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1. Basics. Let G be a connected Lie group and H a closed sub-

group, then the homogeneous space M= G / H is called reductive if there

exists a decomposition g = m + ί) (subspace direct sum) with [m, §] a m where

g (resp. ϊj) is the Lie algebra of G (resp. H); in this case the pair (g,f)) is

called a reductive pair. For x,y<Em an anti-commutative multiplication xy

is defined in m by [x y] = xy + h{x, y) where xy (resp. h{x, y)) is the compo-

nent of [x 2/]eg in tn (resp. £)) relative to a fixed decomposition g = m + ί)

The study of these algebras is motivated by the work of K. Nomizu where

this multiplication is related to the canonical G-invariant connection V of

the first kind on G\H by [Vx*{y*)]n = -kr*V where pQ = H<EM. There is a

correspondence between holonomy irreducible non-symmetric spaces M and

simple algebras vx with the above connection and multiplication, see. [11].

Using this the holonomy algebra is easily determined by showing certain

derivations induced by h{x9y)&§ are inner. Thus in this paper we study

the simplicity of the algebra nt and its derivations subject to "irreducibility"

conditions on g, f) and m; in particular when m is ^-irreducible and when

g and ϊj are simple Lie algebras. Applications are given to Lie admissible

algebras and to homogeneous spaces M with a group-like (non-associative)

multiplication.

The Lie algebra identities in g yield the following identities for nt and

(1) xy = — yx

(2) h(β, y) = — /*(?/, a?)

(3) [» Λ(y, z)] + [2/ Λ(«, α?)] + [z h{x, y)] =

(4) h(xy, z) + A(y2, x) + λ(z&, y) = 0
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(5) [h(x, y) h] = h([x h], y) + h(x, [y A])

(6) [xy h] = [x h]y + x[y h]

where J{x, y, z) = (xy)z + {yz)x + {zx)y . Thus if Ij(nt, m) = linear space span-

ned by all the k{x, yYs, we have from (5) that ϊj(nt, nt) is an ideal in ϊj and

from (6) that the mappings D(h) — admh are contained in the derivation

algebra D(m) of m. From these we see that m + 5(ro» tn) is an ideal in g

and if there exists an ideal t c ϊj of g such that g = nt-f- ϊj(nt, nt) 4- ϊ (e.g. g

semi-simple) then the derivations induced by ϊ are zero ([nt ϊ] c m Π ϊ = 0

using ϊ is an ideal of g and (g, ϊj) is a reductive pair). These considerations

lead to the study of the "minimal" reductive pair (nt,ϊ)(m, nt)) and if we

write D{x, y) = admh(x, y) then the relations (1)—(6) can be rewritten in terms

of these derivations of nt to yield the axioms of a general Lie triple system

(g.L.t.s.) for g = nt + ΐ> [9, 11, 13]

(Γ) xy = — yx

(20 D(x,y) = -D(y,x)

(3') xD(y, z) + yD(z9 x) + zD{x, y) = J(x, y, z)

(40 D{xy9 z) + D(yz, x) + D{zx, y) = 0

(50 [D(w, x), D{y, z)] = D{wD{y, z), x) + D{w, xD{y, z))

(60 {xy)D{u, υ) = (xD{u, v))y + x{yD(u, v))

where [A, B] = ΛB — BA.

Note that when xy^O for all χ9y&m then nt 4-§(nt> tπ) is a L.t.s. where

[«, 2/, z] — xD{y, z) is the trilinear operation on nt [6].

There are many examples of g.L.t.s. (section 2) but we shall be

primarily concerned with a g.L.t.s. nt 4- §(flt, vx) where nt is §(nt, nt)-irreducible

or nt is a simple algebra. Algebraically this is motivated by the seven

dimensional Malcev algebra in [8] which gives rise to the g.L.t.s. g = nt + ϊj(nt, nt)

where g is of type Bz, § of type G2 [14] nt is ^-irreducible and a simple

algebra. We shall assume throughout this paper that the base field F is

of characteristic zero and in section 2 we shall show that if (g, f)) is a

reductive pair with g = nt 4- % where nt is ή-irreducible and ntnt ψ 0, then nt

is a simple algebra and admfy is semi-simple under certain conditions (if F

is algebraically closed). We also consider the reductive pair (g,ϊj) where g

and 5 a r e simple Lie algebras in this case if ntnt ψ 0, then nt is simple

and the derivations induced by ί) are inner.
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In [6] the analysis of a L.t.s. % depends on the study of automorphisms

of the Lie algebra 2 = % © [% %] which are of period 2. We now describe

this for the more general case of a reductive pair (g, ίj).

PROPOSITION 1. Let g be a Lie algebra and f) a subspace of g . Let s be an

endomorphism of g such that s2 — I and s is a maximal §-endomorphism i.e.

hs = h for all h(Ξ§, [lh]s = [Is h] for all / e g , &eί) and ϊj = {/eg: Is = /} .

Then if tn — {/eg: Is = — /} we have (g,ϊj) is a reductive pair which uniquely

determines s . Furthermore if p = x+ h, q = y + k, g = m + ^ , then [ps qs] —

[p q]s = 2xy; thus g is a L.t.s. if and only if s is an automorphism of $ if and

only if m2 = 0.

Proof. Since s2 = / we have g = Όί 4- fc>2 where Di = {/Gg:/5 = (— l) i + 1 /}

so that ζ = t>!, tn = t>2 and g = tn 4- ϊ) - Next [m I] c m and [fj ϊj] c ϊj; for if

# e m , / i6^, then [cc /Ϊ]S = [a s Λ] = — [x h] and similarly [ϊ) ή] c ^ . Conversely

if (g,ϊj) is a reductive pair and g = tn 4- § > then the endomorphism s: x+ h

-± ~ x-\- h is a maximal fj-endomorphism so that s2 = I. Furthermore if

g = tit 4- 5 is determined by two ή-endomorphism s and t as above, then

clearly s = t . The formula [ps qs] — [p q]s = 2xy is a straightforward

computation.

