined by the involution s previously discussed, let m be Y-irreducible and assume
adwh =0 implies h =0, then
(1) g ts simple or
(2 ag=g,+a, where g, s as imple ideal of g and g, =g¢g,s. If g is not

simple, we may write §=g,@®q, where g, and g, are simple ideals and

dim. g, = dim.g,. In case § is simple dim.p = dim.m = dim. g, .

Proof. Let g=m+ 5 =@ X g, be semi-simple defined by the involution
s ie. s2=1, [adsh,s]=0, then u;=g;+ g;s is adyh-invariant subspace of
a: [a;8] < g; since g; is an ideal of g and [g;s H]=g;s ad H=g; ad Hs=[g; Hlscg;s.
Next we have g; is not an ideal in §. For suppose g; is an ideal in
b, then [m g,Jc[m Y]l cm, using (g,5) is reductive. But since g; is an
ideal of g, [m g;] ca;ch and therefore [m g;Jcm Ny =0. Thus adug; =0
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which implies g; =0. Now since g; is not an ideal of ), there exists
z+ heg; with 0+ x=sm, heh. But then — 2+ & = (x+h)ssg;s and therefore
0%#2x=(x+ h)— (x+ h)s€g; + g;s =u; so that m N u; 0. Thus since m is
Y-irreducible, m =m Nu; Cu;.

Now we shall show § = §(m, m) cu; and therefore g=m L+ H=1u;. For
any x,y<m, there exists zem so that z+h(z, y)=g; where [z yl = ay+h(zy).
For let m; = {xesm: there exists ek with x + heg;} = projection of g; into
m. Then m;+# 0, otherwise g; is an ideal contained in %; also m; is b-
invariant subspace of m and so equals m. Now to find the desired z we
have for z, yem, helh with z + reg, that [yx + hl€g; and from this we have
for 2= yx+ [y hlem that z+h(y,x)€g;. Next using this and m c u; =g;+4g;s
we have for any hi(z,y)ebh=h(m, m), that there exists zem with z+h(z,y)=g;
and therefore h(x,y)em+g; Cu;.  Thus §Cu; so that g =g; + g;s.

Two cases arise (1) g =g; i.e. j =1 so that g =m +§ is actually simple
or (2) g properly contains g;. In this case we shall show g=g;}aq;s.
Let 2+ heg; N g;s where xzem, heh, then —ax+ h = (x+h)se(g;s)s=g;; but
since z+ heg; also, 26 =(x+ k) —(— 2+ h)eg;. Thus if x=0, mNg; is a
nonzero h-invariant subspace of m which must equal m. Thus m =m N g;cg;
and by the argument in the preceding paragraph § = §(m, m) cg;. There-
fore g = g;, contrary to the choice of g in case 2; thus z =0 and keg; Ng;s.
Next for any yem, yadmh =[y hl€m; but since heg; which is an ideal of
g, [y hleg;. Thus [y hleg; N m so that if [y A1+ 0, g; N m is a nonzero
h-invariant subspace which must equal m. Thus again mcg; and we
may conclude g = g;, contrary to case 2. Therefore admh = 0 which implies
h =0 so that g =g; 4+ ga;s.

Next let g, be a simple ideal of minimal dimension and write g =g,®aq,
where g, is a semi-simple ideal of g. If g, is not simple, then there is a
simple ideal p of g in g, and dim.p<dim.g, = dim.g—dim. g, = dim.
(a; + a;5) — dim. g, = dim. g,; a contradiction to the choice of g, .

Now if § is simple, we see from the definition of % in terms of the map
s that {# + us: u=g,} is a non-zero H-invariant subspace of §; thus it must
equal . Similarly {# —us:ueg)}=m. Ifu,...,u,is a basis for g,,
then {u; +u;s:i=1,...,t} clearly spans §. If Xa;(u; + u;s) =0, then
for v = Yau; we have vs = —v so that veg, nm. If v~=0, then g, N m is
a non-zero H-invariant subspace of m and therefore m =g, N m. But then
for x,yemcg,, we have h(x, y) = [zy] — 2y =g, so that gcg,; contrary to the
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choice of g not simple. Thus v=0 so that & =0 and {u; + u;s} are
independent. From this dim.§ =dim.g,. Similarly for m we have
{u;—wu;s:i=1,..., t}spans m and if 33;(u; — u;s) = 0, then for w =33b;u;
we have ws =w. Thus wehng, and if w0 we have by the simplicity
of h that h=9HNng,cg,. By hypothesis [m ] is a non-zero (h-invariant)
subspace of m so we have m = [m §] c [m g,]c g,. Thus as before we obtain
the contradiction that g =m + 5§ cg,, which is simple.

