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ON THE ASYMPTOTIC BEHAVIOUR OF A DIFFUSION

PROCESS WITH SINGULAR DRIFT

HITOSHI KANETA

We discuss some peculiar features of the diffusion process whose
characterization is given below. Let D be a bounded domain in the d-
dimensional Euclidean space Ed with a smooth boundary 3D. The domain
D contains open balls C<s (i = l, ••-,%) which are mutually disjoint.
Our process is a diffusion process on the state space D U dD which is
locally equivalent to the Brownian motion except on the spheres dC[s
and the boundary dZλ By a diffusion process we mean a continuous
strong Markov process. As to the terminology about Markov processes
we refer to [2], Let the ratio of probabilities for the tragectory to go
into and out of the ball C* be ac^1, while dD is assumed to be a reflect-
ing barrier. Although the existence of such a process is not obvious,
it is guaranteed. We are mainly interested in how the local behaviour
around dCfi determines the asymptotic behaviour of the process on the
whole space. It is proved that such a process has the unique invariant
measure to which the transition probability converges in the sense of
the total variation as time goes by. It seems very likely that we can
construct such a process and that the same result holds even when dC[s
are taken to be any smooth hyper surf aces. In such a case we can appeal
to the theory of Dirichlet space discussed by M. Fukushima.

For the precise definition of the process we refer to Section 1,
where we state our main theorems. In Sections 2 and 3 we prepare
some properties of the auxiliary processes. Using the results in these
sections we prove our theorems in Sections 4 and 5.

The author expresses his sincere thanks to Professor I. Kubo and Pro-
fessor H. Kunita for their valuable suggestions and kind encouragement.
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1. Main theorems

In this section we represent two theorems. To begin with we prepare
some definitions and notations. When E denotes a semi-compact space,
&(E),B(E),C(E) and C(E) stand for the topological σ-algebra, all real-
valued bounded «^(£/)-measurable functions, all real-valued bounded con-
tinuous functions and all real-valued continuous functions vanishing at
infinity, respectively. As to the σ-algebras attached to a Markov process
we always consider the smallest one unless otherwise stated. We define
a part process of a given Markov process on E. Let X = (Ω, xt, ζ, Nt,
N,PX) be a right-continuous strong Markov process on E and let F be
a non-empty open subset such that either the closure F or the comple-
ment Fc is compact. We set

τ = the first exit time from F ,

Ω = {τ > 0} ,

Nt = Nt{τ > t] ,

N = N{τ > 0} .

As is known, XF = (Ω, xt, r, JVt, iV, P J is a right-continuous strong Markov
process on the subset F (Theorem 10.1 in [2]). We call this process the
F part of the process X and denote it by XF.

We are mainly concerned with a bounded domain D in the cZ-dimen-
sional Euclidean space Ed with a smooth boundary dD. We fix the
domain D and divide it into mutually disjoint sets A,Ct and dCt

(i = 1, .. ,n). C'iS are open balls with radius & centered at εt respec-
tively and dC'iS denote their boundaries i.e. spheres. Let Bt (ί = 1, -,n)
be the open ball with radius r< (>fi) centered at e< such that the closures
B'iS are mutually disjoint and contained in the domain D. Finally we
set δ o = AU dD, dB = (J?-i d#o ^^ = U?-i 3Ci and U = JD U dD. See
Figures 1 and 2, where broken lines denote dB[s.

dD

Figure 1 Figure 2
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Now we introduce two kinds of diffusion processes from which we
construct our desired diffusion process on D. The first is the reflecting
barrier Brownίan motion X° = (xt, P%) on D. Of course X° is the process
whose transition density with respect to the Lebesgue measure is equal
to the fundamental solution of a heat equation on D;

at

with boundary condition

— ( ί , x) = 0 x e 3D .
dn

The second is the process Xi — (x^Pi) (i = 1, -,ri) on Z?* U 3Z?< which
is expressible as a skew product of a process JR* = 0"t,Pί) on the closed
interval [0, r4] and the spherical Brownian motion Θ = (0(£), P,) on the
unit sphere Sd~\ where the process Rι denotes the non-singular conserva-
tive diffusion process possessing the following speed measure dm(r) and
the scale measure ds(r) with a reflecting barrier r*;

dm(r) = a-ιrd'ιdr , ds(r) = ar~d+ίdr (0 < r < f€) ,

d ( ) V ^ ' ^ d ( ) '^"1"1^ (f < r

where α and ĉ s are given positive constants. We note that the process
Rι depends only on the ratio ac;1. As the additive functional £t we take

r~2ds. Here the differential generator of the spherical Brownian motion

is the spherical Laplace operator. For the details about the skew product
we refer to 7.16 in [6].