We shall want to consider Lie algebras g which are semi-simple and

as an application of the above result we have the following theorem.

THEOREM 2. Let g = m + ή be a semi-simple g.L.t.s. (i.e. ϊj = ϊj(tn, m))

defined by the involution s previously discussed, let m be ^-irreducible and assume

admh = 0 implies h - 0, then

(1) g is simple or

(2) g = gi 4- 92 where QX is as imple ideal of g and g2 = g ^ . If g is not

simple^ we may write g = %x © g2 where gx and g2 are simple ideals and

dim. §x — dim. g 2 . In case fj is simple dim. fj = dim. m = dim. Qx.

Proof. Let g = tn4-ίJ = ®Σ£jfc be semi-simple defined by the involution

s i.e. s2 = 7, [adQh, s] = 0, then u ; = ĝ  + g ; s is β<i9ϊ)-invariant subspace of

9: [QM C ĝ  since ĝ  is an ideal of g and [ĝ  s %] = &js ad 5 = g7 ad §s = [Qj ^]scg ys.

Next we have g, is not an ideal in 5 . For suppose ĝ  is an ideal in

ϊj, then [tn gy] c [m ή] c tn, using (g, §) is reductive. But since g ; is an

ideal of g, [tn g,] c gy c ή and therefore [tn g ; ] c tn Π % = 0 Thus ^^mg^ = 0
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which implies g* = 0. Now since gy is not an ideal of ϊj, there exists

# + h^Qj with 0 ^ j?em, /zeϊj. But then — x + h = (#-f/z)segys and therefore

0 ψ 2x — {x + h) — {x + /z)sGgy + gys = uy so that m Π tty Ψ 0 . Thus since m is

ϊj-irreducible, m = m Π uy c ιty.

Now we shall show § = §(nt, nt) c uy and therefore g = m + ί) = U;. For

any x, y<Ξm, there exists 2Gjπ SO that 2+%,2/)eg/ where [x y] — xy+h(x, y).

For let my = {x&xn: there exists /?e/i with xΛ &egy} = projection of gy into

m. Then my ψ 0, otherwise gy is an ideal contained in ϊj also my is ί)-

invariant subspace of m and so equals m. Now to find the desired z we

have for χ,y&m, h<E§ with x+ h^Qj that [yx+ /?]eg; and from this we have

for z=yx+[y h]^m that z+h{y, #)eg y . Next using this and nt c uy = g; + gy5

we have for any h(x,y)^=$(rn9m), that there exists sent with zΛ-h{x,y)^gj

and therefore /&(#, 2/)em + gy c u y . Thus ϊ) c uy so that g = gy + g; s .

Two cases arise (1) g = gy i.e. j = 1 so that g = m 4- ϊj is actually simple

or (2) g properly contains gy. In this case we shall show g = gy + g; 5 .

Let x+ h^Qj Γi QjS where ίc£m, h^ί), then — x+ h — {x+h)se($js)s=Qj; but

since x + /zegy also, 2x = {x + h) — (— x + h)^g5. Thus if a?ψ 0, nt Π gy is a

nonzero ^-invariant subspace of m which must equal m . Thus m = m Π Qj a gy

and by the argument in the preceding paragraph ΐ) = ϊj(m, m) c g; . There-

fore g = Qj9 contrary to the choice of g in case 2; thus x = 0 and /zegy Π gys.

Next for any 3/em, yadmh — [y &]em; but since /*egy which is an ideal of

g, [2/ h]e&j. Thus [2/ AJegy n m so that if [2/ ^]τ f c0, gy Π m is a nonzero

^-invariant subspace which must equal m. Thus again m c gy and we

may conclude g = gy, contrary to case 2. Therefore admh = 0 which implies

h = 0 so that g = gy 4- QjS .

Next let ^ be a simple ideal of minimal dimension and write g = gi©g2

where g2 is a semi-simple ideal of g. If g2 is not simple, then there is a

simple ideal p of g in g2 and dim. p < dim. g2 = dim. g — dim. ^ = dim.

(Si + Qis) — dim. gx = dim. g^ a contradiction to the choice of gj.

Now if ϊ) is simple, we see from the definition of ΐ) in terms of the map

s that {u + us: ^egj- is a non-zero ^-invariant subspace of ή; thus it must

equal § . Similarly {u — us: u^^j} = m . If ux, . . . , ut is a basis for qt,

then {̂ i + Uis: i = 1, . . . , O clearly spans § . If 5>;(^i + uts) = 0, then

for v = Y^diUi we have vs — —v so that t egi n m. If t; ̂  0, then gj Π nt is

a non-zero ^-invariant subspace of m and therefore nt = gj Π m, But then

for ^i/Gntcgj, we have h(x,y) = [#2/] — xt/^gi so that gcg^ contrary to the
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choice of g not simple. Thus v — 0 so that at = 0 and {uι + Uis} are

independent. From this dim. ΐ) = dim. qλ. Similarly for m we have

{uι — Uis: i = 1, . . . , t} spans m and if ΣW^ΐ ~ M*s) = 0, then for w = Σ ^ i

we have ws = w. Thus w e^ Π Si and if w^O we have by the simplicity

of ί) that ϊ) = ζ Π fij c & . By hypothesis [m ϊj] is a non-zero (Ij-invariant)

subspace of nt so we have nt = [nt ϊ)] c [nt gj c g t. Thus as before we obtain

the contradiction that g = m + § c Qλ, which is simple.

