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A CORRESPONDENCE BETWEEN QUATERNARY

QUADRATIC FORMS

PAUL PONOMAREV*

Introduction

Let p be a prime = I(mod4). Let 2ί denote the quaternion algebra
of discriminant p2 over the field of rational numbers Q, and let V be a
quaternary quadratic space over Q of discriminant p(Qx)2. In this note
we establish a natural correspondence between the similitude classes of
two-sided normal ideals of 21 and certain similitude classes of the lattices
of V which have reduced discriminant p or p3. The classes for which
it fails to be a function can be explicitly described, and at such classes
it is at worst "one-to-two", the two associated classes merely being the
duals of each other.

In the classical terminology, our correspondence is between classes
of positive definite integral quaternary forms which have an improper
automorphism, on the one hand, those of discriminant p2, and, on the
other hand, those of discriminant p or p3. In both cases the classes
having an improper automorphism can be obtained by taking the classes
which represent 1 along with their adjoints. In § 5 we disprove a con-
jecture of Hecke ([4], p. 884) concerning the linear independence of the
theta series coming from a fixed column of the Brandt matrices associ-
ated to 2ί. We propose, instead, that the theta series coming from the
classes having an improper automorphism should provide a basis for the
corresponding space of modular forms. In the case of Nebentypus this
reduces to a conjecture of Kitaoka ([5], p. 152). If the more general
conjecture were verified, then our correspondence would have the prop-
erty of associating a basis of modular forms of Nebentypus ί — 2, p, (—u

to a basis of modular forms of Haupttypus (—2, p, 1).
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§ 1. Symmetric normal ideals

Let K = Q(Vp) and let 0 denote the ring of integers of K. Put

21^ = 21 (g)Q K. Let a ^ a* be the canonical involution of 21^ and N :tyίκ>->K

the reduced norm, N(α) = <m*. The conjugation x^>x of K extends

uniquely to a Q-automorphism a •-• α of 21^ having 21 as its ring of fixed

elements. Let n be the norm map of K, n(x) = #$ for x e K.

NOTATION. For any associative ring R with 1 let Rx denote the

multiplicative group of all invertible elements in R.

Let V be a definite quadratic space of dimension four over Q. Let

f' V-*Q be the quadratic form on V. ΐ h e associated bilinear form B

is defined by B(v,w) = f(v + w) — /(v) — /(w), v ,W6F. The discrimi-

nant J(V) is the coset of det [B(vif Vj)] in β x /(Q x ) 2 , where {vj is a basis

of V,i,i = 1,2,3,4. We assume that Δ(V) = p(Qx)2 and F 9 is isotropic

for each finite prime q. Then V is similar to the quadratic space W —

{a e Sis:: a* = a}9 the quadratic form on W being the restriction of the

norm form JV ([8], §2, Prop. 4). Since we will be concerned only with

similitude classes of lattices of V, we may assume that V=W,f=N.

The proper similitudes of V are then given by all mappings of the form

ξ H+ caξa*, where c e Q x , a e 2Ϊ£ ([8], § 1, Prop. 3).

For each rational prime q put Kq = K®QQq,21^ = Sί*®QQ q =

$lq®QqKq. The conjugation on <ΆK extends uniquely to <ΆKq and Vq may

be identified with the subspace {aq e %Kq: a* = α:g}. The proper similitudes

of Vq are all mappings of the form ξq H-> Cqaqξqa*9cq eQ%,aq e 81^. Let

J*>Jκ>J%κ denote the idele groups of 21, ίΓ, 21*, respectively. For an Θ-

lattice A of %κ we put Λq = Λ®zZq. Putting Θq = Θ®zZq, we see that

Λq is an ^-lattice of %Kq. If α = (aq),β = (βq) are ideles of 21^, and

1̂ is an 0-lattice of Wκ, then άΛβ is the ^-lattice defined by (άΛβ)q = aqΛqβq

for all rational q. Similarly, we can define cάLά* for a lattice L of

F , c e Q x , α e J 8 ί 2 , ; a n d f£<5 for a lattice £ of 2ϊ,?,<5eJr

SI.

An 0-lattice yl of %K (resp. ίPα-lattice Λ(q) of %Kq) is symmetric if

Λ^ — Λ (resp. Λ(<?)* = il(g)). It is clear that τl is symmetric if and only

if Λq is symmetric for every rational q. A lattice of 2ί or %κ is a nor-

mal ideal if its left and right orders are maximal. The existence of a

symmetric maximal order is insured by [8], §3, Prop. 5.