Now we are ready to state our results.

THEOREM 1. There exists a diffusion process X = (Xt, oo,Nt,N,Px)
on the compact set D such that the part process XBi is equivalent to
the part process Xl

Bi for every i (ί = 0,1, ,w). All right-continuous
strong Markov processes on D with such a property are mutually equiva-
lent and induce a continuous Feller semi-group on C(D).

Let X' — (x\,PΛ

x) be the d-dimensional Brownian motion. As will
be shown in Lemmas 2.1 and 3.1, the part processes X°A and X*Ci

(i = 1, . . . , n) are equivalent to X'A and X'Ci respectively. Thus the part
processes XA and XCί of X in Theorem 1 are equivalent to XA and X*Ci
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respectively. In other words, the process X is locally equivalent to the
Brownian motion except on dC and 3D. To describe the behaviour of
tragectories starting from dCίf we introduce two spheres. Let S+δ (resp.
S_s) be the sphere with radius ξt + δ (resp. £< — δ) centered at e£. If
we denote by τδ the first exit time from the domain limited by the two
spheres, we have for all x e dCi

(1.2)

x [ τ δ + δ ] ,
*-o a + Ci

because the radial part of Xί has the following scale measure ds(r);

ds(r) = ar~d+ι (0 < r < £,) , ds(r) = w^'dr (ξ, < r < r,) .

Finally we remark that the process H depends only on spheres dC^s
and the ratios ac^'s, but not on the diameters r̂ s of Z?<s, because the
characteristic operator of X does not depend on the choice of B^s.

Before stating Theorem 2 we consider the non-singular conservative
diffusion process on the closed interval [0,1] corresponding to the speed
measure dm(r) and the scale measure ds(r) given below with the reflect-
ing barriers;

dm(r) = a~ιdr , ds(r) = adr (0 < r < ξ) ,

dmif) = c'ιdr , ds(r) = cdr (ξ < r < 1) ,

where α, c and ξ are given positive constants. As is known, this process
is locally equivalent to the one-dimensional Brownian motion on (0, ξ)
and on (?, 1). At the exceptional point f, the same relations as (1.2)
hold if we replace S+δ and S_δ by ξ + δ and ξ — δ, respectively. Fur-
thermore the transition probability converges to the unique invariant
probability measure which is equal to the speed measure up to a con-
stant multiplication ([6] or [7] and Lemma 5.3). This fact admits the
following physical interpretation. If we suspend particles moving ac-
cording to the diffusion law into a vessel [0,1], the vessel will be
separated into two parts (0, ξ) and (ξ, 1). In (0, ξ) the density of particles
is to be equal to c and in (?, 1) to a. We can expect that the process
X in Theorem 1 also exhibits the same phenomenon due to the singu-
larity on dC expressed in (1.2).
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THEOREM 2. The process X specified in Theorem 1 has a unique
invariant measure μ;

(1.3) μ(dx) = c(aΛΛ(x)

where a and φ are constants appearing in (1.1), c being the normali-
zation constant. Let v be any initial distribution and Pt(v, •) be the
transition probability of the process with the initial distribution v. Then
we have

(1.4)
ί—»oo

where \\ \\ means the total variation. If f e B(D), for all xe D we have

(1.5) pjlim 1 [f(Xs)ds = f fdμ] = 1 .
Lί-oo t Jo JD J

We will prove these theorems in Sections 4 and 5. Sections 2 and
3 are devoted to prepare some properties of processes X1 (i = 0,1, ,ri).
The reader is recommended to read Sections 4 and 5 first, consulting
Sections 2 and 3 if necessary.

2. Some properties of the process X°

In this section we exhibit simple properties of the reflecting barrier
Brownian motion X° on D. We denote the process by X = (xt, Px) instead
of X° = (xt,P°x). X' = (x't, Px) stands for the d-dimensional Brownian
motion whose differential generator is the Laplace operator Δ. As is
shown in [11], I is a strong Feller process inducing a continuous Feller
semi-group on C(D). Moreover the transition probability {Pt(%, •)}
satisfies

(2.1) sup Pt(x, U(e, x)) = o(t) (for small ί) ,

where C7(ε, x) denotes the ε-neighbourhood of x.

LEMMA 2.1. The part process XD is equivalent to X'D.

Proof. As is shown in [9], the transition density of the part process
XD is equal to the fundamental solution of a heat equation,

ot
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with boundary condition

u(t, x) = 0 x e 3D .