Thus the practical attempt to find algebras m which are Y-irreducible
reduces to considering some well behaved Lie algebras g. If § is simple
we have the following criterion which reduces the attempt to considering
simple Lie algebras g.

THEOREM 3. Let g=m+Y be g.L.is. over an algebraically closed field
where m is Y-irreducible, § = H(m, m) is simple and [m 9] 0. Let Y, be a Cartan
subalgebra of B and let > be the set of roots of 9, in B and 4 be the set of
weights of B, in m. If Y= 4, then g is simple.

Proof. Let b be a proper ideal of g and let = :g-—>m, w1 g9
be the projections defined by the (fixed) decomposition g =m 9. Then

bm = {x€m : there exists h€h and x+A€H} =0 or m,
and bNnm=0 or m;

by = {h<) : there exists xem and x4+ hsb} =0 or §,
and bNHh=0 or §.

Both of these follow from the Y-irreducibility of m and %. For the first let
#Sbrm and k<h so that b=x+k<sb. Then for any hreb, [« hl+[k R]=[b hl€h.
Thus [x h]€br, since [k kl€Y is such that [z k]+[k hleb. Therefore bam is
h-invariant subspace of m and so equals 0 or m. Similarly for the
statement concerning J.

Now if bnm=m, then bam=m; for if xem=bnNnmcbh, then, by
definition, x&€br,. Therefore for any x,yem c b, [« y] =2y + h(x, y)eb and
since xyEbrm =m b we have h(x,y) =[x y]—aysb. Thus §=Yh(m,m)ch
so that g=mJ}Hcbh, contrary to the choice of b as a proper ideal.
Therefore bNm=0. Similarly if bnHch, then bry =Hh. But since
[mBhl+=0 and [mP] is b-invariant it therefore equals m. Thus h=bNHhch
and m=[mp)lc[mb] c b so that g =5 ; therefore b N h =0. These two facts



110 ARTHUR A. SAGLE

mean that if 0= x4+ heh, then 20 and %0 otherwise bNHh=+0 or
mNH+0. Thus bam=m and br; = 9.

Next decompose m and § relative to §, into weight and root spaces:
m = 1m, +r‘:"4mr and § =5, —i—p;zﬁp . For peX! and 0+ hy€h = bry (where

9o = hF,), there exists xcm with x+ h,<b and therefore for h,=}, we have
[@ kol + p(ho)ho = [w+ho hy]€b and also p(ky)(x+ ko)€b. Thus p(ho)a—[x k] =
p(hy)(@+ k,) — [2+ ko hlebNm =0 so that [z hJ=p(h)2z and therefore ps4.
Conversely let I'e4 and O#x€m,Cm = brm, then there exists 0+ 2€h with
x+ heb and therefore I'(h)x+-[h k] =[x+ h heb so that [k k] — [(h)h=
[+ Rk hy) — I(hy)(xz+ R)ebNh =0 and therefore I'eS). Thus 4=73 when b
is a proper ideal. This proof can be modified when § is a split Lie
algebra.

We shall show that this is the best possible result of this type by
constructing a six dimensional Lie algebra g=m 45 where § is simple, m
is h-irreducible, m is simple, 31 =4 yet g is not semi-simple. First we
consider reductive Lie algebras with radical.

THEOREM 4. Let g =m 1§ be g.L.t.s where § =Hh(m,m) is semi-simple, m
s B-trreducible and the radical { of g is nonzero. Then g={+tm={1+9 and
N i1=0. Thus in particular dim. § = dim. m = dim. { = 1/2dim. g.

Proof. Let t be any solvable nonzero ideal of g, then wwm and 1ny
are P-invariant subspaces i.e. tr; is an ideal of §;for let 7 =z + ker with
% = ram, k = rny, then for any heb, [k 2]+ [k k]l =[r kler which implies trm
and tr; are Y-invariant. But m is H-irreducible therefore tnm =0 or m and
if thm =0, then 0% t=1r; c§ which implies r is a solvable ideal of §.
Thus we must have tzw =m. Next let x,yEm = tow, then there exists k€)
so that z+ker and since t is an ideal, yx + [y k] + &(y, %) = [ya+kler. Thus
for any h(z,y)€h =h(ut,m), 2 = yx + [y klem = tam is such that z + h(x, y)sr
and therefore § = h(m, m) = 1z .

