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A CHARACTERIZATION OF THE VERONESE VARIETIES*
KATSUMI NOMIZU

Let P™(C) be the complex projective space of dimension m. In a
previous paper [2] we have proved

THEOREM A. Let f be a Kaehlerian tmmersion of a connected,
complete Kaehler manifold M* of dimension n into P™(C). If the image
f(z) of each geodesic = in M™ lies in a complex projective line P'(C) of
P™C), then f(M™) is a complex projective subspace of P™(C), and f is
totally geodesic.

In the present note, we shall first provide a much simpler geomet-
ric proof of this result and then give a characterization of the Veronese
varieties by means of the notion of circles in P™(C). Generally, a curve
z(t) with arc-length parameter ¢ in a Riemannian manifold is called a
circle if there exists a field of unit vectors Y, along the curve, which,
together with the unit tangent vectors X,, satisfies the differential equa-
tions

VtXt - kYt and Vth = '_‘sz )

where k is a positive constant (see [4]).

By the Veronese variety we mean the imbedding of P*(C) into P™(C),
where m = n(n + 3)/2, which is defined as follows. Let S**' be the
unit sphere in the complex vector space C**! with the standard hermitian
inner product (z, w) and corresponding real inner product <z, w)> = Re (2, w).
On the other hand, the set of all complex symmetric matrices of degree
7 + 1 can be considered as the vector space C™*!, where m = n(n + 3)/2,
in which the standard hermitian inner product can be expressed by

(A4, B) = trace AB , A,BeC™ .
The mapping v which takes e C**' into z‘x ¢ C™*! maps S**! into the
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unit sphere S*™*! of C™*!, and induces a holomorphic imbedding of P*(C)
into P™(C). If we choose the Fubini-Study metrics of constant holomor-
phic curvature ¢ (> 0) for P™(C) and ¢/2 for P*(C), then the imbedding
is isometric. This is what we call the Veronese imbedding.

We now state our new result.

THEOREM B. Let f be a Kaehlerian immersion of a connected,
complete Kaehler manifold M™ of dimension n into P™(C) with Fubini-
Study metric. The image f(z) of each geodesic = in M™ is a circle in
P™(C) if and only if f is congruent (by o holomorphic isometry of P™(C))
to iov, where v is the Veronese imbedding of P™(C) into P™(C), with
m =nn + 3)/2, and t is the totally geodesic inclusion of P™(C) into
P™(C).

1. Simpler proof of Theorem A.

Let x, be a point of M™ and let M* be the complete totally geodesic
complex submanifold (namely, n-dimensional projective subspace P*(C))
through the point f(x,) and tangent to f(M"), that is, the tangent space
TsezpyM*) equals fyo(T,,(M™), where f, denotes the differential of f.

Let z be an arbitrary geodesic in M* starting at z,, By assumption,
there is a complex projective line P*(C) which contains f(z). If X de-
notes the initial tangent vector of z at x,, then f,(X) is tangent to PY(C).
If we denote by J the complex structure of P™(C) as well as that of M=,
then the vector Jf,.(X) = f.(JX) is tangent to PY(C). It follows that
T;ezpyPNC)) is spanned by f«(X) and f,(JX). On the other hand, these
two vectors are contained in f (T,,(M™) = T (M*). Thus T, ,,(PYC))
C TopyM*). Since PY(C) and M* are totally geodesic in P™(C), it fol-
lows that PY(C) is contained in M*; thus f(¢r) is contained in M*, Since
¢ is an arbitrary geodesic in M, we have f(M) = M*.

2. Veronese imbedding.

We shall show that the Veronese imbedding » of P*(C) into P™(C)
with m = n(n + 8)/2 has the property that the image of each geodesic
in PYC) is a circle in P™(C). This property does not depend on the
choice of a positive constant ¢ which we choose for the holomorphic
sectional curvature of P™(C) (and that of P*(C) will be ¢/2). We recall
how geometry of P™(C) is related to that of S*™*!. The standard fibra-
tion z: S*™*! — P™(C) is a principal S-bundle. It has a connection whose
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horizontal subspaces @, x € S?™*!, are given by
Q, ={XeCm; (X,x) =<X,iz) = 0}.