The same is true for the part process X'D (Theorem 13.22 in [2]). From

the uniqueness of the fundamental solution the lemma follows. Q.E.D.

LEMMA 2.2. Let τ be the first exit time from Bo and K be a com-

pact set contained in Bo. Then if t is positive, we have

(1) s u p Px[τ <t]<l,
xeK

(2) sup Px[τ <t] = o(t) (for small t) ,
xeK

(3) infP,[r<« >0 ,
xeK

(4) Ex[τ]< oo (xeB0).

Proof. From Theorem 13.7 in [2], (4) follows. Let Kt (ί = 1, ,n)

be an open ball such that Cι c Kt c Bt with the common center $i and

that K c Πί-i Kϊ We denote by r' the first exit time from the interior

of n?=i#? and set dK = \Jn

i=1dKi. Theorem 13.1 in [2] tells us

tinuity of Px[τ < t] on Bo. Thus if xeK, it follows that

Px[τ <t] = PXW + θτ,τ <t]< Px[θτ,τ < t]

= Ex[PXτ,[τ < t]] < m a x P J r < t] .
xedK

Since X is locally equivalent to the Brownian motion on D, (2) follows.

Since Px[τ < t] is positive and continuous on BQ, (3) follows. I. V.

Girsanov has shown in [3] that

sup Px[τ <t] = 0(0
xeK

under the condition

sup Pt(x, U(ε, x)) = 0(0 .
xeD

We can replace 0(t) by o(t) on account of (2.1). Q.E.D.

LEMMA 2.3. Let U be a non-empty open set in dC and let τ be the

first exit time from Bo. Then Px[τ <t,xτe U] is positive, if xeB0 and

t is positive.

Proof. We denote by U(δ, y) the ̂ -neighbourhood of y. For a point

yeU, there exists δ such that (U(δ, y) Π dC) c U. We set Uf = U(%δ, y)
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Π A. To every point x' e ϋ' we attach £7(f£, x') with the boundary S(xf)
and let τ' be the first exit time from U(%δ,x'). Recall C = U?=iC* If
ί — s is positive, it holds that

P*'[r < t - 8, xτ e U] > PS,W < t - 8, xτ, e S(x') Π C] > 0 .

The last inequality holds because the process X is locally equivalent to
the Brownian motion on D. On the other hand, Px[xs eU', s < τ] is
positive whenever xeBQ (cf. Lemma 2.5). Thus if xeB0, it follows that

Px[τ < t , x τ e U ] > P x [ x s e U ' , s < τ , τ < t , x T e U]

= P x [ x s e U ' , s < τ , θs{τ < t - s , x τ e U}]

= Ex[PXt[τ < t - s , x s e U ] : x s e U r , s < τ ] > 0 .

Q.E.D.

LEMMA 2.4. Lei r 6e ίfee first exit time from BQ. If fe B(B0) and

a is positive, the function x-^Ex\\ e~atf(xt)dt\ belongs to C(B0). If
LJo J

g e B(dC) and a is non-negative, the function x —> Ex[e~aTg(xr)] also belongs
to C(B0).

Proof. According to Theorem 13.1 in [2], the function x -» Ex[f(xt):
t < r] is continuous on J50 So the first assertion follows at once. We
note that

Ex[e-*g(xr)] = Ex[e~arg(xt):t < τ] + Ex[e'aτg(xT): τ < t]

= EJfit{e-{v+t)g(Xr): ί < r] + Es[e-*g(xv): τ < t]
<>]: r < t]

The first term on the right of the last equality is continuous because
I is a strong Feller process. Applying (2) in Lemma 2.2 to the other
terms, we see that the term on the left is continuous on Bo. Q.E.D.

LEMMA 2.5. The transition probability of the part process XBo is
equivalent to the Lebesgue measure.

Proof. Apparently the transition probability is absolutely continuous
with respect to the Lebesgue measure. Lemma 2.1 implies that the part
process XA is equivalent to X'A. By (1) in Lemma 2.2, Px[t < τ] is
positive if xedD. From these facts the converse also holds. Q.E.D.
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LEMMA 2.6. // / e B(B0) and f is non-negative, we have

ί Ex[f(xt):t <τ]dx< f fdx ,
J Bo J BQ

where τ denotes the first exit time from Z?o.

Proof. Defining fix) = 0 on Bc

0, we assume feB(D). Since the
Lebesgue measure is an invariant measure of the process X, it follows
that

ί Ex[f(xt):t < τ]dx < f Ex[f(xt)]dx = f fdx=[ fdx .
JBo JD JD J BQ

Q.E.D.