Thus the practical attempt to find algebras nt which are ϊ)-irreducible

reduces to considering some well behaved Lie algebras g . If ϊj is simple

we have the following criterion which reduces the attempt to considering

simple Lie algebras g.

THEOREM 3. Let g = m + ϊj be g.L.t.s. over an algebraically closed field

where m is ^-irreducible, f) = Xj(tn, m) is simple and [nt §] ψ 0 . Let f)0 ^ ^ Cartan

subalgebra of ϊj «nrf let Σj έ^ ίΛ̂  ^ ί of roots of §0 ^ % # ^ ^ ^ ^^ set of

weights of §0 in m. If Σ ^ Δ, ίΛ̂ w g tί ample.

Proof Let b be a proper ideal of g and let πm : g -> m, 7rQ : g ->• ή

be the projections defined by the (fixed) decomposition g = m + %. Then

: there exists /^e^ and x +h<Eh} = 0 or nt,

and b Π nt = 0 or nt

hπ§ = {Aeϊ) : there exists #ent and x + /zGb} = 0 or ϊ),

and b Π I) = 0 or ^ .

Both of these follow from the ϊj-irreducibility of nt and ϊj. For the first let

χ(Ehπm and k<E§ so that b=x+k<Bh. Then for any /*eϊj, [α; /i]+[& h] = [b h]^h.

Thus [a; /ι]Gb7rm since [k h]e§ is such that [x h]+[k A]eb. Therefore bπm is

ζ-invariant subspace of nt and so equals 0 or nt. Similarly for the

statement concerning ή .

Now if b Π nt = nt, then bπm = nt for if #ent = b Π nt c b , then, by

definition, x^hπm . Therefore for any χ,yGxn ah , [x y] — xy + h(%, y)^h and

since xy<Ehπm = nt c b we have h(x9 y) = [x y] — xy^h . Thus ϊ) = ή(m, nt) c b

so that g = nt + S c b, contrary to the choice of b as a proper ideal.

Therefore b Π m = 0 . Similarly if b Π 5 c ϊj, then bτf) = ϊ). But since

[nt Ij] ̂  0 and [nt ί\] is ^-invariant it therefore equals nt. Thus § = b Π f) c b

and nt = [nt ϊ)] c [nt b] c b so that g = b therefore b Π ϊj = 0. These two facts
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mean that if O^cc+AeB, then xφO and h ψ 0 otherwise B Π ^ O or

m Π ϊj ψ 0 . Thus b7Γm = m and Bπ̂  = ϊj.

Next decompose m and ϊ) relative to ϊj0 into weight and root spaces:

nt = m0 + Σ ttιΓ and § = f)0 4- Σ 5P For o ^ Σ and 0 ψ &Peϊj = b7r& (where

f)P = AFP), there exists #ent with x + hβ^h and therefore for /zo

e5o we have

[a; Ao] + ρ{hQ)hp = [x+hp A0]eb and also p[ho)[x+ Ap)eB . Thus p{hQ)x—[x Ao] —

p{hQ)[x+ kp) — [x + hP A0]eBΓint = 0 so that [x h^\ — ρ{h^)x and therefore j o ε i .

Conversely let Γ e J and O^ccentΓcnt — B7Γm, then there exists O^Aeίj with

x+h<sh and therefore Γ(^0)^+[/ί hQ] = [x+h ^0]eB so that [A hQ] — Γ(hQ)h =

[x+ h h0] - Γ(ho){x + h)<ΞhΓι§ = 0 and therefore Γ ^ Σ . Thus Δ = Σ when B

is a proper ideal. This proof can be modified when ϊj is a split Lie

algebra.

We shall show that this is the best possible result of this type by

constructing a six dimensional Lie algebra g = nt + ή where ή is simple, nt

is ij-nreducible, nt is simple, Σ = Λ yet g is not semi-simple. First we

consider reductive Lie algebras with radical.

THEOREM 4. Let g = nt + 5 ^ g.L.t.s where § = §(nt, nt) is semi-simple, m

is ^-irreducible and the radical \ of g is nonzero. Then g = f4-ttt = f + ϊj and

[f f ] = 0 . Thus in particular dim. ϊ) = dim. nt = dim. f = 1/2 dim. g .

Proof. Let r be any solvable nonzero ideal of g, then xπm and xπ§

are ^-invariant subspaces i.e. r^ is an ideal of ϊj for let r = x + Jc^x with

x = rπm, Jc — rπ^, then for any Aeϊ), [k h] + [k h] = [r h]^x which implies xπm

and xπ^ are ^-invariant. But nt is ^-irreducible therefore r7Γm = 0 or nt and

if xπm — 0, then 0 ψ x — xπ^ c § which implies r is a solvable ideal of ϊ).

Thus we must have xπm = nt. Next let x, 2/ent = xπmf then there exists feeϊ)

so that aH-fcer and since r is an ideal, yx+ [y k] + h{y,x) = [yx+k]^x. Thus

for any h(x, y)^ = §(m,nt), z — yx + [y k]^m = rπ-m is such that z + h(x, y)^x

and therefore ϊj = ή(nt, nt) = r^

Next let p = x+h<^$ and let k<Ξ§ ~ xπ^ so that x+k^x, then p = (» + &)

+ (h—k)^x + ή so that g = r + ϊj. Also r Π | = 0 since ή is semi-simple.

Next let zent = xπm so that z+/*er, then p - (x—z) + (z + A)em + r i.e. g =

nt + r and also nt Π r = 0: otherwise nt Π x is a nonzero ^-invariant subspace

of nt and therefore equals nt thus nt = nt Π t c r and g = nt + r c r which

implies the semi-simple algebra ί) is solvable.