PROPOSITION 1. Let Ω be a symmetric maximal order of 21^. An
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ΘΊattice A of 21* is a symmetric normal ideal of 21* if and only if

there exist c eQx,άeJ%κ such that either A = cάΩά* or A — c^/pάΩ~ά*.

Proof. It is evident that a lattice in either of the latter two forms

is a symmetric normal ideal of 21*. Suppose A is a symmetric normal

ideal of 21*. We must show that Aq = cqaqΩqa* or Aq = cqVpaqΩqa* for

each q, where cq e Qq,aq e 3I*β. This assertion is trivial for q which split

in K. Suppose q does not split in K, q Φ p. We can write Aq = aqΩqβqy

oίqyβqS^. Then aqΩqβq = β*Ωqa*, which implies that Ωqβq(a*yι is a

two-sided ideal. Since 21* splits at every finite prime of K, we must

have βq(a*Yι = a^e, with #α e K*,εq e β*. Then Aq = %qaqΩqa* = A* =

xqaqΩqa*, which implies x~ιxqeΘ*. Using the fact that H\GέX{KqIQq)9

CD*) = 1, we deduce that xq = cqeq, where cqeQ'*,eqe(!)Z, which shows

that Aq = cqaqΩqa*. If g = p we have the additional possibility #3 =

If L is a lattice of V, its tiorrn N(L) is the unique positive rational

number which generates the Z-span of {N(v): v e L}. The reduced dis-

criminant Δ'(L) is defined to be det [2V(L)-"1.B(i;i,i;</)], where {vj is a Z-

basis of L, i, / = 1,2,3,4. For a lattice L of V, the lattices L (x)z 0,

Vp(L(8)z&) a r e symmetric lattices of SI* but are not normal ideals of SI*.

If, however, Δ\L) = p, then we have

PROPOSITION 2. For each lattice L of V with reduced discriminant

p there exists a unique symmetric normal ideal L of 21^ such that

L n V = L. An?/ symmetric normal ideal A of SI* is 0/ ίfeβ /orm A — L

or A = Viλ£ /or some lattice L of V with reduced discriminant p.

Proof. We can choose a symmetric maximal order β of SI* so that

M = fl Π F is a lattice of reduced discriminant p ([8], §3, Prop. 5). The

lattices of V with reduced discriminant p, being maximal, form an

idealcomplex. Hence L = cάMά* for some c e Qx, a e J a j f. Put L = cάΩά*.

Then L Π 7 = cά(Ω Π V)S* = L. To prove uniqueness, suppose cάΩά* Π V

Π 7. Then d^cβ-'άMψ1^)* = M, which implies d~ιcβ-ιάΩ{β-ιάT

= β ([8], §4, Prop. 8), or c#βδ* = d/3β|*. To complete the proof we

apply Proposition 1.

Remark. According to Proposition 2, the symmetric normal ideals

A of 2ί^ are of two kinds: 1) A = L or 2) A = VpL, L a lattice of V with
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reduced discriminant p. If A is of the second kind, it is easily seen that

A Π V is a non-maximal lattice with reduced discriminant p\ If A = Ω,

a symmetric maximal order, then (\/p)~\Q ΓΊ V is the dual lattice of Ω Π 7

with respect to the bilinear form B. From this it follows that the lat-

tices of V coming from A of the second kind are nothing more than

the dual lattices of those coming from A of the first kind.

§ 2. Reflexive normal ideals

The quaternion algebra Sί is split at all finite primes q except q = p.

Let £>p denote the unique maximal order of %p and Sβp the unique non-

zero prime ideal of Op.

LEMMA 1. There exists a symmetric maximal order Ω(p) of %Kp

with the properties:

(i) β(p)n«, = Op

(ii) VpΩ(p) = πΩ(p) for any generator π of ?βp.

Proof. We may assume that %Kp = M(2, Kv) and the conjugation

on <ΆKp is given by

L2 w\ lupy x J

where upeZ*, (up>p)p = —1 (cf. [8], §2). Then we have

<2) a ={[4 a=*
( 3 ) O,

We take Ω(p) = M(2,OP). Then Ω(p)* = Ω(p) and Ω(p) Π Sίp = O,. It is

enough to verify (ii) for a particular generator π, say

LEMMA 2. Γfeβrβ eίcisίs α symmetric maximal order Ωx of %κ with

the properties:

(i) O1 = Ωλ Π Sί is a maximal order of 2ί.