The projection =, maps @, isomorphically onto the tangent space
T.(P™C)), where u = n(x). If we let

g(n*X9 ﬂ*Y) = (4/C)<Xy Y> ’ X9 Ye Qx s

then ¢ is the Fubini-Study metric with holomorphic sectional curvature
¢ for P™(C). We shall choose ¢ = 4 (to simplify constant factors in the
computations that follow). Let us denote by F’ the Riemannian con-
nection for S*m*! and by ¥ the Kaehlerian connection for P™(C). We
formulate the relationship between F’ and ¥ (see [3], Proposition 3) in
the following form. A curve in S*™*! is said to be horizontal if its
tangent vectors are horizontal.

LEMMA 1. Let z, be a horizontal curve in S™*' and u, = n(x,). If
Z, is a horizontal vector field along x, and if W, = n(Z,), then VW, =
”*(V ).

LEMMA 2. If z, is a horizontal curve in S*™* with arc-length para-
meter t, then V/X,, where X, denotes the tangent vector, is horizontal.

Proof. We have
VX, =dX/dt + z, .
Since z, is horizontal, we have {X,,iz;> = 0 and hence
dX/dt,ix,> + <{X;,iX,>=0.
But <{X;,iX,> = 0 so that {dX/dt,ix,> = 0. Thus we obtain
VX, ix,y = dX/dt, ix,y + {x;,t0,> =0 .

LEMMA 8. If =z, is a circle in S*™*' which is furthermore a hori-
zontal curve, then u, = n(x,) is a circle in P™(C).

Proof. We have a field of unit vectors Y, along x, such that
r'X,=kY, and rVY,= —kX,,

where k is a positive constant and X, is the tangent vector. By Lemma
2, "X, and hence Y, are horizontal. The tangent vector of u, is given
by U, = n.(X;). Consider the field of unit normal vectors V, = 7,.(Y,);
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note that z, is isometric from @, to T,.,(P™(C)). By Lemma 1, we
have

V.U, = n,(ViX,) = m, (kY,) = kV,
and, similarly,
ViV, = n,WVY,) = r(—kX) = —kU, .

Thus u, is a circle in P™(C).

Now we shall prove our assertion about the Veronese imbedding.
We observe that the unitary group U(n 4+ 1) acts naturally on S**! and
P*(C) as a group of isometries. Each geodesic z in P*(C) is congruent
by a transformation belonging to U(n + 1) to the curve with homoge-
neous coordinates (cost,sint,0,---,0). On the other hand, we can let
Um + 1) act on the space C™*' of all complex symmetric matrices of
degree n+ 1 by Z— AZ'A, where ZeC™"' and AeU(n + 1). This
action preserves inner product in C™*' and thus induces the action of
Un 4 1) on S+ and P™(C) as a group of isometries. Now the Veronese
imbedding v is equivariant relative to the actions of U(n + 1) on P*(C)
and on P™(C).

It is thus sufficient to prove the following. ILet r be the geodesic
w, in P*(C) given by w, = n(z,), where z, = (cos (t/+'2), sin (¢/+/'2),0,
...,0) is a curve on S*!, Since the holomorphic sectional curvature
of P*(C) has been chosen to be 2, we have

ldw/dt|’ = 2| dz/d¢|F =1,
which shows that ¢ is the arc-length parameter for the geodesic w,. Let
z, = v(2y) , u, = v(w,) so that wu, = =(x,) .

We wish to show that w, is a circle in P™(C). The curve z, on S*™*!
can be represented simply by the first 2 X 2 block of the form

[ cos® (t/4/2) sin (t/ﬁ)cos(t/ﬁ)]
sin (t/+/2) cos (/v 2) sin? (¢/4/2)

since the other components are all 0. The tangent vectors X, of the
curve z, are represented in the same sense by

_ —sin (W28 cos(W2t)
Xe=a/ ﬁ)[ cos (W2t sin(V2 t)] '
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Since <{X;,ix;,> = 0, x, is a horizontal curve in S*»*!. If we show that
it is a circle in S*™*!, then Lemma 3 implies that u, = =n(x,) is a circle

in P™(C).
We have
_[—cos(W2t —sin(v/2¢%)
dX/dt = [——sin W2t cos (ﬁt)] ’
The vector

VX, = dX/dt + =z,

is also horizontal (since its components are real) and has length 1, be-
cause

X |dt + w,, dX/dt + 2,
= (dX/dt,dX [dt> + 2@, dX [dt> + (@, 2>
=24+2(-)+1=1,

by virtue of (w,,dX/dt) = —<{dx/dt,X,;> = —1.
We thus set Y, =dX/dt+x,, namely, V''X,=Y,. Since <(Y,,X,>=0,
we have

Y, =dY/dt = d’X/dt* + X,
_J3 [ sin (/' 2t —cos (ﬁt)]
—cos (W2t —sin(/2¢)
—sin (/' 2t) cos(V2¢)
+AVD[ T nvo)
_ sin(W 2t —cos(W2¢)
- (1/ﬁ)[—cos W2t —sin (ﬁt)]

= 4y

Thus we have shown that x, is a circle of curvature k = 1.