3. Some properties of the process X1

In this section we exhibit some properties of the process Xi (i = 1,
• -,ri) on the state space Bt = Bt U dBi. We may restrict our attention
to one of them, say to the i-th process X\ and denote it by X = (xt,Px).
For the simplicity of notations B, dB, C and R = (rt, Pr) stand for Bi9

dBu Ci and the process Rι = (r^P)), which is the radial part of X*. We
denote the state space of R by [0,q] in place of [0,rJ. Finally Θ =
(β(t),Pθ) stands for the spherical Brownian motion on the unit sphere
Sd~ι in the d-dimensional Euclidean space Ed. Its transition density
p(t,θ,θ') has the following form;

P(t, θ, θ') = ± e~rnt Σ S&θ)S'n(p) ,

where γn — n(n + d — 2) and where {S*n(θ)} denote the spherical harmonics
of weight n. Recall that the Bessel process R' — (r't,P'r) on [0, oo) is the
conservative non-singular diffusion process with speed measure dm'if)
and scale measure ds'ir) as follows;

dm'ir) = rd~ιdr , ds'ir) = r~d+ίdr .

Consider an additive functional t\ = r'~2ds. As is well known, the

Jo
skew product X' = i[r't, θi£'t)], P'r x Pθ) is equivalent to the Brownian
motion on Ed. To be more precise, sample paths starting from the
origin must be added (see 7.16 in [6]).

LEMMA 3.1. The part process XAΓιB is equivalent to X*AςλB, so is Xc

to X'c.
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Proof, The part process i?(5,g) is equivalent to R\ξtQ) because both

processes induce continuous semi-groups on C((f, q)) and their infinitesimal

operator coincide. Hence

Pr[rt e dr, ίt e du, t < τ] = P'r{r\ e dr, i\ edu,t< τ'] ,

where τ and τ" denote the first exit times from (£, q). For feB((ξ,q))
and geBiS*'1) it holds that

Er x Eθ[f{rt)g(β{tt)) :t<τ] = Er [/(r t) \sdvΨt, θ, θ')g{θf)dθ': t

This implies the equivalence of XAf)B and X^Π J B. The proof of the second

assertion of the lemma is the same. Q.E.D.

Throught the rest of this section, σ and τ mean the first exit times

from B and from [0, q) respectively.

LEMMA 3.2. Let K be a compact set contained in B. We have for

positive t

(1)
xeK

(2) sup Px[σ <t] = o(O (for small ί) ,
xeK

(3) infPx[σ<t] > 0 ,
xeK

(4) Ex[σ] < oo .

Proof, Consider the diffusion process i?* = (rf,P*) on [0, oo) whose

speed measure dm(r) and scale measure ds(r) are

dm(f) — a~ιrd~ιdr , ds(r) = ar~d+1dr (0 < r < ξ) ,

dm(f) = c~ιrd~ιdr , ds(r) = cr~d+1dr (ξ < r < oo) .

That is, the speed and scale measures of the process R are equal to

the restrictions on (0, q) of the speed and scale measures of the process

i?*. We denote by r* the first exit time from [0, q). Since the transi-

tion functions of i?* and i2gjtβ) have positive densities with respect to

the speed measure dm(r) [6], it is easy to see that

0 < P0*[τ* < t] < P*[τ* < t] < 1 (T<q).

On account of D. B. Ray's estimate we see P*[τ* < t] = o(t), if r < q

[6]. Let Ma and Mb the first hitting times to a and to b (0 < a < r <
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b = q) respectively. Define a symmetric function Gab(r, r') on [a, b] x

[a, b] by

Gah{r, r') = Mr) - s(a)Ksφ) - s(r>))
s(b) — s(ά)

where s(r) = ds(r'). As is well known, it holds that

(3.1) E*[MΛ A Mb] = Γ Gαδ(r,r0dm(r0 .

Since r = 0 is a non-exit barrier, limα_0Mα Λ Mb — Mb. A simple cal-
culation tells us that (3.1) is dominated by F(b) which does not depend
on a nor r (0 < r < b = q). Hence E*[τ*] is finite, if r is positive. We
note that

E*[τ*] < Ef[t + θtτ*] - t + EflEψ*]] < t + F(jb) < oo ,

since r = 0 is an entrance barrier. Now we observe that the part
process R$iQ) is equivalent to <R[Ofβ). This completes the proof. Q.E.D.

LEMMA 3.3. Let U be a non-empty open set in dB. If t is posi-
tive, Px[σ < t, xσ e U] is also positive for all xeB.

Proof. If x = (0, θ), it is easy to see that

PΛσ <t,xσeU]^ P0[τ < t] f lu(θ)dθ > 0 .