(ii) \lpΩx — πβi /or any πeJ* such that πQ = ίfee unique nonzero

two-sided prime ideal of D l β
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Proof. Let O be any maximal order of 21. Then Ω — O ®z Θ is a

symmetric order of 21^ and Ωq is maximal for q Φ p, since O has dis-

criminant p2. Furthermore, Ωq Π Sίβ = O e for qΦp. We take ^ so that

(£?!)«, = βα for q Φ p and {Ω^)p = β(p) as in Lemma 1.

An 0-lattice Λί of 21^ is said to be reflexive it Λ = Λ. For a maxi-

mal order Ω of 21^ we have 42* = Ω. Hence the notions of reflexivity

and symmetry coincide for maximal orders of 21^.

PROPOSITION 3. Let Ω be a symmetric maximal order of $ίκ. A

lattice A of %κ is a reflexive normal ideal of %κ if and only if there

exist f,δeJ% such that A = fΩδ.

Proof. It is clear that any A of the given form is reflexive. Sup-

pose Λis a reflexive normal ideal of %κ. For each rational prime q we

can find aqy βqe 2l£g such that Aq — aqΩqβq. If q splits in K it is easily

seen that aq, βq can be chosen from 2ία. Suppose q does not split in K,

so that Kq is a field. From aqΩ~βq — aqΩβq it follows that a^aqΩq, Ωβqβ'1

are two-sided ideals. Furthermore, N{a~ιaq) = N{vcq)~ιN(aq) eΘ*. It fol-

lows that a^oίqeΩ^ and, similarly, βq~β~ιeΩ^. We may assume %Kq =

M ( 2 , K q ) , Ωq = M ( 2 , ( 9 q ) 9 β * = GL(2,Θq). I f qφp t h e n J F ( G a l (Kq/Qq),

GL(2, Θq)) = 1 implies that aq = fβεβ, ^ = %3β, where γq, δq e 2ίJ εq, ηq e flj.

If g == p we have the additional possibilites aq = Vpγqεq, βq = Vpηqδq. It

follows that ,4 = fβ<5 or 1̂ = ^pfΩδ for some f, δ e J a . Similarly, β =

ίβi/2 or fl = VpλΩλρ for some 3, /2 e J^, where Ωx is chosen as in Lemma

2. Using property (ii) of Ωl9 we see that VpΩ — vΩ for some v e /«.

Thus τl = fβ^ or τl = fvΩδ.

COROLLARY 1. Let Ωu Ω2 be symmetric maximal orders of 21^. Then

there exists an element άeJu such that Ω2 — aΩλά~ι.

Proof. We know that Ω2 = aΩφ for some a, β e JΛ. The fact that

le Ω2 implies β = fά~ι for some f e J%κ. Then Ωλf = α:~1

iO2α, which implies

Af = βi» β 2 = aΩxδCι.

COROLLARY 2. Properties (i) emd (ii) m Lemma 2 are valid for any

symmetric maximal order Ωx of 21^.

PROPOSITION 4. For each normal ideal £ of 21 ίfcerβ exists a unique

reflexive normal ideal £ o/ 2ί^ such that £ Π 21 = £. Ati7/ reflexive nor-

mal ideal A of %κ is of the form A = £ /or some normal ideal S o/ 21.
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Proof. Fix a symmetric maximal order Ω of 21^. Let £> = Ω Π 2ί.

Then £ = #©/3 for some ά,βeJn. We > take ^ — άΩβ. Proposition 3

shows that every reflexive normal ideal A is of the latter form. To

prove uniqueness, suppose aΩβ Π 21 = γΩδ Π 21. Then ά£>β = fβ<5, which

implies f" x αθ = Ώδβ'1 is a two-sided ideal of D. Applying property (ii)

and the fact that every two-sided ideal of O is a rational multiple of a

power of its two-sided prime ideal, we deduce y~ιaΩ = c(</p)mΩ = Ωδβ~\

ceQ*,meZ, which completes the proof.

COROLLARY. The mapping O»-*β gives a one-to-one correspondence

between the maximal orders of 21 and the symmetric maximal orders of

PROPOSITION 5. A normal ideal A of %κ is both symmetric and

reflexive if and only if A — cΩ or A = c^/pΩ, ceQx, for some symmetric

maximal order Ω of %κ.

Proof. A normal ideal in either of these two forms is clearly both

reflexive and symmetric. Conversely, suppose A is reflexive and sym-

metric. Then A = £ for a unique normal ideal £ of 21. Let © be the

left order of 2, so that β = Ω is the left order of A. Then A = I * =

A* = (£)* = (£*Γ, which implies £ = £*, or £ is a two-sided ideal of £>.

It follows that £ = c$βm, c e Q x, m e Z , where Sβ is the two-sided prime

ideal of O. Then Λ = δ = c(φ w Γ = c(*Jp)mΩ.