Next let p=z+hreg and let k€h =ty so that z+ker, then p= (x+ k)
+ (h—k)er+9 so that g=1r4+5H. Also tNHh=0 since § is semi-simple.
Next let zem = trm so that z+het, then p = (x—2)+ (z+ A)€m +1t ie. g =
m+ 1 and also m Nt =0: otherwise m Nt is a nonzero Y-invariant subspace
of m and therefore equals m; thus m=mnNrcr and g=m+rcr which
implies the semi-simple algebra § is solvable.

Now in the above t is an arbitrary nonzero solvable ideal so that from
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g=mirt=m+h we have dim.tr=dim.}. Thus in particular for 3 =
radical of g we have if [3 8]+ 0 that dim.[8 8] = dim. 9 = dim. 8 which
implies 8 is not solvable; thus [38 3] = 0.

Exampre. Let 9 ={e f,2} be the 3-dimensional split simple Lie
algebra and let m = {2, 2,...,2} be an B-irreducible module so that
g=mdY9 is g.L.t.s. with radical. Then we must have dim.m =3 and we

have the following anti-commutative multiplication table for g.

2% 2%, 2y h e f
Xy 0 — 4tx, — 2t% — 4tx, — 2t%h 22, 0 2
x, 0 — 4tx, — 42%f 0 — 21, 2y
2, 0 — 2, — 2, 0
h 0+ teF 0 — 2e 2f
e 0 h
f 0

We have {={c,c,c,} where co=a2,+te, ¢, =2+ th, c,=1m+2tf and
m is a simple Lie algebra and 31 = 4.

The results in this section apply to a L.t.s.; for example, from the
formula [ps gs]—[p gls =0 for a L.t.s implies the space g, = g,s of Theorem
2 is actually a simple ideal of g.  Also Theorem 3 shows the Lie algebra
=R(J)+ D of [3, p. 145] is simple (and of type E3,4]). Another
application is to Lie admissible algebras [5]: A is a Lie admissible algebra
with multiplication xy if A- (which is the vector space A with multiplica-
tion axy =2y —ya) is a Lie algebra. Now if A is Lie admissible and
D(A~) is the derivation algebra of the Lie algebra A-, then g = A-@® D(A")
is a Lie algebra with multiplication [a, + D, @, + D,] = apa, + a,D, — a,D, +
R(a*a;) + [Dy, D;] where R(a) denotes right multiplication in A-. This can
be generalized to a reductive Lie admissible algebra by just demanding
g=A"®D(A") be a Lie algebra. For example if A is alternative, then
A- is Malcev and we take [q, a,] = a*a, + D{a,, a,) where D(a,, a;) = [R(a,), R(a,)]
4+ R(aa;). In this last example if A has an identity element, then A-
has a center and cannot be simple or D(A-)-irreducible. Since it would be
desirable to utilize a simple or irreducible algebra we introduce the anti-
commutative algebra A°= A-/C where C = center A- and form the Lie
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algebra g'= A"@® D(A°). For example, let A be the split Cayley-Dickson
algebra, then A° is the simple 7-dimensional Malcev algebra. Reductive
Lie admissible algebras will be considered in a future paper.

Let M= G/H be a reductive homogeneous space with canonical con-
nection F of the first kind [7]. Thus 7 is the unique G-invariant connection
on M with zero torsion and such that the projection of 1-parameter
subgroups by =n: G - G/H: a—aH are geodesics in M= G/H. F is uniquely
determined by its value at p,=HeM and is given by Fx«(Y*), =

%vX Y(z%[X Y]m> where X, Yem and X* Y* are certain vector fields defined

on a suitable neighborhood N* of p,; see [7, p. 42]. Now in case G/H is
a Lie group, the multiplication XY becomes multiplication in the Lie
algebra m and this is determined by the group multiplication in G/H at p,
i.e. determined by the tangent vector to the commutator curve at p,.
We shall now define a local group-like (nonassociative) multiplication so
that the multiplication XY = 2Fx+«(Y*), is obtained from a commutator
curve.

From [2,7] we can find a symmetric compact normal neighborhood 1
of 0 in m so that N*=rmexpll is a normal neighborhood of », in M
diffeomorphic to 1. For certain elements g,bcN* we define a multi-
plication a+b on N* which is analytic when defined and satisfies

(1) There exists @ two-sided identity element ¢ in N*

(2) For every a=N*, there exists a unique two-sided inverse a-!
(asa* =a'ea=¢) and a—a' is analytic.

Thus N* is a local analytic hoop [10] and furthermore m is the tangent
algebra of N*; that is, m is the tangent space at the identity with multi-
plication of two tangent vectors defined by the tangent to the commutator
curve through the identity just as in Lie group theory. For example the
simple Moufang loop (= hoop with cancellation laws) obtained from the
Cayley-Dickson algebra has the simple seven dimensional Malcev algebra
as its tangent algebra.