Now in the above r is an arbitrary nonzero solvable ideal so that from
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g = tit -j_r = m + 5 we have dim. r = dim. ή . Thus in particular for 3 =

radical of g we have if [£ $] ψ 0 that dim. [3 3] = dim. ίj = dim. 3 which

implies % is not solvable; thus [ H ] = 0 .

EXAMPLE. Let ϊj = {#, /, /z} be the 3-dimensional split simple Lie

algebra and let m = {#0, x19. . . , #,} be an ^-irreducible module so that

g = m + § is g.L.t.s. with radical. Then we must have dim. m = 3 and we

have the following anti-commutative multiplication table for g.

XQ

X,

χ2

h

e

f

XQ Xi

0 - 4txQ - 2t2e

0

0=^ t<ΞF

χ2

- 4tx1 - 2t2h

- 4tx2 - 4t2f

0

h

2xQ

0

-2x2

0

e

0

— 2xQ

— 2xx

~2e

0

/

xx

x2

0

2/

0

W e h a v e f = {c0, cu c2} w h e r e c0 = xQ + te, ct = xx + th, c2 = x2 + 2tf a n d

m is a simple Lie algebra and Σ = Δ.

The results in this section apply to a L.t.s.; for example, from the

formula [ps qs] — [p q]s = 0 for a L.ί.s implies the space g2 = g^ of Theorem

2 is actually a simple ideal of g. Also Theorem 3 shows the Lie algebra

Q = R(jQ) + /) of [3, p. 145] is simple (and of type £6[3,4]). Another

application is to Lie admissible algebras [5]: A is a Lie admissible algebra

with multiplication xy if A~ (which is the vector space A with multiplica-

tion x*y — xy — yx) is a Lie algebra. Now if A is Lie admissible and

D{A~) is the derivation algebra of the Lie algebra A~, then g = A~ ® D{A~)

is a Lie algebra with multiplication [ax + A a2 + Al = #1*̂ 2 + ^ A ~~ ^2A +

R{aλ^a2) + [A> A ! where i?(β) denotes right multiplication in ^4". This can

be generalized to a reductive Lie admissible algebra by just demanding

g = A~ ® D{A~) be a Lie algebra. For example if A is alternative, then

A~ is M a l c e v a n d we take [ax a2] — aγ*a2 + D{a19 a2) w h e r e D(a19 a2) = [R(aj), R(a2)]

+ R(a^a2). In this last example if A has an identity element, then A~

has a center and cannot be simple or i)(A~)-irreducible. Since it would be

desirable to utilize a simple or irreducible algebra we introduce the anti-

commutative algebra A0 = A~\C where C = center A~ and form the Lie
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algebra g° = Λ° ® D{A°). For example, let A be the split Cayley-Dickson

algebra, then AQ is the simple 7-dimensional Malcev algebra. Reductive

Lie admissible algebras will be considered in a future paper.

Let M— GjH be a reductive homogeneous space with canonical con-

nection V of the first kind [7]. Thus V is the unique G-invariant connection

on M with zero torsion and such that the projection of 1-parameter

subgroups by π\ G-^GjH: a-^aH are geodesies in M— G/H. V is uniquely

determined by its value at pQ = H<BM and is given by Fx*(F*)?>0 =

-λ-Xγ(=Λ-[XY]m) where X , F e m and X*,F* are certain vector fields defined

on a suitable neighborhood N* of pQ; see [7, p. 42]. Now in case GjH is

a Lie group, the multiplication XY becomes multiplication in the Lie

algebra m and this is determined by the group multiplication in G\H at p 0

i.e. determined by the tangent vector to the commutator curve at p 0 .

We shall now define a local group-like (nonassociative) multiplication so

that the multiplication XY = 2Fx*{Y*)Po is obtained from a commutator

curve.

From [2,7] we can find a symmetric compact normal neighborhood U

of 0 in m so that N* = π exp U is a normal neighborhood of pQ in M

diffeomorphic to U. For certain elements a, b^N* we define a multi-

plication a b on N* which is analytic when defined and satisfies

(1) There exists a two-sided identity element e in TV*

(2) For every αeAΓ*, there exists a unique two-sided inverse crι

{a ar1 — a~ι a= e) and a-±crι is analytic.

Thus N* is a local analytic hoop [10] and furthermore nt is the tangent

algebra of iV*; that is, m is the tangent space at the identity with multi-

plication of two tangent vectors defined by the tangent to the commutator

curve through the identity just as in Lie group theory. For example the

simple Moufang loop (= hoop with cancellation laws) obtained from the

Cayley-Dickson algebra has the simple seven dimensional Malcev algebra

as its tangent algebra.

For the construction of this multiplication let a = πexpX, b = πexpY

where X, FeU and define

a b = π exp

where as usual XY = [X Y]m . Clearly e = π exp 0 and GΓ1 = π exp {—X) is
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the unique inverse of a; also the multiplication and the map a-^a'1 are

analytic. To show m is the tangent algebra of iV* we shall show XY equals

the tangent vector to z(t) at t = 0 where z(t2) = [π exp tX π exp tY]

[π exp tY π exp tX]'1 for t near 0. But a straightforward computation shows

z{t2) — π exp {t2XY + 0(t3)) which yields the results. It should also be noted

that since GjH is reductive there exists a neighborhood [7, p. 42] Nt* c TV*

of Po so that for any h&H, the map φ(h): Ni*-±N*\ π exp X->π{h{exp Xjh'1)

is an automorphism of the local hoop iV* up to a third order approximation

i.e. Φ{h) (π exp X) φ(h){π exp F) = φ(h)(π exp X π exp F) π exp (ε) where ε

involves 3rd order products of X and Y.