3. Proof of Theorem B.

We now finish the proof of Theorem B. Let f be a Kaehlerian
immersion of a complete Kaehler manifold M” into P™(C) with the prop-
erty that for each geodesic - in M"™ the image f(¢r) is a circle in P™(C).
We shall first show that

(i) the second fundamental form « is parallel;

(ii) f is isotropic, that is, ||a(X,X)| is equal to a constant for all
unit tangent vectors X to M™ at each point;
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(iii) M~ has constant holomorphic curvature.

Let xz, be a geodesic on M" with tangent vectors X, of length 1.
Denoting by ¥ and ¥ the Kaehlerian connections of P™(C) and M*, re-
spectively, we have

ﬁtXt = VtXt + af(X:, Xz) = Of(Xu Xz) ’
where « is the second fundamental form. We obtain
(1) ‘7%Xt = —Aa(Xg,X;)Xt + Vf'a(Xn Xt) )

where A is the second fundamental tensor and /1 the normal connection.
On the other hand, since f(x;) is a circle by assumption, there exists a
field of unit tangent vectors Y, along z, and % > 0 such that

V.X,=kY, and V,Y,= —FkX,,
thus
(2) VX, = —kX, .
From (1) and (2) we obtain

(3) Ad(XhXt)Xﬁ = kZXc
and
(4) VELOl(Xt:Xc):O-

Since x; is a geodesic in M™*, the covariant derivative
)X, Xy) = Vf'a(Xu X)) — oV, X, X)) — (X, V, X))

is equal to 0 by virtue of (4). Evaluating this at £ =0 and observing
that X, can be an arbitrary unit tangent vector at an arbitrary point
of M", we have

(5) i) X, X)) =0 for all tangent vectors X to M~.

Since (F*a)(Y, Z) is symmetric in X,Y and Z, we conclude that V*a = 0,
that is, « is parallel.

From (3) it follows that for any unit tangent vector X to M* there
exists a certain constant & > 0 such that

Az X = KX .

If Y is a tangent vector perpendicular to X, then
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{Auxz.0X,Y>=0
so that
(6) {a(X,X),a(X,Y)) =0 whenever <(X,Y>=0.

This condition implies that f is isotropic, that is, ||a(X, X)|| is equal to
a constant for all unit tangent vectors X at each point (see [6], Lemma
1). It also follows that M™ has constant holomorphic sectional curvature
(see [6], Lemma 6).

We now wish to prove that f is essentially the Veronese imbedding.
Since « is parallel, the first normal spaces (spanned by the range of «
at each point) are obviously parallel relative to the normal connection.
The (complex) dimension of the normal spaces, say, p, is at most n(n+1)/2.
It is known [1], Proposition 9, that there is a totally geodesic P**?(C)
in P™(C) such that f(M") c P**?(C). We shall see that this immersion
fo of M™ into P"*?(C) is the Veronese imbedding (and indeed p =
n(n + 1)/2).

If p <mnn + 1)/2, Theorem 2 of [6] says that f, is totally geodesic.
This will mean that the image of a geodesic in M" is a geodesic in P**?(C)
and hence a geodesic in P™(C), contrary to the assumption that it is a
circle in P*(C). Hence we must have p = n(n + 1)/2. We already know
that M"* has constant holomorphic sectional curvature. Since the second
fundamental form is parallel, it follows from [5], Theorem 4.4, that this
constant is half the constant holomorphic sectional curvature of P**?(C).
Moreover, such an immersion f, is rigid. Thus M* is P*(C) with
holomorphic sectional curvature, say, 2, if we assume that P™(C) and
hence P**?(C) has holomorphic sectional curvature 4. Now the Veronese
imbedding v is a Kaehlerian imbedding of P*»(C) into P**?(C). By ri-
gidity, f, is congruent to v by a holomorphic isometry of P**?(C).
Since this holomorphic isometry can be extended to a holomorphic iso-
metry of P™(C), we can now conclude that f:M" — P™(C) is in fact
congruent to 710w, where v is the Veronese imbedding of P*(C) into
P*?(C), p = n(n + 1)/2, and ¢ is a totally geodesic inclusion of P**?(C)
into P™(C). We have thus completed the proof of Theorem B.
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