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ON THE THEOREM OF KISHI FOR A CONTINUOUS
FUNCTION-KERNEL

ISAO HIGUCHI AND MASAYUKI ITO

1. Introduction

In the potential theory with respect to a non-symmetric function-
kernel, the following theorem is obtained by M. Kishi ([3]).

Let X be a locally compact Hausdorff space and G be a lower semi-
continuous function-kernel on X. Assume that G(z,2)>0 for any 2« in
X and that G and the adjoint kernel G of G satisfy “the continuity
principle”. Then the following four statements are equivalent.

(1) G satisfies the domination principle.

(2) G satisfies the domination principle.

(8) G satisfies the balayage principle.

(4) G satisfies the balayage principle.

In the class of lower semi-continuous function-kernels on X, the
subclags of continuous function-kernels on X is essential for the con-
tinuity principle. We remark that the continuity principle follows from
a certain maximum principle.

A function G defined in the product space X X X is called a con-
tinuous function-kernel if G is non-negative, continuous in the extended
sense and finite outside the diagonal set of X x X.

In this paper, we shall prove the continuity principle for G follows
from the domination principle for G under a certain additional condition.
On the other hand, it is well-known that the domination principle for
G implies the continuity principle for G itself. Using our result, we
shall obtain that the above theorem is valid in the case of a continuous
function-kernel on X without the assumption that G and G satisfy the
continuity principle. In the proof, we shall use a result of one of the
authors (cf. [2]), and the following proposition will be essential in our
proof.
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Let G be a continuous function-kernel on X satisfying the domination
principle. Assume that every point of X is non-isolated and that
G(x,z) > 0 for any z in X and for any non-empty open set w in X, the
G-capacity of o is positive. Then G(z,y) > 0 in X x X.

We remark that M. Kishi first proved the above equivalence for a
strictly positive function-kernel (cf. [3]).

2. Preliminaries

Let X be a locally compact Hausdorff space and 4 denote the dia-
gonal set of the product space X X X. A function G defined everywhere
in X x X is called a function-kernel if G is non-negative and Borel
measurable ([2]). The function-kernel G on X, defined by Gz, y) =
G(y,x) for any (x,y) in X x X, is called the adjoint kernel of G. For
a positive Radon measure g in X, the potential Gy and the adjoint
potential Gy of x are defined by

Gux) = f G(@,»duy) and Gux) = jé(x,y)dp(y).

These are Borel functions on X and 0 < Gu(x) £ + o0, 0 Gy(x) < 4o
in X. The G-energy of yx is defined by JGydp. Evidently the G-energy
of p is equal to the G-energy of e

We denote by M, the family of all positive Radon measures in X
with compact support and by E, = E(G) the subfamily of M, constituted
by positive Radon measures with finite G-energy. We have evidently
E(®) = E(@.

For a compact set K in X, we set

capg (K) = sup{p(K); rely,Sp C K,jG;zdy gfd/z} ’

where Sy denotes the support of p. For a subset A of X, we denote
by capg (A) the quantity sup {caps (K); K: compact C A}, and we call it
the G-capacity of AV. Evidently capg (A) = capy (A). For a subset A
of X, capg (4) = 0 if and only if {#eE,; Sy C A} = {0}. We say that a
property holds G-p.p.p. on a subset A of X if cap,; (B) = 0, where B is
the set of points in A where the property fails to hold.

Let us define the potential theoretical principles for a function-kernel
G on X.

Y This is usually called the inner G-capacity of A.
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(I) G satisfies the restrained domination prineciple if, for p,v in Ej,
Gulr) < Gu(x) G-p.p.p. in X whenever Gu(x) < Gu(x) G-p.p.p. on Sp.

ProOPOSITION 1 ([2]). Let G be a strictly positive function-kernel on
X. Then G satisfies the restrained domination principle if and only if G
satisfies it.

(II) G satisfies the domination principle if, for g in E, and v in
M,, an inequality Gu(x) < Gu(x) on Sy implies the same inequality in the
whole space.

ProprosITION 2. If G satisfies the domination principle, then G
satisfies the restrained domination principle.

In fact, if for p,v in E,, Gu(x) £ Guv(x) G-p.p.p. on Sp, then there
exists an increasing sequence (K,)z., of compact sets contained in Sp
such that x(CK,) | 0 with n 1 +o and Gu(x) < Gu(x) on K,. Then, by
the domination principle for G, Gu,(x) < Gu(x) everywhere in X, where
tn 18 the restriction of g to K,. Letting n1 4 oo, we have Gu(x) < Gu(z)
in X.