Let GjH be a simply connected reductive space with canonical connect-

ion of the first kind, then in [11] it is shown that if G\H is not symmetric

(i.e. mm ψ 0), then the Lie algebra, L(m), generated by all left multi-

plications L{X): m-±m:Y-*XY equals the Lie algebra of the holonomy

group if and only if the derivations D(X9Y)&L{m) for all X, Fein; that is,

D{X,Y) are inner [12]. Also in [11] there is a correspondence between

simple algebras m and holonomy irreducible spaces GjH which are not

symmetric. Thus for example if GjH is a Riemannian non-symmetric

reductive space, then GjH is holonomy irreducible if and only if m is a

simple algebra; in this case the Lie algebra of the holonomy group equals

L{m) which is semi-simple. Consequently the holonomy group of GjH and

the group-like multiplication on GjH are related by the tangent algebra

briefly as follows. For X, Fent, exp tL{X) is in the holonomy group for t

near 0 and for z{t) the commutator curve of the preceding paragraph we

have at f = 0

-<jr [(exp tL(X)) (F)] =XY= -Ji-z(t)

which is what is obtained in case GjH is a Lie group i.e. H normal.

It should also be noted that the assumption of the field F to be

algebraically closed can be realized by a G-invariant almost complex

structure / on GjH with FJ = 0.

2. Simplicity of m. To prove the results concerning the simplicity

of m we need the following lemma concerning ideals and derivations.

LEMMA 5. Let A be a finite dimensional nonassociative algebra over a field of
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characteristic zero such that A2 ψ 0 . If A has a proper ideal, then A has a proper

D[A)-invaήant ideal where D[A) is the derivation algebra of A.

Proof Assume A has no proper D{A)-invariant ideals and let £ = S(A)

be the Lie algebra generated by all left and right multiplications xL(a) = ax

and xR(a) = xa for all a^A. Since A£ is a nonzero Z>(i4)-invariant ideal of

A (noting [D, £] c £, see [12]), A2 = A. Now let @ be the radical of £ ,

then for any D<ΞD(A) we have Z): £->£: X-*[X,D] is a derivation of £ and

[S,@] is a 5-invariant ideal of £ since Z):@-» @. Thus B = A[2,(&] is

a Z>(A)-invariant ideal of A (since [[£, @], /?(#)] c [£, @] and [£, @]Z) =

[[£,@],D] c [£,@]) and therefore 5 = 0 or B = A. If B = A, then since

[£, @] c 3t which is the radical of S*, where £* = associative enveloping

algebra of £ [3, p. 45], we have A = B = A[2, @] c A$ί c A . This yields

A = ASft which implies by induction that A = 0; [3, p. 47]. Thus B = 0 so

that [£, (§>] = 0 and therefore @ is the center © of £ . We shall now show

the linear transformations in © are semi-simple, then from Levi's theorem

[3, p. 91] and [3, p. 81] we have £ is completely reducible in A. Thus

let A G K and suppose A is not semi-simple i.e. its minimum polynomial is

not a product of distinct prime polynomials; this is equivalent to the fact

that the enveloping algebra {A}+ has a nonzero nilpotent element Z . Then

since Z is a polynomial in i e K we have [R(x),Z] — [L{x),Z] = 0 so that for

every element in £ and consequently for every Qe£*, [Q, Z] = 0. This

implies that QZ and ZQ are nilpotent so that Ze^S = radical of £*. But

since ίft is invariant under derivations of £* we have D: ϊt -> 91 where QZ) =

[Q,Z>] with £>eZ)CA) i.e. [81, D] c 81. This implies A3t is a £(A)-invariant

ideal of A which must be zero thus 8t = 0 so that Z = 0 and the center ©

consists of semi-simple linear transformations. Using £ is completely

reducible and A = A2 we write i = ® Σ ^ j where the A)s are £-irreducible

i.e. simple ideals of A. Since A2φ0, there exists ^ with A2t^0; but i4f

is an £-invariant subspace of At so that Ai — A\. This implies ^ is a

J9(^4)-ίnvariant ideal for AtD = ^ D c AiD Ai + Ai AiD c ^ and therefore

A — Ai is simple i.e. 4̂ has no proper ideals.

Next we use this lemma to investigate g = tn 4- § where m is ϊj-irredu-

cible.

THEOREM 6. Zeί (g,ϊj) fo α reductive pair with [fixed) decomposition g = m 4- %

nt ύ ^-irreducible and admh = 0 implies h — 0. If t n m ^ O , ίÂ w m w
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simple and the Lie transformation algebra 2 = β(m) is semi-simple. Furthermore, if

F is the field of reals or is algebraically closed, then the derivation algebras D(m)

and adxnfy are semi-simple and Dim) c S .

Proof If m has a proper ideal, then by Lemma 5 there exists a proper

^-invariant subspace, a contradiction. Next from [R{x), D] = R{xD) for any

derivation D of m, we see that {#etn: trace R(x) = 0} is a non-zero ^-invari-

ant subspace so that trace R(x) = 0 for all #em. Thus from the fact that

S = Tl1 + 2K2 + where Wt1 = R(m) and 2^ = [2)1*-̂ aRΛ , see [12], we

have trace S=0 for all S e S . To show £ is semi-simple we have that since

m is simple, S = © © β' is completely reducible in m where β' is semi-simple

and © is the center of β, see [3]. Now KcΓ(m) = {Se Horn (m, m): [5, R(x)]

= 0} is the centroid of m, see [3] and since m is simple jΓ(nt) is a field.

From [S, !?(&)] = 0 for S<ΞΓ{m) we obtain SR{x) = R{xS) so that Γ(m)β c β.

Consequently, if O ^ i e S , then 7=A~1^4eΓ(nt)S and we obtain the contradic-

tion trace 7=0.