For the construction of this multiplication let a=nexp X, b =rnexpY
where X,Y<U and define

a-b = m exp <X+Y+V§~XY>

where as usual XY =[XYIw. Clearly e=mexp0 and a!=rexp(—X) is
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the unique inverse of @; also the multiplication and the map a—a' are
analytic. To show m is the tangent algebra of N* we shall show XY equals
the tangent vector to z(f) at ¢ =0 where z(t?) = [ exp tX.mexp tY]-
[z exp tY+m exp tX]* for ¢ near 0. But a straightforward computation shows
2(t?) = w exp (¢2XY + 0(¢%)) which yields the results. It should also be noted
that since G/H is reductive there exists a neighborhood [7, p. 42] N;* c N*
of p, so that for any reH, the map ¢(h): N;* > N*: n exp X = n(h(exp X)h?)
is an automorphism of the local hoop N* up to a third order approximation
i.e. O(h) (m exp X)+¢(h)(w expY) = ¢(h)(m exp X-mexp V) mexp (¢) where ¢
involves 3rd order products of X and Y.

Let G/H be a simply connected reductive space with canonical connect-
ion of the first kind, then in [11] it is shown that if G/H is not symmetric
(i.e. mm=0), then the Lie algebra, L(m), generated by all left multi-
plications L(X):m—m:Y — XY equals the Lie algebra of the holonomy
group if and only if the derivations D(X,Y)eL(m) for all X,Yem; that is,
D(X,Y) are inner [12]. Also in [11] there is a correspondence between
simple algebras m and holonomy irreducible spaces G/H which are not
symmetric. Thus for example if G/H is a Riemannian non-symmetric
reductive space, then G/H is holonomy irreducible if and only if m is a
simple algebra; in this case the Lie algebra of the holonomy group equals
L(m) which is semi-simple. Consequently the holonomy group of G/H and
the group-like multiplication on G/H are related by the tangent algebra
briefly as follows. For X,Yem, exp tL(X) is in the holonomy group for ¢

near 0 and for #z(f) the commutator curve of the preceding paragraph we
have at ¢t =0

d _ _ d
A Y(exp tL(X) ()] =XY= -4 2(1)

which is what is obtained in case G/H is a Lie group i.e. H normal.
It should also be noted that the assumption of the field F to be

algebraically closed can be realized by a G-invariant almost complex
structure J on G/H with V] =0,

2. Simplicity of m. To prove the results concerning the simplicity
of m we need the following lemma concerning ideals and derivations.

LEmmA 5. Let A be a finite dimensional nonassociative algebra over a field of
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characteristic zero such that A*+ 0. If A has a proper ideal, then A has a proper
D(A)-invariant ideal where D(A) is the derivation algebra of A.

Proof. Assume A has no proper D(A)-invariant ideals and let & = (A)
be the Lie algebra generated by all left and right multiplications zL(a) = ax
and xR(a) = xza for all ac A. Since AR is a nonzero D(A)-invariant ideal of
A (noting [D,8]c &, see [12]), AR =A. Now let & be the radical of g,
then for any DeD(A) we have D:Q—>Q2: X —[X, D] is a derivation of € and
[,@] is a D-invariant ideal of ¢ since D:&—&. Thus B = A[gS] is
a D(A)-invariant ideal of A (since [[¥,8], R)]c[S] and [{,8]D =
[[},&), D] c [ &]) and therefore B=0 or B=A. If B= A, then since
[8,8]c R which is the radical of &%, where * = associative enveloping
algebra of & [3, p. 45], we have A= B=A[¢S]c ARc A. This yields
A = AR which implies by induction that A =0; [3, p. 47). Thus B=0 so
that [2,&] =0 and therefore & is the center € of . We shall now show
the linear transformations in € are semi-simple, then from Levi’s theorem
[3, p.91] and [3, p. 81] we have & is completely reducible in A. Thus
let Ac® and suppose A is not semi-simple i.e. its minimum polynomial is
not a product of distinct prime polynomials; this is equivalent to the fact
that the enveloping algebra {A4}* has a nonzero nilpotent element Z. Then
since Z is a polynomial in A€ we have [R(z), Z] = [L(x), Z] = 0 so that for
every element in & and consequently for every Qe&%%[Q,Z]=0. This
implies that @Z and ZQ are nilpotent so that Ze® = radical of 2*. But
since R is invariant under derivations of &* we have D: % - %R where QD =
[Q, D] with DeD(A) i.e. [R,D]cR. This implies AR is a D(A)-invariant
ideal of A which must be zero; thus %t =0 so that Z=0 and the center €
consists of semi-simple linear transformations. Using & is completely
reducible and A = AR we write A= ®3] A; where the A}s are L-irreducible
i.e. simple ideals of A. Since A*#0, there exists A; with A+ 0; but A?
is an @-invariant subspace of A; so that A, = A?2. This implies 4; is a
D(A)-invariant ideal for A,D = A2D c A;D-A; + A;+A;.Dc A, and therefore
A= A; is simple i.e. A has no proper ideals.