Remark. We have a one-to-one mapping β —> β Π V from the set

of maximal orders of 21 into the set of lattices of V with reduced dis-

criminant p, and a one-to-one mapping ^ $ ( 1 7 from the set of all

two-sided prime ideals of maximal orders of 2ί into the set of lattices

of V with reduced discriminant p3. Proposition 5 shows that these two

mappings are essentially the only ones of this kind.

§3. Equivalences of symmetric maximal orders

The earlier discussion yields three possible notions of equivalence on

the set of symmetric maximal orders of 21^.

I. Conjugacy: Ω2 — aΩλa~ι, a e 2Ϊ£.

II. Similarity: Ω2 = caΩfi*, ceQx, ae 2ί£.

III. Strict conjugacy: Ω2 — aΩλa~\ a e 2ίx.

Notion I is natural to 21^, being equivalent to : ΩUΩ2 are isomorphic



QUATERNARY QUADRATIC FORMS 131

as ^-orders. On the other hand, notion II is inherited from V, being

equivalent to : Ωx Ω V,Ω2 Π V are similar as lattices of V. Notion III

comes from 2ί, being equivalent to : Ωλ Π 2Ϊ, Ω2 Π Sί are isomorphic as Z-

orders. In this section we will determine the relation between these three

kinds of equivalence.

The implication III =$> I is trivial. Suppose I holds, Ω2 = aΩλa~\ a e §ί£.

We imitate the proof of Proposition 1 to deduce that Ω2 = caΩ{a* or

Ω2 = Cy/paΩja*, ceQx. The latter case is not possible, as Ω2 Π V would

then have reduced discriminant pz instead of p. Thus I => II.

Now suppose II holds, Ω2 = caΩfi*, c e Q x, a e 2l£. The reflexivity

of Ω2 implies that oΓιaΩλ is a two-sided ideal of Ωλ. Then ή~ιa = #ω,

where y eKx, ωe Ωϊ, and α> can be taken to be a root of unity ([8], §7,

Prop. 14, Remark). Taking norms, we obtain y2 = N(a)~ίN(ά)9 n(y)2 = 1,

so that n(y)= ± 1 . If w(j/) = l, then 3/= xar1, a? e l£ x , and ( ^ ά ) " 1 ^ ) = ω.

If n(y) = — 1, then 1/ = βxx"1, α?eίLx, where e is the fundamental unit

of K. Thus, without loss of generality, we may assume a~ιa — ω or

cΓιa. — eω. Multiplying a by ^/p changes ω to — ω. Hence we may as-

sume that ω is a primitive ra-th root of 1 for m = 1,3,4, 5. If orιa =

eω, then α = eaω = e(βαω)ω = — arωω, which shows ωcy = — 1. Hence m

= 4, as ω must have the same order as ω. Then ω = —cy"1 = ω, which

implies ω e Sί, a contradiction to the fact that %p is not split, p = 1 (mod 4).

We conclude that orιa = ω is the only possibility and that ωω = 1. We

now consider the various cases.

1. ω = 1. If α"1^ = 1, then α e 2IX and i22 = caΩfi* = cα^α* =

cNioίiaΩiCc'1, which implies cN{a)— ± 1, fl2 = αβα"1.

2. ω = ζ, a primitive third root of 1. Then ζ = ζζ"1 which shows

aζ = βe%x,Ω2 = βΩφ'K

3. ω = ί, i2 = — 1 . Then ? = — i, which implies i = (1 + i)-χi + i).

Thus α = j8(l + 0, β e 2IX, and Ω2 = j8(l + i ) ^ ( l + i")"^"1-

4. ω5 = 1, ω Φ 1. Then ω — ω"1 = ω4, which shows ω = (ω^Cω2)"1,

As a particular consequence, we have shown II =Φ I.

PROPOSITION 6. Lei fl0 &̂  G ^ίcβd symmetric maximal order of %κ.