Next assume F is the field of reals since the case F algebraically

closed is similar to this case when the dim.m is odd. Since m is f)-

irreducible, H = adκd§ ψ 0 is completely reducible in m and equals Ho ® Hr

where HQ is the center of H and Hf semi-simple. If D<ΞHQ and if dim. m is

odd, then D has a characteristic root a and {#etπ: x(al — D) = 0} is a non-

zero ^-invariant subspace of m. This yields D — al which is impossible for

a non-zero derivation. Now if the dim. m is even, the characteristic

polynomial has only quadralic factors (a linear factor yields the preceding

case). Therefore if q(ξ) = ζ2 + aξ + b is such a factor we have that

: xq{D)—U} is a non-zero /z-invariant subspace so that D2 + aD + bl = 0.

Using this formula we have for any x, 2/em that

= xy{D2 + aD)

= 2xD*yD —

and therefore δ̂ t/ = 2xD yD. Now replacing 2/ by t/Z) in this last equation

and using the quadratic equation for D we obtain

bx yD =—2axD*yD — 2bxD y

= — abxy — 2bxD y .

Interchanging x and y in this last equation and adding the results we

obtain
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(xy)D = xD y + x yD

= — 2a xy + 2(y£> a? + yxD)

= —2axy + 2{yx)D.

Thus since mz = m we obtain 3D = — 2<z/, a contradiction. Thus iϊ0 = 0 ' so

that admfy is semi-simple. A similar argument shows D(m) is semi-simple

since any Dint)-invariant subspace is also ^-invariant.

The fact that D{m) c S will be proven by the same argument as that

in the proof of Theorem 8 noting that since S and D(m) are semi-simple

the traces of their elements are zero.

It is natural to consider the case when g is semi-simple, but Theorems

2 and 3 indicate that one should consider the general case of a reductive

pair (g, ϊj) with both g and f) simple Lie algebras see Theorem 8.

L E M M A 7. Let (g,ϊj) be a reductive pair with g and ϊj simple Lie algebras

and a decomposition g = m + ί) Jw^ ίΛdtf mm f= 0 . If m A&f α proper ideal> then

m Λα^ a proper maximal admfy-inυariant ideal n ze AzVA w Λ nilpotent Lie subalgebra

and §(tt,tt) = ί)(u2,m) = 0.

Since g is simple, we have g = m 4- ί)(ttt, m). Now if m has a

proper ideal, it has a proper Z)(m)-invariant ideal which is therefore adm§-

invariant (= ^-invariant) thus there exists a maximal ^-invariant ideal n.

Next suppose ϊj(rt,n) =^0, then n + ή(ιt,tt) is a proper ideal of g. First

[n + f)(n, n) ή] c [it | ] + [ή(n, u) ή]c tt+ή(tt, u), using (5). Next [at + Ij(tt, u) m]c nm

4- ή(n, m) + [ί)(n,tt) m] c n + ή(it, m), using (3) and n is an ^-invariant ideal.

But from (5) and Jj(n, m) z> ϊj(ϊt, n) ̂  0 we see that both of these are nonzero

ideals of Ij = ϊ)(nt, m) and therefore ϊj = ϊ)(tt, it) = ϊj(m, tt). Thus we finally

obtain [n + ϊj(ΐt,ϊt) m]a n + ί)(n,u); this contradicts g is simple and consequently

we must have ϊj(Λ,ϊt) = O Using this we obtain from (3) and (4) that

/(n, it, n) = 0 and f)(π2, m) = 0 .

Next ϊj(tt, m) ̂  0, otherwise it is a proper ideal of g = m + ί): [it m] =

ttttt + 5(it, m) c n and [rt ϊj] c it. Now if it = it2 we have from (4) that

5 = f)(tt, m) = f)(π2, m) = 0, a contradiction; thus n z> n2 (properly). Letting

n1 = n,n2 = mx,ιxk = nk~1n we see that nk is an ή-invariant subalgebra of m.

Now since ή is simple, m is ^-completely reducible so that there exists an

^-invariant subspace n' such that m = n 4- n' . For this fixed decomposition

we have
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n¥ c n*"1.

For xt2xt' c xtxt' c it = it1 and assume for &>2 that nV c n*"1, then using

ϊj(it2, m) = 0 and (3) we obtain

This yields (xΛt)n' c u* + (itxt')n* + (n'\ik)xt and using the induction hypothesis

we have ίnkιx)\ι' c \ιk i.e. itfc+1xt' c it*. Next suppose that in the descending

= it9(chain n D n2 D n3 D there exists # > 2 such that 0 ^

then it9""1 is a proper ideal of g. For using Q = it + it' 4- ή we have

[ϊt9-1!)] c n 5" 1; [tt^-'n] c n^ht + I&t^Stt) 3 u9; and [n9"1^] c n 9 " 1 ^ = nV c it9"1

 ?

using it9 '1 = if and ϊΛt' c n*'1. This contradiction shows we must have

ϊt*"1 c nk (properly) which implies n is nilpotent.

The next few pages are devoted to showing the ideal xt of Lemma 7

is such that xt2 = 0 and using the non-degenerate Killing form, B(X, Y), of c$

with dual space arguments to actually show that xt = 0; thus by Lemma 7

xn must be simple. First we observe xt = 0 if and only if its center c is

zero. So we concentrate on the ^-invariant subalgebra c. Using § is

completely reducible in xn and xt (since ϊj is simple) we write xt = c + tx

where cx is ϊj-invariant and rrt = xt + it' = c + cx + it' so that g = c-l-c1+it'4-%

We now compute adQX for X in these various spaces:

ad$x =

adQy =

0

0

Xn

1 °
I'M

\ 0

/ Zu

zu

0

0

Xn

0

0

F 2 2

y

y

Zn

z 2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Yu

0

Zu

^ 2 4

for

for

for
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adqh =
0

0

0

ARTHUR

0

#22

0

0

A. SAGLE

0

0

#33

0

0

0

0

#44

for

where these block matrices are computed from the various facts c2 = 0,

it = c -j- Ci is an ideal of m, the spaces are ^-invariant and ϊj(n, n) = 0 .