Next we use this lemma to investigate g =m + 5 where m is Y-irredu-
cible.

TrEOREM 6. Let (3,9) be a reductive pair with (fixed) decomposition ¢ = m + §
so that m is Y-irreducible and adwh =0 implies h=0. If mm+=0, then m 1is
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simple and the Lie transformation algebra & = Q(m) s semi-simple. Furthermore, if
F is the field of reals or is algebraically closed, then the derivation algebras D(m)
and adwl are semi-simple and D(m)C .

Proof. 1If m has a proper ideal, then by Lemma 5 there exists a proper
h-invariant subspace, a contradiction. Next from [R(x), D] = R(xzD) for any
derivation D of m, we see that {xem: trace R(x) = 0} is a non-zero Y-invari-
ant subspace so that trace R(x) =0 for all xem. Thus from the fact that
L=, +My+- - - where M, = Rm) and M; = [Pe-, M1, see [12], we
have trace S=0 for all Se®. To show & is semi-simple we have that since
m is simple, @ = €D & is completely reducible in m where & is semi-simple
and € is the center of &, see [3]. Now €cl'(m) = {S€ Hom (m,m):[S, R(x)]
=0} is the centroid of m, see [3] and since m is simple ['(m) is a field.
From [S, R(x)] =0 for SeI'(m) we obtain SR(x) = R(xS) so that I'm)Q c Q.
Consequently, if 0+=A€€, then I=A"'Ael'(m)Q and we obtain the contradic-
tion trace I=0.

Next assume F is the field of reals since the case F algebraically
closed is similar to this case when the dim.m is odd. Since m is §-
irreducible, H = adw}) =0 is completely reducible in m and equals H,@® H’
where H, is the center of H and H’ semi-simple. If DeH, and if dim.m is
odd, then D has a characteristic root « and {xem:x(al — D) =0} is a non-
zero H-invariant subspace of m. This yields D = af which is impossible for
a non-zero derivation. Now if the dim.m 1is even, the characteristic
polynomial has only quadralic factors (a linear factor yields the preceding
case). Therefore if ¢&) =¢&4at+b is such a factor we have that
{xem:xg(D)=0} is a non-zero h-invariant subspace so that D?+ aD + bI = 0.

Using this formula we have for any «, yem that

— bay = 2y (D% + aD)
= 20Dy D — 2bxy

and therefore bxy = 2¢D-yD. Now replacing y by yD in this last equation
and using the quadratic equation for D we obtain

bxeyD =— 2axD+yD — 2bxD-y
=— abxy — 2baD-y .

Interchanging « and y in this last equation and adding the results we
obtain
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(xy)D = xD+y + x-yD
=—2a xy + 2(yD+x + y-zD)
=—2a 2y + 2(yx)D.

Thus since m? =m we obtain 3D =— 22I, a contradiction. Thus H, =0 so
that adwh is semi-simple. A similar argument shows D(m) is semi-simple
since any D(m)-invariant subspace is also h-invariant.

The fact that D(m)c & will be proven by the same argument as that
in the proof of Theorem 8 noting that since & and D(m) are semi-simple
the traces of their elements are zero.

It is natural to consider the case when g is semi-simple, but Theorems
2 and 3 indicate that one should consider the general case of a reductive
pair (g,5) with both g and ) simple Lie algebras; see Theorem 8.

Lemma 7. Let (a,9) be a reductive pair with § and Y simple Lie algebras
and a decomposition ¢ =wm + 9 such that mm=0. If m has a proper ideal, then
m has a proper maximal adwh-invariant ideal w which is a nilpotent Lie subalgebra
and H(n, 1) = Hh(n%,m) =0.