For x = (r, θ) with 0 < r < q, it holds that

P*[σ <t,xσeU] = Prx Pθ[τ < t, θ(fiτ) e U]

': τ < ί] > 0 ,

because p(t, θ, θf) and Pr[τ < t] = P^k < t] are strictly positive by Lemma
3.2. Q.E.D.

LEMMA 3.4. // f e C(B) and a is positive, the function x —>

^ J e~αί/(#ί)rfί belongs to C(B). If geC(dB) and a is positive, the

function x -> Ex[e~a*g(xσ)] also belongs to C(B).

Proof. We first prove the continuity of Ex[e~aσg(xσ)]. Evidently,
the family of finite linear combinations of spherical harmonics {Si} is
dense in C(dB). When g = 1 and x = (r,β) (0 < r < q)9 it is clear that
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Ex[e—g(x0)] = Er[e-*] .

As is well known, the function Er[e~aτ] of r is continuous on [0, q].

When g = Si (n > 1), two cases must be distinguished. In case x =

(0,0), it holds that

Ea[e—g(x.)] = £70[e-α1 f Sffldθ = 0 .

In case # = (r, θ) (0 < r < q), we have

l = # r x E9[e-*

Now we consider the non-singular diffusion process R = (ft, Pr) on (0, g]

whose infinitesimal operator is DmD+ — γnτ~2 with boundary conditions

that %(0) = 0 and D~u(q) = 0. Recall that the infinitesimal operator of

the process R is DmD+ with boundary condition that D~u(q) = 0. We

denote by τ the first hitting time to q of R. We note that Er[e~aτ] =

£7r[e~αr~rw^] [6]. Since the process JS is non-singular on (0, q] and since

r = 0 is neither exit nor entrance, Er[e~ar~rn£τ] is continuous on (0, g] and

converges to zero as r decreases to zero [6]. Thus the second assertion

has been proved. Let C be all continuous functions on [0, q] and Co be

all continuous functions on [0, q] vanishing in the neighbourhood of zero.

We note that the family {Σ;. o Σ* ee

n(r)Si(θ) \ e°0 e C, e4

n e Co, p non-negative

integer} is dense in C(B) [12]. If feC, it holds that

As is well known, the right side is continuous in r on [09q]. If / =

hSi (h e Co and n > 1), two cases must be distinguished. In case x =

(0,0), we can easily see that Ex\ J e"βe/(a?t)rfίΊ vanishes. In case x =

(r,0) (0 < r < q), it holds that
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JΓ

But EΛ e~at~rneth(rt)dt\ is continuous on (0, q] and converges to zero as

r decreases to zero because it is an element in the range of the resolvent

operator of the process R which induces a continuous semi-group on

C((0, q]). We have already shown that Er[e~aτ~rnh] also has the same

property. Now the first assertion of the lemma follows. Q.E.D.

LEMMA 3.5. Both transition probabilities of the process X and of

the part process XB are equivalent to the Lebesgue measure.

Proof. Both transition probabilities of the process R and of the

part process RίOiQ) have positive densities with respect to the speed

measure dm(r) [6]. The transition density p(t,θ,θ') of the spherical

Brownian motion is also positive. The lemma follows from these facts.

Q.E.D.

LEMMA 3.6. Set φ{x) = alAnB(x) + clc(x). Then <p(x)dx is an in-

variant measure of the process X on B.

Proof. As is known, dm(r) is an invariant measure of the process

R ([6] or [7]). Recall that R is the radial part of X. In addition the

transition density of the spherical Brown motion is symmetric. Thus

if F e J ( ( 0 , g ] ) and Ge@{Sd~ι), it follows that

ί Ex[{lFdG{xt)Mx)dx =[ Erx Eθ[lF(rt)lG(θ(£t))]dm(r) x dθ
JB J (0,g]χ,s<Z-i

= lFdm lGdθ .

This proves the lemma. Q.E.D.

4. Proof fo Theorem 1

Notations are the same as in Section 1. Let ψ be a parallel trans-

lation in the cZ-dimensional Eucleadian space Ed such that ψ(D) Π D is

empty. £ denotes JB0U?=iΨCBί) a n ( i ΨC-X"̂ ) (i = l,-- ,w) the ψ image

of the part process X^. Consider a following motion of a particle on

5. The particle situated, for instance on Bo when t is zero, moves
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according to the law XBo until it hits dC. When it hits x e dCu it jumps
up instantaneously to ψ(x) e ψ(Bi) and moves according to the law ψ(XBi)
until it hits ψ(dBi). When it hits x e ψ(dBi), it jumps down instantane-
ously to ψ~\x) e Bo and moves according to the law XBQ and so on. We
can describe this motion as a right-continuous strong Markov process
on S. For the details we refer to [5] or [10]. This process turns out
to be conservative on account of (1) in Lemmas 2.2 and 3.2. Now let
γ be the mapping from S onto D;

γ(x) = x

γ(x) = y

if x e Bo

if x e ψ(y) .