From these matrices we obtain B{x, c) = B{x, c j = B(x, Ij) = 0 and B(x, z) =

trace X3iZu + trace XixZu. We compute these traces as follows. For any

x, 2/em and /zeί) we define linear transformations e[x) and δ(x) by

ye(x) = Λ(y,α)

and

= [x h] =— h

where ε{x): m -> ή and 5(α;): ή -> m . From this we see the matrix Xu

corresponds to e{x) acting in u', Zu corresponds to e(z) acting in c, — Xa

and — Z 4 3 correspond to δ{x) and δ{z) acting in ί). Thus to compute the

matrix XUZ43 and ZuXn we let s e n ' and ί e c , then

2ί) = [z h(s, x)] = 5<τ(α;, z)

yields the matrix — XuZiZ and

tε(z)δ(x) = [a? *(*, «)] Ξ ^ ( Z , a?)

yields the matrix •— Z14X41 .

Now we shall show n2 = 0 . For # e c n it2, s e n ' and z e ^ we have

sε{x)δ(z) = [2 A(s,α)]e[tt' ^(n2,m)] = 0,

thus X34Z43 is zero. Next from (3) we have for ί e c that

J(x, U z) = [x h(t, z)] + [t h{z, x)] + [z h(x, t)]

= [a? h{t9z)]9 using ί)(n2, m) = 0

= te{z)δ(x).

But since ί, a e c e n (an ideal) we see J(x,t,z) = 0 so that ZUX41 is zero.

This proves 2?(#, g) = 0 so that c Π n2 = 0 . Now let H D ^ D O I I ^ D

n*+1 = 0, then nk a c Π n2 if fc ^ 2 so that rt* = 0 if k ̂  2 i.e. it2 = 0 . Thus

n = c and therefore we have m = c 4- &' with 5(c, c) = J5(c, ί)) = 0 and
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Next from g = m + § we have for any zem that

R{z) ε{z)
adQz

v -δ{z) 0

and since g is simple, 0 — tr adz = trR(z). Also since ΐ) = [f) f)] is simple

and §-ϊadcfy: h-±adch and h -ϊadmfy: h-^ admh are representations we have

tr adch — tr admh = 0 for all &eϊ). From o{x9y) = ε(x)δ(y) i.e. zo{x,y) =

[y h{z9 x)] and from (3) we have

[R(x)9 R(y)] — R(xy) = σ{x, y) — σ(y9 x) + admh(x, y).

Thus if r{x9 y) — tr σ{x, y) we have r(x9 y) = r(y9 x) and from this we obtain

from the matrix for ad$z that

B(x, y) = tr adqx ad§y

= tr R{x)R{y) - tr ε(x)δ{y) - tr δ{x)ε{y)

= ίr R(x)R{y) - r{x, y) - r{y, x)

= ίr R(x)R(y)-2r(x,y).

Using this formula we shall show B(c,\V) = 0 and from J5(c, c) = B(t9fy — 0

and g = c + rt' 4- § we have Z?(c,g) = 0; thus c = 0. Now for #em, ί/ec we

see from the decomposition nt = c + ϊt' that the matrix for R{x)R(y) has

zeros on its diagonal so that tr R[x)R{y) = 0 and therefore

B{x,y) = — 2 r{x,y) for ccem, y e c .

We shall now show that for any X<E\Ϋ that r(x9y) — 0 for ^ e c . From the

decomposition m = c 4- u' we have for σ(x,y) = ε(x)δ(y) with cceu', 2/ec that

for

and

z ^τί/ϊ* 77̂  ^^ Γ?y h (z i *^ l^ c T o r 2 ^Ξ.wf'

therefore σ(x9 y) has a matrix 4̂ of the form

Thus r(#, 2/) = ί r <y(a?, 2/) = ίr An = trcσ{x9 y). Again with x^n' and ?/>

we have from (3), Jj(c, c) = 0, c2 = 0 and c = it is an ideal of m,
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0 = J(z, x, y)

= [z h(x,y)] + [y h(z,x)]

= z[adzh(x, y) + σ(x, y)].

Thus on c we have

0 = adch{x, y) + σ[x9 y)

and taking traces on c we obtain 0 = trcσ{x,y) = r{x,y) for all

and therefore B{c, it') = 0. This proves part of the following theorem.

THEOREM 8. Let (g, f)) be a reductive pair where g and ί) are simple Lie

algebras with a decomposition g = m + 5 s0 lhat mm ψ 0 . Then m is a simple

algebra and the Lie transformation algebra S is semi-simple and adn§ c S i.e.

consists of inner derivations.

The proof that S is semi-simple is similar to that in Theorem 6 and

is omitted. Now let 7)<Ξ«dmϊj = 77, then since [R{%)> D] = R(xD) we have

[S,Z>]cS so that the map D: 2 -> S: X -> [X, D] is a derivation of S . But

S is semi-simple, therefore there exists T e £ such that ϊ) — ad%T\ i.e.

[X, D] = XD = XβJβT = [X, T]

for all Z e S . Thus [D-T,X] = 0 so that Z> - ΓeΓ(m) = centroid of m

and Γ(tπ) is a field, [3].