Progf. Since g is simple, we have g=m + H(m,m). Now if m has a
proper ideal, it has a proper D(m)-invariant ideal which is therefore admb-
invariant (= j-invariant); thus there exists a maximal Y-invariant ideal u.
Next suppose H(t, 1)+ 0, then =u-+Hh0t,u) is a proper ideal of g. First
[n+ 50, n) Bl < [w B] + [H(w, 1) Hlc n+H(u,n), using (5). Next [ 4 Hin, 1) m]c um
+ H(u, m) + [, n) m] € n + H(u,m), using (3) and u is an P-invariant ideal.
But from (5) and H(, m) D h(xt,1) = 0 we see that both of these are nonzero
ideals of B =p(m,m) and therefore § = Hh(u,u) = h(m, ). Thus we finally
obtain [n + §(it,n) m}c n + H(x,1); this contradicts g is simple and consequently
we must have H(u,u)=0. Using this we obtain from (3) and (4) that
J,nn) =0 and H(n?,m) = 0.

Next BH(w,m)+ 0, otherwise n is a proper ideal of g=m 4 §h:[nm]=
w4+ H,m)cn and [nhlcn. Now if n=u* we have from (4) that
b = b, m) = h(u%, m) = 0, a contradiction; thus n >u? (properly). Letting
n' =% =, = n*'n we see that u* is an P-invariant subalgebra of m.
Now since § is simple, m is H-completely reducible so that there exists an
h-invariant subspace 1’ such that m=un t+w’. For this fixed decomposition
we have
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For » cw’ cn=n' and assume for k>2 that u*t’ cu**', then using
H(n% m) = 0 and (3) we obtain

J@bn,w) = [wh, n)] < u”.

This yields ()’ < w®+ ') + (Wu¥n and using the induction hypothesis
we have Ofww’ cw* ie. n*'n’ cw*. Next suppose that in the descending
chain n>u?>n*>. .- there exists ¢>2 such that 05 u?* =n¥(=n""'n),
then u?*' is a proper ideal of g. For using g=ntuw' +5 we have
[n%1h] c n?t; [ ] c n?tu + Hhu?hu) Da?; and ] cn W =a’ cn?t,
using n?!'=u? and w% cu*'. This contradiction shows we must have
"t ¢ n* (properly) which implies u is nilpotent.

The next few pages are devoted to showing the ideal u of Lemma 7
is such that n* =0 and using the non-degenerate Killing form, B(X,Y), of g
with dual space arguments to actually show that w=0; thus by Lemma 7
m must be simple. First we observe n =0 if and only if its center ¢ is
zero. So we concentrate on the Y-invariant subalgebra c¢. Using § is
completely reducible in m and u (since § is simple) we write n=c¢ J ¢,
where ¢, is f-invariantand m=ut+w' =c¢ J ¢, +wWsothatg=ct ¢, 3+ 1+ 9.
We now compute adgX for X in these various spaces:

0 0 0 0
0 0 0 0
adgx = for zesc,
X31 X32 0 XM
Xy 0 0 0
/0 0 0 0
Y Y 0 0
adgy = o * for yec,,
Y31 Y32 O Y34
O Y42 0 0

le Z12 0 ZH

ZZl Zzz 0 Z24
adgz = for zen’,
ZSI Z32 233 234
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H, 0 0 0

0 H, 0 0
adgh = for heh;
s 0 0 H, 0 b;

0 0 0 H,

where these block matrices are computed from the various facts ¢2=0,
w=ctc¢, is an ideal of m, the spaces are h-invariant and H(u,n)=0.
From these matrices we obtain B(x,¢) = B(x,¢,) = Blx,)) =0 and B(x,2) =
trace XyuZ,; + trace X,,Z,,. We compute these traces as follows. For any
z,yem and h<h we define linear transformations e¢(x) and 6(x) by

ye(x) = h(y, v)
and
hé(z) =[x hl=—Fh adgx

where e(z):m—9 and d@x):)—>m. From this we see the matrix X,
corresponds to e(x) acting in n’, Z,, corresponds to e(z) acting in ¢, — X,
and — Z,; correspond to &(x) and 4(2) acting in §. Thus to compute the
matrix X,,Z,; and Z,,X;, we let sen’ and tec¢, then

se(x)6(z) = [z h(s, x)] = sa(zx, z)
vields the matrix —X;,Z,; and
te(2)o(x) =[x h{t, 2)] = to(z, x)

yields the matrix — Z,,X,, .
Now we shall show #?=0. For z=cnn?, sen’ and zen, we have

se(x)é(z) = [z h(s, z)]€[n” hn®,m)] =0,
thus X;,Z,; is zero. Next from (3) we have for t=¢ that

J(z,t,2) = [® h(t,2)] + [t h(z,2)] + [z h(x,t)]
=[x h(t,2)], using H(n?, m) =0
= te(2)o(x) .