Figure 3

We project to D the process on S by the mapping γ to obtain a diffusion
process on D (Theorem 10.13 in [2]). In this step it is essential that
every part process XBQΠBi is equivalent to Xl?oΠjBΐ (ί — 1, , n). The fact
follows immediately from Lemmas 2.1 and 3.1. We can easily check
that the process on D thus obtained satisfies the condition in Theorem 1.
In this way we can show the existence of a process in Theorem 1.
Above we only outlined the procedure of the proof of the existence,
because the rigorous description requires much space. We will establish
the following two lemmas to complete the proof of Theorem 1.

LEMMA 4.1. Let X = (Xt,Px) be a right continuous strong Markov
process on D satisfying the condition in Theorem 1. // feCφ) and a

is positive, the function x —> Ex\\ e~atf(Xt)dt\ belongs to C(D).

Proof. Let τ be the first exit time from BQ and assume that x e Bo.
It holds that
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+

The last two terms are continuous on J50 due to Lemma 2.4. In par-
ΓΓ°° 1

ticular, EΛ\ e~atf(Xt)dt\ is continuous on dB. Using t h e first exit t i m e
LJo J

from Bi (i = 1, , n ) , we can prove t h a t EΛ e~atf(Xt)dt\ is continuous

on Bi in t h e same way applying Lemma 3.4. Q.E.D.
As every process X1 (ί = 0 , 1 , , n) induces a continuous Feller

semi-group, we denote by s/t and D ( ^ ) i ts infinitesimal operator and
its domain. We need some other n o t a t i o n s :

Df = {/ e Cφ) I / is an extension of an element in D(s/i) such that

s u p p / c £*} (i = 0,l, .- ,w) ,

D = {/ = Σ?-o/ιLΛ e 0 f (t = 0,1, ,n)} ,

T, is the semi-group on Bφ) induced by the process X in Lemma 4.1,

Lo = {/ e Bφ) I lim^o || TJ - / | | = 0} ,

J / and Z)(J/) are the infinitesimal operator of the semi-group Tt on

Lo and its domain respectively.

LEMMA 4.2. Assume that the process X = (Xt,Px) is the same as
in Lemma 4.1. Γfee process X induces a continuous Feller semi-group
on Cφ). We denote by J/ and D(<$f) its infinitesimal operator and its
domain respectively. It holds that le D c D(s/) and that stfl = 0.
Therefore the process X is necessarily conservative.

Proof. We first prove that Df c D. Assume that feDf and let
KiQ and KQi be open balls such that d c Ki0 c Koί c β^ with the common
center e< (i = 1, ,ri) and that supp/ c f^=1K

c

Oi. We denote by τ and

σ'. (ί = 1, . . . , w) the first exit times from BQ and from ULOί respectively.
If x e Koo = Π?-i ̂ io, we have

t)] = Ex[f(Xt): * < T] + ί7,[/(^): τ < t]
^ : τ < t] + Ex[f(Xt): τ < t]

Hence it follows that
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(4.1)

- /<») - fix) _
t

+ 211/11 sup P»[r ^ t] .
κ tχeκm

If x 6 X(o, it holds that fix) = s/J(x)
Ex[f(Xt) :</i<t]. Thus it follows that

(4.2) - fix)
ί

= 0 and that Ex[fiXt)] =

s u p P*M < t] .

Applying Lemmas 2.2 and 3.2 to (4.1) and (4.2) we conclude that Df c
J9(J/) and that J / / = ^ 0 / if / e Df. By the similar argument, we see
that D c D(J/). Since 5 is dense in C(J5), C(5) is contained in Lo (as
to the domain D(s/0) we refer to [11]). Lemma 4.1 tells us that the
resolvent operators of the semi-group Tt on Lo map C(D) into itself,
while D is dense in C(D). By the general theory of the semi-group, we
conclude that the restriction of the semi-group Tt to C(D) is a continuous
Feller semi-group. Apparently it holds that le D c D(<$/) and that
j/ilix) = 0 (ΐ = 0,1, ,w). On account of the local property of the
infinitesimal operator, it follows that s/l(x) = 0. Q.E.D.