(III) G satisfies the balayage principle if, for a given compact set
K in X and a given x in M,, there exists a positive Radon measure p/
in M, supported by K such that

GY(x) < Gu(x) onX and GY(x) = Gu(x) G-p.p.p. onK.
This measure p/ is called a G-balayaged measure of pz on K.

PRrOPOSITION 3. If G satisfies the balayage principle, then G satisfies
the domination principle.

This can be proved in the same way as in [3].

(IV) @G satisfies the complete maximum principle if for xin K, and
v in M, an inequality Gu(x) < Gv(x) + 1 on Sy implies the same inequality
in the whole space.

It is evident that the complete maximum principle for G implies the
domination principle for G.

(V) G satisfies the classical maximum principle if for g in M,, an
inequality Gu(x) <1 on Sy implies the same inequality on X.

(IV) @ satisfies the continuity principle if for a x in M,, the finite
continuity of the restriction of Gu to Sp implies that Gy is finite con-
tinuous in the whole space.
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When we discuss the continuity principle, it is natural to assume
that a function-kernel is lower semi-continuous or continuous in the
extended sense. A function-kernel G on X is said to be lower semi-
continuous if G is a lower semi-continuous function in X X X. G is
called a continuous function-kernel on X if G is continuous in the ex-
tended sense in X X X and G(z,y) < 4+ oo for any (z,y) in X X X — 4.
The following proposition is well-known and can be proved by the same
way as in the classical case (i.e., the continuity principle for the Newton
kernel).

PROPOSITION 4. If a continuous function-kernel G on X satisfies the
domination principle or the classical maximum principle, then G satisfies
the continuity principle.

3. The positivity of a continuous function-kernel
and the continuity principle

Throughout this section, G is a continuous function-kernel on X.
We say that G satisfies the condition (%) if:

(%) For any non-empty open set o in X, cap; (w) >0 .

Remark. The condition (%) is very natural in the potential theory.
Let us observe it for a continuous composition kernel on a locally com-
pact abelian group.

Let G(z,y) = k(x — v) be a continuous composition kernel on a locally
compact abelian group X, where k& is continuous in the extended sense
and finite outside the origin. Suppose that G satisfies the domination
principle. Then G satisfies the condition (%) if and only if k is &-sum-
mable in a certain neighborhood of 0, where & is a Haar measure on X.

If k£ is &-summable in a certain neighborhood of 0, then for any
finite continuous function f in X with compact support, the convolution
k+f is defined in X and finite continuous. Therefore we obtain that
the “if” part is valid. We shall show that the “only if” part is wvalid.
By the domination principle for G,k is identically equal to 0 if k(0) = 0,
and hence we may assume k(0) > 0. The condition (x) implies E, + {0}.
We can find a 2 (= 0) in E, supported in C{0} N {xe X; k(x) > 0}. We
may assume that G2 is bounded on Si. By virtue of the domination
principle for G, there exists a constant ¢ > 0 such that Gi(x) < ck(x) on
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X, and hence G2 is locally bounded on X. Therefore, for any finite
continuous function f in X with compact support,

too > j Ga(w) | ()] de@) = j @) (e | fD(@)dE)

where 1 is the measure defined by A(e) = A(—e) for any Borel set e.
Consequently k is locally &summable.

Let us consider our continuous function-kernel on X. OGur first
theorem is the following

THEOREM 1. Let G be a continuous juntion-kernel on X satisfying
the domination principle and the condition (x). Assume that G >0 on
4 and every point in X is not isolated. Then G(x,y) >0 on X X X.

Proof. Suppose that there exists a point (x,¥,) in X X X where
G vanishes. Then (2,,y,) e X X X — 4. Put g(y) = G(x,,y). Then g is
defined in X and continuous in the extended sense. Every point in X
being not-isolated, we can find ¥, in the support of ¢ satisfying ¥, # =,
and g(y) = 0. By G,,v) > 0, there exists an open neighborhood V of
¥, such that G(z,y) > 0in VX V. Setwo=V N{yeX; gy > 0}. Then
w # 0§, and there exists a positive Radon measure 1 (+#0) contained in
E, and supported in o. By virtue of the Lusin theorem and the con-
tinuity principle for G (c¢f. Proposition 4), we may assume that G is
finite continuous in X. Then we can find a positive constant e such that
Gi(z) £ aGe, (xv) on S, where ¢, is the unit measure at y;, because
Ge,,(x) > 0 on SA. By the domination principle for G, we have Gi(x)
< aGe, () on X. Hence

0 = aGlay ) = aGe, (1) = GA(x) = Sg(y)dzw) >0,

This is a contradiction. Consequently G(x,y) > 0 in X x X. This com-
pletes the proof.