Let D-T = [/Gf(nι), then if t/ ^ 0 we have / = Z)^"1 - TU~ι and

Γί/^eΓfmlLcL so that trace Ti7"1 = 0. Thus to obtain a contradiction

to UφO we shall show trace Z>F = 0 for any FeΓ(m). First we note for

any D^H that [D9 V] = 0 for all FeΓ(m). For from the Jacobi identity we

have

[[AHR(x)] = [[AR(x)],V] + [D, [V,R(x)]]

= -[R(xD),V] = 0

so that [D, V] = WeΓ(nt). If W f= 0, then I = (DF - FZ))^"1 = DTF^F -

VDW~ι, using JΓ(nt) is commutative; from this equation trace 7 = 0. Thus

[A F] = 0 . Now since H = [77,77] is semi-simple we have that the given

derivation D = Σ [A, 7),] and therefore 7)F = Σ [A, 7>,F] so that trace

DV = 0.

Many useful examples can be computed if we take ή to be a regular

simple subalgebra [1, p. 147] of g. Thus by definition there exists a

Cartan subalgebra B of g such that if g = S 4- Σ S* 4- Σ3 9-* > where « G J =
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system of positive roots, is the Cartan decomposition of g relative to &,

then there exist a subsystem Δ c A and a corresponding subalgebra & c $

such that ί) = ffi + Σ 3/3 4- Σ 3-/3, βe J . It is easy to show that S = S + St'

where S' is such that [§ SS']=O and from this if we let m = r + Σ9α + S-β

with ( ί G j - J , then g = m + f) *s the desired decomposition of g. Using

this decomposition we have the following explicit examples.

EXAMPLE 1. Using the notation of [3] let g be of type A{, the

Z + 1 X / + 1 matrices of trace zero, then g has basis

eυ (for i ψ j = 1 , . . . , I + 1)

which form a basis for the nonzero root spaces and

which forms a basis for the Cartan subalgebra $ . We shall let Ij be of

type ^4i_!, since in this case m, in the decomposition g = m 4- § 5 will have

smallest dimension and the possibility of admfy equaling D(m) is best. As in

the above remarks we let § have basis {ei5: i ψ j = 2 , . . . , I + 1 and

hk k = 2,. . . , 1} and let m have basis { îy, β^, u: /, i = 2 , . . . , I -\-1} where

w = Σ i=i%ihi is determined by choosing ^ = — l,x2 = •= Xι — 1. Then

g = m _j_ ̂  is reductive and m is simple. The anti-commutative multiplica-

tive relations in m for the above basis elements are

ueίk = — (Z — l)e l t , κ e ω = (Z — l)eM , fc = 2 , . . . , / + l ,

£iί>% = -y-δpβ«, p,q = 2,. . . ,1 + 1.

These are easily checked by computing the matrix commutators

[e f] = ef-fe = ef+h(e,f).

Next to compute Z)eD(m) let

uD = axu + Σ tfip^ip + Σ br

vιevl

eHD = bill + Σ bipelp + Σ ^ ^ p i

•̂jZ) = CjU + Σ cyp^j, + Σ cpjepl

where f, , p = 2,. . . , Z + 1. Then applying D to the above multiplicative

relations we find that D has a matrix of the form
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where b is the I x I matrix {bip). Since the derivation Df with b = I is a

basis for the center of D(m) i.e. the Lie algebra of matrices as just

computed, we can identify D(m) with D'F®§, noting that ί) is the I2 — 1

matrices of trace zero. Note that D{m) is not semi-simple even though m

is simple.

EXAMPLE 2. We consider the Lie algebra $o(«) of n x n skew-symmetric

matrices and show directly that 8o(w) = m 4- #o(w ~ 2) is g.LJ.s. with

5 = 3o(w — 2) and m simple. First for p < n write $o(w) = m + £o(p) as a Lie

algebra as follows: identify £o(p) as the lower right-hand block ofpxp

skew-symmetric matrices in $o(n) and identify m with the corresponding

complementary set of matrices. Then $o(w) = m + 8o(p) is a g.LΛ.s. and for

p = n — 1, m2 = 0; for p = n — 2, nt2 = nt and m is simple. To see this let

etj i,j — l , . . . , n denote the usual matrix basis, then from the above

description of m we see that m has basis

u = e12 — e2ί, fj = eu — eJ19 f) = e2j — ej2

for j = 3, . . . , n . The multiplicative relations for nt are

ufj = - f'j, ufj = fj j = 3,. . . , n

fjfic = 0 = fjfk j , k = 3 , . . . , n

fjf'k =-$jkU j,k = 3>. . . , n .

The proof in that m is simple is briefly as follows. Suppose

where b is an ideal of m and bp,b
f

q^F. Then b + u{ub) = bou^h and if

&o ¥= 0, then using the multiplicative relations b = m . If 60 = 0, but some

bjcΐ^O, say, then from the multiplicative relations we have

Σy/y/ί

= — bku =

so that again m = B. Next to compute D^D{m) let
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uD = an + 2 aPfp + Σ a'pf

ftD = M + Σ ftip/p + Σ fti

/ ; # - Ci« + Σ cJpfp + Σ c'j

where i, i, p = 3, . . . , n . Then applying D to the multiplicative relations

for nt we see that D has a matrix of the form

/ 0 •0 0' •ON

where 6 ί < f =—6 ; i and b'u = b'ji are the coefficients in the expansion for fj)

above. In this case § is identified with diagonal block subalgebra and note

that in both examples D{m) annihilates the subspace uF so in particular is

not irreducible on nt; this is generally true by Theorem 7.5 of [1, p. 161].

These examples motivate the following corollary.

C O R O L L A R Y 9. Let (g, ϊj) be a reductive pair where § is a maximal subalgebra

of Q and in the decomposition q = m + 5, ntnt ^= 0 . TΆ^w m is a simple algebra.

Proof. Suppose h is a proper ideal of nt, then from Lemma 5 we

may assume b is βdmΐj-invariant. Next a straight-forward calculation

shows that I = B + ΐ) is a proper Lie subalgebra of g containing ή .
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