We observe that all characteristic operators of right-continuous
strong-Markov process satisfying the condition in Theorem 1 coincide.
Since such processes induce continuous Feller semi-groups, their infini-
tesimal operators are certain restrictions of characteristic operators
(Theorem 5.5 in [2]). Consequently all such infinitesimal operators
coincide. Namely, they all induce a common Feller semi-group on Cφ).
This completes the proof of Theorem 1.

5. Proof of Theorem 2

Notations are the same as in Section 1 and X — (Xt, Px) denotes the
diffusion process specified in Theorem 1.

LEMMA 5.1. The probability measure μ in (1.3) is an invariant
measure of the process X.

Proof. We will show that

(5.1) f Ex[f(Xt)]μ(dx) < f fdμ, if feBφ) and / > 0 ,
J D J D
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from which the invariance of μ immediately follows because the process

X is conservative. Let Kί0,KQi,Hi0 and Hoi be open balls such that d

c Ki0 c KH c HiQ c Hoί c Bi with the common center ε* (i = 1, . , ri).

We note that the partition of unity enables us to represent the non-

negative bounded function / as a sum of non-negative functions /<s such

that supp/0 c fχi=1K
c

u and that supp/* c Hi0 (i = 1, . -,n). Assume

that supp / C Π?=i KM &n<l let τ a n d ot (ί = 1, , w) be the first exit

times from Bo and Zo ί respectively. If x e ίCOo = Π?-i ̂ ?o> it holds that

ί): t < τ] + ^ [ / ( Z , ) : r < t]

< Ex[f(Xt): t < r] + H/ll sup Px[τ < t] .

If xeKu, it holds that

t)] = Ex[f{Xt): t < σ't] + Ex[f(Xt): σ', < t]

< 11/11 sup PM<t] .

Since every part process XBt is equivalent to XBι (i = 0,1, , n), we

apply (2) Lemmas 2.2 and 3.2 and Lemma 2.6 to obtain

ί Ex[f(Xt)]μ(dx) = ± f Ex[f(Xt)]μ(dx)

< Ĵ  Ex[f(Xt): t < τ] + 11/11 g sup PJ^ < t]

< jBJdμ + \\f\\o(fi),

where t/0 denotes r. Next assume that supp / c HiQ (ί to be fixed). Let

τr and σ̂  (ΐ = l, •••,?&) be the first exit times from the interior of

Π?=i ̂ io a n ( i from β^ respectively. In the same way as above we obtain

f Ex[f(Xt)]μ{dx) < f / φ + 11/11 o(0 .

In this case we must apply (1) in Lemmas 2.2 and 3.2 and Lemma 3.6.

Thus for any non-negative function / in B(D), it holds that

f Ex[f(Xt)Mdx) < f fdμ
J D JD

We observe that o(0 does not depend on the function / . If m is a

large integer, it follows that
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ί Ex[f(Xt)]μ(dx) = f Ex[EXtJf(Xam_1)/m)t)]]μ(dx)
J D J D

< f Ex[f(Xiim_1)/m)t)]μ(dx) +

< f fdμ + \\f\\o(-±-)m.

Since m is arbitrary, we obtain (5.1). Q.E.D.

LEMMA 5.2. The transition probability {Pt(x, •)} of the process X
is equivalent to the Lebesgue measure v, when t is positive.

Proof. We may assume that the process X is standard [2]. We
define two sequences of Markov times {σn} and {τn} by

σ0 = the first hitting time to dB , τ0 = the first hitting time to dC ,

0 w + i = tfw + ^ n < y x , τn+1 = τn + θτnτλ (n > 2) .

Using Lemmas 2.2 and 3.2 it is easy to see that these Markov times
are finite and that increase to infinity as n increases. First we will
show that v(F) = 0 implies Pt(x9 f) = 0. Whenever t is positive it follows
from Lemmas 2.5 and 3.5 that Ex[lF(Xt): t < r0] vanishes on Bo and that
Ex[lF(Xt): t < σ0] vanishes on C. We note that Px[τ0 or σ0 = t] vanishes
if t is positive. Indeed, if x e Bo, since the transition probability of the
process X° is equivalent to v, we have

P J r 0 = ί ] = P°Λτ0 = t]< P°x[xt e 3C] = 0 .

On the same reason, Px[τ0 = ί] vanishes on every d (i — 1, , w). Since
the radial part of X1 is non-singular, Px[τQ = 0] ( ^ P ^ Γ Q = 0]) is equal
to 1. Similary Px[σ0 = ί] vanishes on 5 . By the induction on n9 we
see that Px[σn or rw = ί] also vanishes on D. For instance, it holds that

PM = t] = PΛ[τ0 + ̂ oσ0 = t] = £?Λ[Pχrβ[s + σo = t]s=T0] < Px[τ0 = t] .