But since #,xzeccu (an ideal) we see J(x,%,2z) =0 so that Z,X,, is zero.
This proves B(x,3) =0 so that ¢enu?=0. Now let nou?o--.2onf>
n**t =0, then w*ccnn?if k=2 so that n*=0 if k=2 i.e. u?=0. Thus
n=¢ and therefore we have m=c¢+n with B(c,¢)= B(¢,)) =0 and

h=h(c,m).
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Next from g =m 4§ we have for any zem that

R(2) e(z)
d =
ado ( — 8(2) 0 >
and since g is simple, 0= ¢r adz = trR(z).  Also since § =[h ] is simple

and Y —>adh: b —adch and h —admh: h —aduh are representations we have
tr adch = tr adwh =0 for all neY). From o(x,y) = e(x)d(y) i.e. zo(x,y)=
[y h(z,x)] and from (3) we have

[R(x), R(y)] — R(zy) = o(x,y) — o(y, x) + admh(zx,y) .

Thus if #(x,y) = tr o(z,y) we have »(x,y) = r(y, 2) and from this we obtain
from the matrix for adgz that

Blx,y) = tr adqx adgy

= tr R(z)R(y)— tr e(x)é(y) — tr 8(x)e(y)
tr R(x)R(y) — r(x, y) — r(y, x)
tr R(x)R(y) — 2r(x, y) .

i

I

Using this formula we shall show B(c,w’) =0 and from B(c,¢) = B(c,)) =0
and g =c4un 15 we have B(c,g) =0; thus ¢ =0. Now for zem, yec we
see from the decomposition m =c¢ 4w that the matrix for R(x)R(y) has
zeros on its diagonal so that #» R(x)R(y) =0 and therefore

Blx,y)=—2 r(x,y) for zem, yec.

We shall now show that for any xew’ that »(x,y) =0 for y=c. From the
decomposition m = ¢ + &’ we have for o(x, y) = ¢(x)i(y) with zew’, yec that

zolw,y) = [y h(z,2)]E¢ for zee¢
and
20, y) =y hiz,2)]€C for z,en;

therefore o(x, y) has a matrix A of the form

A 0
a= ().

Thus 7(x,y) = tr ola,y) = tr Ay = treo(a, y) . Again with zen’ and y,zec
we have from (3), H(c,¢) =0, ¢2=0 and ¢ =1 is an ideal of m,
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0= J(z27v)
= [z h(x,¥)] + [y Az, x)]
= z[lad:h(x, y) + olz, ¥)].

Thus on ¢ we have
0 = adh(x,y) + o(x, y)

and taking traces on ¢ we obtain 0 = tre(z,y) =r(z,y) for all zen,yec
and therefore B(c¢,w’)=0. This proves part of the following theorem.

TueoreM 8. Let (a,9) be a reductive pair where g and 9§ are simple Lie
algebras with a decomposition g¢=wm + Y so that mm+=0. Then m s a simple
algebra and the Lie transformation algebra & is semi-simple and adwh C & 1i.e.
consists of inner derivations.

The proof that & is semi-simple is similar to that in Theorem 6 and
is omitted. Now let Deadw= H, then since [R(x), D]= R(xD) we have
[¢, D] c € so that the map D:—>Q:X—>[X,D] is a derivation of €. But

g is semi-simple, therefore there exists T€& such that D = adsT; i.e.
[X, D] = XD = XadsT = [X,T]

for all Xe@. Thus [D—T,X]=0 so that D—Tel(m) = centroid of m
and I'(m) is a field, [3].

Let D—T=Uer(m), then if U+#0 we have I=DU'—TU™ and
TU'el'm)L c L so that trace TU'=0. Thus to obtain a contradiction
to U0 we shall show trace DV =0 for any Ver(m). First we note for
any DeH that [D,V]=0 for all Ver(m). For from the Jacobi identity we
have

[([D,V], R()] = [[D, R(z), V] + [D, [V, R(x)]]
=—[R(@D),V]=0

so that [D,Vl=Wer(m). If W0, then I =DV —-VDW™=DWV —
VDW™, using I'(m) is commutative; from this equation trace I =0. Thus
[D,V]1=0. Now since H=[H, H] is semi-simple we have that the given
derivation D = 3'[D;,D,] and therefore DV = 3[D;, D,V] so that trace
DV =0.