Another symmetric maximal order is similar to Ωo if and only if it is

conjugate to ΩQ. If ΩQ does not contain a primitive fourth root of 1,

then any symmetric maximal order conjugate to Ωo is actually strictly
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conjugate to β0. // Ωo does contain a primitive fourth root of 1, then
it contains one satisfying %——% and, for any such i, a symmetric
maximal order which is conjugate to Ωo is strictly conjugate either to
Ωo or to (1 + i)Ω0(l + i)-\

Proof. It remains for us to prove the last statement. Let G be
the group of roots of 1 in Ωo modulo {±1}. If Ωo contains a primitive
fourth root of 1, then the set of elements of order 2 in G has an odd
number of elements. Hence at least one element of order 2 in G must
be fixed by the conjugation, that is, i — ±i for some primitive fourth
root i. Since Sί does not have a primitive fourth root of 1, we must
have ϊ = — i. Suppose i,j are two fourth roots of 1 in Ωo satisfying
I = —ίfj=z —j. Then ij e £?o

x andϊi = ij. This implies that ij is a unit
of the maximal order £)0 = Ωo Π 2ί. If ij = ±1, then (1 + i)Ω0(l + i)'1

= (1 + j)Ω0(l + j)~K The only other possibility is ij = ±ζ,ζ a primitive
third root of 1. In this case £)0 is the unique maximal order of Sί (up
to isomorphism) which contains a non-trivial unit. The elements ^/pί,
jpj are generators of the two-sided prime ideal of £)0 and as such are
conjugate by a unit ε of £>0 (cf. § 4, Lemma 2, Proof), ojpi — ε^/pjε'1,
ε e ©0\ It follows that (1 + i)ΩQ(l + ί)~ι = ε(l + j)Ω0(l + j)ε~\

§4. The correspondence

The mapping Ot->δ induces a mapping {£)} •-> {£)} from the set of
conjugacy classes of maximal orders of 2ί onto the set of conjugacy
classes of symmetric maximal orders of Sί̂ . Proposition 6 shows that
this mapping is one-to-one on the classes of orders D for which £) does
not contains a primitive fourth root of 1. Suppose, on the other hand,
that U contains a primitive fourth root i such that ~i = — ί. Then π=^/pi
satisfies π2 = —p,π = πy so that π e £). Conversely, if O contain an ele-
ment π with 7r2 = —p, then π/<Jp e β (§2, Prop. 3, Cor. 2) and TΓ/V^ is a
primitive fourth root of 1. Thus we must study the mapping on the
classes of maximal orders which have a principal two-sided prime ideal.
The first step is to give explicitly a complete set of representatives for
the conjugacy classes of such maximal orders.

Suppose first that the Legendre symbol ( —) = —1, that is, p = 5
\p /

(mod 8). Then (-2, -p)p = (-2, -p)., = - 1 and (-2, -p) α = 1 for all
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rational primes qΦp. Hence there exist λ,μe9l such that λ2 = —p,

μ2 = —2, Λμ = —μλ. Then (1 + λ)~ιμ is a pure element of 21 with norm

2(1 + p)~\ a unit of Z2. Hence there is a maximal order © of SI such

that {Λ, μ} c O, (1 + λ)~ιμ e £)2

X. We put F = βtf), 0F = ring of integers

of F, p = the prime ideal of ^ such that p2 = (2). Then K^)*. =

(1 + Λ)(0j.)p, which gives

( 4 )

More generally, if c is an ideal of F, then

( 5 )

This follows from the fact that μaμ"1 = α* for all aeF. Let {cx, , cg}

be a complete set of representatives for the principal genus of F. Then

{Ci, -9cg; Cjp, ,<Vp} is a complete set of representatives for the ideal

classes of F, and, by the Chevalley-Hasse-Noether Theorem ([2], p. 134),

the set {c/Dcj1, CjpOiCjpy1: j = 1, , g) represents all the con jugacy

classes of maximal orders containing an element π with π2 = —p. Since

* preserves the principal genus of F, (5) implies that {c^Ocj1: j = 1, , g}

already represents all such con jugacy classes.

Suppose now that ( —) = 1. Choose a rational prime r such that
\pj

(r, -p)p = (r, -p\ = - 1 . Then r Φ p, 2 and (-r, -p) p = - 1 , (-r, -p)2

= 1. By the product formula, (—r, — p) r = (r, —p) r = 1. Hence we can

find Λ,/*e2ϊ such that λ2 = —p,μ2 = —r,λμ = —μλ. We put F = Q(X)

and define d ^ p as before. It follows from (r, — p)r — 1 that r = N(x)

for a prime ideal r of F. Since (r, — p)p = — 1, x is in the nonprincipal

genus of F. Take a,b e Z such that x($A = (β + bλ)(0F)x. We can choose

a maximal order β of 2ί so that {̂ ,//} c O, (α + δ f l ' ^ e O ^ . It follows

that

( 6) ctOt"1!-1 = μc*£)(c*)-V"1

for any ideal c of F. Reasoning exactly as before, with r instead of p,

we see that if {ĉ : j = 1, ,g) is a complete set of representatives for

the principal genus of F, then {ĉ  Ocj1: / = 1, ,g} represents all con-

jugacy classes of maximal orders containing an element π with π2 — —p.