Hence it follows that

Pt(x, F) = Ex[lF(Xt) :t<τo] + ± Ex[lF(Xt): τn < t < σn+1]
71 = 0

~ Ex\lΛXt) σn<t<τn-\
=l
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= E x [ l F ( X t ) : t < τ 0 ] + Σ E x [ E X r n [ l F ( X t . s ) :t-s< <x o ] s = r n : τn < t]

+ f ] E x [ E Σ a β F { X t _ s ) :t-s< τo]s=σn: σn < t]

< Σ PΛτ« = ί] + Σ *>>« = ί] = o .
0 l

Σ
n=0

Now we will show that the positivity of v(F) implies that of Pt(x,F) if
t is positive. Clearly it holds that

Ex[lF(Xt)] > Ex[lF(Xt) :t<τQ] + Ex[lF(Xt): τ 0 < ί < σ j

Using the Markov property and Lemmas 2.3, 2.5, 3.3 and 3.5, we can
show that the right side is positive if t and v(F) are positive. The proof
of the lemma is complete. Q.E.D.

LEMMA 5.3. Let Y = (Yt, oo, Mt,M, Px) be a Markov process on a
semi-compact state space E with an invariant probability measure v. If
probability measures {Pt(%, -)\(t, x) e (0, oo) x E) are equivalent, for any
probability measures m1 and m2 on {E,&(E))9 it holds that

(5.2) lim\\Pt(mlf 0 - Pt(m2, Oil = 0 ,
ί-oo

in particular

lim 11 (̂̂ ,0-̂ (011 = 0.
ί-*oo

Furthermore, v is the unique invariant measure of the process Y.

Proof. We note that the measure v is equivalent to {Pt(x, -)}.
Indeed, v is absolutely continuous with respect to {Pt(x, •)}, while v(F)
= 0 implies Pt(x, F) = 0. We will show that the Markov chain (Yn, Px)
satisfies Harris' condition there exists a σ-finite measure λ on (E, &(E))
such that Px[Σ>n=i hOfn) = oo] is identically equal to 1 so far as λ(F) is
positive. Consider a sub σ-algebra ® of

@ = {Fe @(E) I There exists a F e &(E) such that E^l^YJ] = lp(x)(a, e, v)}.

By the above note, @ has to be a trivial algebra with respect to the
measure v. Thus the Markov chain with the initial distribution v is
ergodic (cf. Proposition V-6-3 in [13]). We set Γ = {ω|2]^i lF(Yn) = °o},
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where F is not a null set of v. We must show that PX[Γ] is identically
equal to 1 on E. On account of the ergodic theorem, we have

lim 1 ± lF(Yi) = v(F) (a.e.PJ.

Hence PV(Γ) is equal to 1, namely PX[Γ] is identical equal to 1 with
respect to v. Since the measure v and {Pt(x, •)} are equivalent, PX[Γ]
is identically equal to 1, as is to be shown. Evidently the chain (Yn,Px)
is aperiodic. Thus (5.2) holds if both mx and m2 are Dirac measures
[8]. Now by the same reasoning as M. Duflo and D. Revuz we obtain
(5.2) (II.3 in [1]). Because the chain satisfies Harris' condition, the
uniqueness of the invariant measure also follows [4]. Q.E.D.

We will show (1.5) to complete the proof of Theorem 2. We set
Ht = &[XU: u > t] i.e. the σ-algebra generated by all sets {ω\XueF}
(F e &(E) and u >t). We denote the σ-algebra Πέ>o Ht by H. Since the
process X — (Xt, Px) satisfies (1.4), not only the σ -algebra H is trivial
with respect to Pv whatever the initial distribution v may be, but also
Pχ[Γ] is a constant if Γ eH. Therefore to prove (1.5) it suffices to show
that Pμ[Γ] is equal to 1, where

Γ = L lim 1 \tf(Xs)ds - f fdμ) .

Consider a sequence of random variables {Fn} Fn(ω) — f(Xt)dt. On
Jn-l

account of the ergodic theorem there exists a iϊ-measurable function
F*(ω) such that

lim — 2 Fi(ω) = F*(ώ) (a.e.PJ .
n-o

Since the σ-algebra H is trivial, F*(ώ) is equal to fdμ with respect

to Pμ. After the standard argument, we know that PU[Γ] is equal to 1.
Now Theorem 2 is established.
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