Many useful examples can be computed if we take § to be a regular
simple subalgebra [1, p. 147] of g. Thus by definition there exists a
Cartan subalgebra & of g such that if g=8& + 3g, + X a.,, where acd =
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system of positive roots, is the Cartan decomposition of g relative to &,
then there exist a subsystem 4 c 4 and a corresponding subalgebra & c &
such that H =& + Slag+ g, ped. It is easy to show that & = 818
where & is such that [§ £]=0 and from this if we let m =& + g, + a9
with €4 — 4, then g=m 4§ is the desired decomposition of g. Using
this decomposition we have the following explicit examples.

ExamprLE 1. Using the notation of [3] let g be of type A,, the
I +1Xx1+1 matrices of trace zero, then g has basis

e;; (for i=j=1,...,1+1)
which form a basis for the nonzero root spaces and
hy = e — €r41,141 k=1,...,1

which forms a basis for the Cartan subalgebra &. We shall let § be of
type A,.,, since in this case m, in the decomposition g =m 4§, will have
smallest dimension and the possibility of adwf) equaling D(m) is best. As in
the above remarks we let § have basis {e;:i#+j=2,...,/+1 and
hk=2,...,1F and let m have basis {e;;,e;,u:4,7=2,...,]+ 1} where
u =3 t,ah; is determined by choosing a;, =—l, 2, =+ -=%=1. Then
g=m 4§ is reductive and m is simple. The anti-commutative multiplica-
tive relations in m for the above basis elements are

uelk=—(l-—l)elk, ue]ﬂ:(l—‘l)ek], k=2,...,l+1,
€161 = 0= ey1€4,

€1€q1 =—}—~5mu, Pyq=2,...,1+1.

These are easily checked by computing the matrix commutators
le fl=ef —fe=ef + hie f).
Next to compute DeD(m) let

MD = alu + Z alpelp + Z bg)lepl
e”-D = blu + E bipe]p + 2 b;fiel?l
enD = cju + X cjperp + 21 Criep

where i,/,p=2,...,]+1. Then applying D to the above multiplicative
relations we find that D has a matrix of the form
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where b is the ! X [ matrix (b;,). Since the derivation D’ with b=17 is a
basis for the center of D(m) i.e. the Lie algebra of matrices as just
computed, we can identify D(m) with D’F @}, noting that § is the /2—1
matrices of trace zero. Note that D(m) is not semi-simple even though m
is simple.

ExamprLe 2. We consider the Lie algebra 3s(n) of # X n skew-symmetric
matrices and show directly that 3o(n)=m 80w —2) is g.L.t.s. with
h =380(n —2) and m simple. First for p<n write 8o(n) = m 4 80(p) as a Lie
algebra as follows: identify 3o(p) as the lower right-hand block of » x p
skew-symmetric matrices in %o0(z) and identify m with the corresponding
complementary set of matrices. Then 8o(n) = m & 80(p) is a ¢.L.t.s. and for
p=n~1m*=0; for p=n—2m*=m and m is simple. To see this let
ey i,7=1,...,n denote the usual matrix basis, then from the above
description of m we see that m has basis

— — ,-—
U=y~ fi=e;—epf;=e;—es;

for j=3,...,n. The multiplicative relations for m are

ufj:"f.,h uf.;:fj j=3,---,1’l
fife=0=fif: Hk=3,...,n
Jife=—0uu Jk=3,...,n.

The proof in that m is simple is briefly as follows. Suppose

where b is an ideal of m and b,,4;€F. Then b+ u(ub) = bucsh and if
by# 0, then using the multiplicative relations b=m. If 5,=0, but some
by # 0, say, then from the multiplicative relations we have

b=bf= JZb,-fjf;’c + ;b}f}ﬂc

=— b = buch

so that again m=b. Next to compute DeD(m) let
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uD=au + Xa,fp+apf»
sz:biu+2bipfp+Eb,ipf1,n
f}D:Cju'l‘Ecjpfp_}_Zc’jpf,p

where i,j,2=3,...,n. Then applying D to the multiplicative relations
for m we see that D has a matrix of the form

0 0---0 0--+-0

(sz) (b,w)

=S

—b) ()

=R =)

where b;; =—b;; and b;; = b}, are the coeflicients in the expansion for f;D
above. In this case § is identified with diagonal block subalgebra and note
that in both examples D(m) annihilates the subspace #F so in particular is
not irreducible on m; this is generally true by Theorem 7.5 of [1, p. 161].
These examples motivate the following corollary.

CoRrOLLARY 9. Let (8,9) be a reductive pair where § is a maximal subalgebra
of ¢ and in the decomposition g =m L 9, mm=0. Then m is a simple algebra.

Proof. Suppose b is a proper ideal of m, then from Lemma 5 we
may assume b is adwh-invariant. Next a straight-forward calculation
shows that =019 is a proper Lie subalgebra of g containing §.
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