LEMMA 1. Let £> be a maximal order of §ί containing an element
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λ such that λ2 — —p. Let c be an ideal of F = Q(λ). If cOc"1 = O, then

c is principal.

Proof. If c O r 1 = O, then cO is a two-sided ideal of O. Thus

c£> = oUeO for some α € Q x , e e Z. Since p = 1 (mod 4), {1, X\ is a Z-basis

for ΘF. I t follows t h a t β Π F = ^ , £) x Π F ? = (0 F ) X , all rational q.

Hence c =

LEMMA 2. Le£ £),£)' &β maximal orders of SI, δoίft containing an

element λ with λ2 = -p. Let F = Q(X). If a£)a~l = ©', a e 2ίx, then

a = βε, where ε e £)x and βFβ'1 = F.

Proof. By assumption, λ,a~ιλae£). Then λ,a~ιλa must be genera-

tors for the two-sided prime ideal of O, which implies a~ιλa — δλ, δe £>x.

If δ = ± 1 , we take 0 = α, e = 1. If δ Φ ± 1 , then δ = ± ζ , ζ a primitive

third root of 1. There is only one maximal order (up to isomorphism)

with a non-trivial unit group, satisfying the relation λζ = ζ~ιλ. Then

a~ιλa = ±ζλ = ±C"2^ = ±C"^C, and we take /3 = aζ~\ ε = ζ.

PROPOSITION 7. Lei r 6e α ?̂/ rational prime such that (r, —p)p =

(r, — p)2 = — 1 . Γ/^e^ ^ β cα^ /meZ ^,^6 21 swcΛ ίΛ,αί ^2 = —p,μ2= —r,

^ = —μl. Let F = Q(X). Then r = iV(r) /or a prime x of F and we

can find a maximal order £>0 of Sί containing λ, μ such that χζ)Qx~ι =

μΩoμ~ι. For each such Do and any complete set of representatives

{tι> ' *#
 J cJ o/ ίfee principal genus of F, the set {CJGQCJ1 : y = 1, , g} is

a complete set of representatives for the conjugacy classes of maximal

orders of 5ί containing an element π with π2 — —p.

Proof. We observe that we can take r = 2, x — b if (—) = — 1.

\pj

Suppose αCyDoCj1 "̂1 = CJOQCJ1 for some j,£;ae$lx. According to Lemma

2, we may assume aFa~ι = F. If aλa~ι = λ, then aeFx and we may

apply Lemma 1 to deduce that j = £. If aλoΓ1 — — λ, then a = βμ> β e Fx,

and we have CJDQCJ1 = βμί^qιμ~ιβ~ι = jSc^rOo^"1^*)"^"1. Applying

Lemma 1, we see that c4, c^t are in the same class, which contradicts

the fact that x is not in the principal genus of F.

Proposition 7 enables us to determine the effect of the mapping

{£>} t-+ {£)} on the classes of D which contain an element π with π2 = — p.

We take O0, {ĉ } as in Proposition 7 with the stipulation that x = p when
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(—) = — 1. Let Ωo = β0. It is clear that (C^OQCJ1)" = CjΩQcj\ Let i =

λ/*Jp, a primitive fourth root of 1. Then iecjΩoCj1 for all j , and ι——i.

We note that

( 7 ) (1 + t W l + 0-1 = pfloT1

Suppose CjΩoc]\ cβfj1 are conjugate. Then, using (7) and Proposition

6, we deduce that either (a) j — £ or (b) C^DQCJ1, C^OOP" 1^ 1 are conjugate.

If (—) = —1> then (b) implies, by virtue of (5), that c^c? are

equivalent, that is, cj9 cj1 are equivalent. Conversely, if cJy cj1 are equiv-

alent, then CjΩoc]\ tfifij1 are conjugate. Hence the total number of con-

jugacy classes of symmetric maximal orders containing a primitive fourth

root of 1 is the total number of elements in the principal genus of F

upon identifying inverse elements, namely (g + l)/2.

If ί — J = 1, then p is in the principal genus and the total number

of conjugacy classes of symmetric maximal orders containing a primi-

tive fourth root of 1 is the number of elements in the principal genus

modulo they subgroup generated by the class of p, namely g/2.

We have completed the proof of

THEOREM. The mapping {£)} •-> {£)}, from conjugacy classes of maxi-

mal orders of Sί to conjugacy classes of symmetric maximal orders of

SI^, is one-to-one on the classes of £> which do not have a principal

two-sided prime ideal. Let r, £>0, {cj} be chosen as in Proposition 7, with

r = 2 if (—) = - 1 . Then
\p/

(i) // (—\ = - 1 , (Cj£)oc]T is conjugate to (φocjT & £ = j or ce

- cj1.

(ii) If (—) = 1, (CJOQCJT is conjugate to (c£V7T & & = j or c4 -

pcj9 where p2 = (2).

COROLLARY. Let i denote the number of conjugacy classes of sym-

metric maximal orders of SI^, and t the number of conjugacy classes

of maximal orders of 21. Then
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(8) ί = t-(flr-α)/2

where g = h(V—p)/2> and a — 0,1 according as (— \ — 1, —1, respectively

(cf. [5], § 12).

Remark. We note that the mapping {£)} ι-> {£)} is two-to-one on the

classes of D having a principal two-sided prime ideal except if ί — J =

— 1, O = O0; in the latter case {£)0} uniquely determines {£)<,}.
The algebras 31̂ ,21 may be regarded as quadratic spaces over K, Q,

resp., with quadratic forms N9 ΛΓ | St, resp.; the proper similitudes are
all the mappings of the form ζ*-+aξβ, where a, βe3ϊ£, αr, βe2ϊx, resp.
We observe that two-sided normal ideals with the same norm are con-
jugate if and only if they are similar. Let O be a maximal order of
SI and ψ its two-sided prime ideal. Then $ = <y/pύ, from which it fol-
lows that the mapping {̂ 5} ^ {$}, from similitude classes of two-sided
prime ideals of Sί to similitude classes of two-sided symmetric prime
ideals of %Ky is one-to-one on the classes of nonprincipal Sβ and satisfies
the rest of the Theorem upon replacing £>0 by its two-sided prime ideal
Sβo Noting that any two-sided normal ideal of SI is similar either to a
maximal order O or to a prime ideal φ, we can combine the above two
mappings and intersect with V to obtain a correspondence {$} H> {§ Π 7}
from the set of similitude classes of two-sided normal ideals of Sί into
the set of similitude classes of lattices of V with reduced discriminant
p or p3. This correspondence is a function except on the classes of £>
which are similar to their prime ideals, that is, D which have principal
φ. For such O we have {£)} κ{DίΊ7} and {€)} ^ { $ Π F } . On the other

hand, for each such O, excluding O0 when ί — j = — 1, we have exactly

one other class {£)'} such that {£)'} *-* {£> Π V}, {£)'} •-> {$ Π 7}. Thus our
correspondence is "two-to-two" on all such classes, except for {Do} when

(-—) = — 1, where it is "one-to-two". On all other classes it is one-to-

one. Furthermore, since the dual lattice of an order © is Sβ"1, which

is similar to Sβ, our correspondence takes classes of dual lattices to

classes of dual lattices. The total number of similitude classes {$} is h,

the ideal class number of Sί ([6], p. 306, (11)), while the total number of

similitude classes {§ Π V} is 2i. In particular, we have
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h = 2i if" (I) -
( 9 )

§ 5 . Quadratic forms and theta series

We fix an ordered basis of V and call another ordered basis of V

positively oriented if its tranformation matrix relative to the fixed basis

has positive determinant. To each lattice L of V we can associate an

integral quadratic form fL by setting

(10) fL(xu x2, x3, x4) = N(L)-

for all Xi e Q> i = 1,2,3,4, where {v^ is a positively oriented Z-basis of

L. The discriminant of fL is the reduced discriminant of L. Different

choices of positively oriented Z-bases of L yield properly equivalent

quadratic forms and in this way we obtain a one-to-one correspondence

between proper similitude classes of lattices and proper equivalence

classes of integral quadratic forms. If we let L vary over the integral

lattices of reduced discriminant p, then the classes {fL} will vary over

all the classes of integral positive definite quaternary forms of discrim-

inant p([8], §6, Th. 3 (a)). In particular, the number of proper classes

of such forms is equal to T, the number of conjugacy classes of maxi-

mal orders of %κ ([8], §4, Prop. 9 (a)).

If L is an order of 2ίx, then fL represents 1. Conversely, suppose

fL represents 1. Let Ω be a symmetric maximal order of 21 .̂ We may

assume L = άΩά* for some & e J%κ. Then N(L) = n(N(a))9 where N(&) is

the ideal of K such that N(&\ = N(aq)Θq for all finite primes q of K.

Since K has only one strict genus, we can find a e 2IX such that n(N(ά)) =

N(L). Let M = a-lL(^)*. Then N(M) = 1 and M contains an element

u with N(μ) = 1. It follows that M = β^, where Ωx is the left order

of M. Furthermore, μ = λλ~ι for some ^eSI^ with N(λ)eQx. Then M

= ^β2^
- 1 with Ω2 = ^"^x^. The symmetry of M implies that the maximal

order Ω2 is symmetric. We have shown

PROPOSITION 8. Let L be a lattice of reduced discriminant p in V.

Then fL represents 1 ζ=$ L is similar to a symmetric maximal order of 21 .̂



138 PAUL PONOMAREV

COROLLARY. The number of classes of integral quaternary forms

of discriminant p which represent 1 is equal to i.

In the manner of (10), we can associate to each lattice £ of Sί an

integral quadratic form f2. The class of f2 depends only on the simili-

tude class of £, and the mapping {£} ^ {/£} is one-to-one. Furthermore,

as £ ranges over the normal ideals of 21, f2 will range over all integral

positive definite quaternary forms of discriminant p2. As before, f2

represents 1 & 2 is a maximal order of 21. It follows that the number

of proper classes of integral positive definite quaternary forms of dis-

criminant p2 which represent 1 is equal to t. In [6], §3 we gave the

following formula for H, the number of proper similitude classes of

normal ideals of 21,

From [1] we have the following formula for t

(12) t =

Let Ho denote the number of improper classes of integral positive def-

inite quaternary forms of discriminant p2. Then 2HQ -- H is the num-

ber of classes {/s} which have an improper automorphism, and / s has

an improper automorphism & S is properly similar to £* & 2 is two-

sided. It follows that 2H0 - H = h or

(13) Ho = \{H + h) .
Li

We have just observed that the quadratic forms / β associated to the

two-sided ideals of 2ί are characterized by the property that they have

an improper automorphism. Kitaoka [5] gave an analogous character-

ization for quaternary forms of discriminant p which represent 1; in

fact, he showed that/ s represents 1 & o(L) Φ {±1}. (This stronger result

is not true for square discriminant). Thus our correspondence has the

property that it associates quaternary forms of discriminant p2 with

improper automorphisms to quaternary forms of discriminant p or p3

with improper automorphisms. The significance of this for theta series

is as follows.
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Eichler [3] showed that the theta series associated to positive defi-
nite quaternary forms of discriminant p2 span the space of all modular
forms of Haupttypus (—2, p, 1). However, the matter of providing an
explicit basis of theta series has not yet been settled. The space of
modular forms of type (—2, p, 1) has dimension h, and Hecke ([4], p. 884)
conjectured that the theta series coming from a fixed column of the
Brandt matrices (of size h x h) are a basis. He claims to have verified
this for p < 37. In fact, it is false for p = 37. To see this, we first
observe that all unit groups of maximal orders of 2ί are trivial since

= [Ξ—\ = 1. Hence the Brandt matrices are all symmetric ([2],
ό

( \ [
\ όl / \ όt

§ 5, (22)). For p = 37 we have t = 2, h = 3, H = 5, Ho = 4. If we arrange
the improper classes {/£} in a 3 x 3 symmetric matrix array in accord-
ance with the Brandt matrices, we see that the diagonal has 2 distinct
classes. The remaining 2 improper classes must then be placed in the
3 places above the diagonal. There is no way of doing this without
having at least one column in the matrix array having 2 identical im-
proper classes. It follows that at least one column will yield 2 identical
theta series. Another way of showing this is to find normal ideals L,
M with the property that they have the same left and right orders, are
left inequivalent but right equivalent. This can be done whenever h/t
is not an integral power of 2. We need only take L,M = La as in [6],
§ 7, Remark 2. In this way we obtain an infinite number of counter-
examples.

The question still remains as to which set of h classes should be
chosen to provide h linearly independent theta series. A reasonable
conjecture would be the classes {/J coming from the two-sided normal
ideals of 2ί. Indeed, Hecke's own computations ([4], p. 900-903) show
this to be true for p < 31 (p = 3 (mod 4) is permissible in the case of
Haupttypus). Kitaoka [5] has conjectured that the theta series coming
from the quadratic forms of discriminant p representing 1, and their
adjoints, form a basis for the modular forms of Nebentypus ( — 2, p, (—))•

Both of these conjectures can be summarized in the statement that the
theta series coming from quadratic forms which have an improper
automorphism form a basis for the corresponding space of modular forms.
The correspondence {$} ^ {§ ίl 7} induces a correspondence of the as-
sociated theta series. If the preceding conjectures are true, then this
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correspondence has the virtue of associating a basis of modular forms

of type (—2,p, 1) to a basis of modular forms of type (—2,p, (-—))•
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