We discuss the continuity principle for a continuous function-kernel
on X. For a closed subset X’ of X, we denote by G’ the restriction of
G to X’ x X’. Then G’ is evidently a continuous function-kernel on X’.

LEMMA 1. If G satisfies the domination principle, then G’ satisfies it.

This follows from the fact that for any positive Radon measure g
in X',Gu(x) = G'p(x) on X'.
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LEMMA 2. Suppose that G is strictly positive in X x X. If G
satisfies the restrained domination principle and the condition (x), then
G satisfies the continuity principle.

This lemma can be shown by the same manner as in the usual case.
Let us give the proof. Suppose that for a p in M,, the restriction of
Gy to Sp is finite continuous. It sufficies to show lim,_,, Gu(x) = Gu(x,)
for every boundary point z, of Sg.

If p({x,}) > 0, G(xy, %) <+ o0, because Gu(x,) <+co, and hence our
desired equality follows immediately from the finite continuity of G at
(xq, %)

Suppose p({x,})) = 0. By Gu(x,) <+ o, for a given positive number

e, there exists an open neighborhood V of z, such thatf G (z,, Ydp(y)
14
<e. The functionj G(z, y)du(y) of x being finite continuous as a func-
v

tion on Su N V, we can choose another open neighborhood W of x, which
satisfies W C V and

jw Gz, Y)dpy) < j Gz, Y)dpy) < j G(ao, Y)dp(y) +

for any = in Sy N W. Denote by g the restriction of ¢ to W. Then
Gy <2 on Sy/. We may assume V %= X. By the condition (x) and
G(x,y) >0 in X x X, there exists a v in E, such that Sy N V=0 and
Gy(z) > 1 on S¢/. By virtue of the restrained domination principle for
G and the continuity of Gy in CSy/, we have

G (%) = 2:Gu(x) in W.
On the other hand, G(p — p) is finite and continuous at x,, and hence

im Gu(@) < Gu(y) + 2:Gulay) .

T—xq

Gp being lower semi-continuous and ¢ being arbitrary, we have
lim,_,, Gu(x) = Gu(x,). This completes the proof.
By Proposition 1, we have the following

LEMMA 3. Under the same assumptions as in Lemma 2, G satisfies
the continuity principle.

THEOREM 2. Let G be a continuous function-kernel on X satisfying
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the condition (x). If G >0 on 4 and G satisfies the domination prin-
ciple, then G and G satisfy the continuity principle.

Proof. We denote by X’ the closed subset of X constituted by all
points which are not isolated and by G’ the restriction of G to X' x X'.
By Lemma 1, G’ is a continuous function-kernel on X’ satisfying the
domination principle. Evidently G’ satisfies the condition (x) and every
point of X’ is not isolated. Consequently ' satisfies the continuity
principle by Proposition 2 and Lemma 3. The continuity principle for
G is well-known, and we shall prove only the continuity principle for G.
Suppose that for pe M,, the restriction of Gy to Sy is finite continuous.
Denote by p the restriction of 4 to X’. Then, as a function on S/,
G'y/ is finite continuous, because G’y = Gp — G(p — /) on X’, and hence
G’y is finite continuous in X’. By Gy = G’y on X’ and the fact that
X — X’ is discrete, Gy is finite continuous on X. On the other hand,
S(p — 1) is discrete, and then G(p — p) is finite continuous on X, i.e.,
Gp is finite continuous on X. This completes the proof.

4. Remarks on Kishi’s theorem

Let us start the following theorem.

THEOREM 3. Let G be a continuous function-kernel on X. Assume
G(x,z) > 0 on 4. Then the following four statements are equivalent.

(1) G satisfies the domination principle.

@2 G satisfies the domination priciple.

B) G satisfies the balayage principle.

@ G satisfies the balayage principle.

Proof. By Proposition 3, we know (3)=(2) and (4) = (1). The
implication (2) = (4) is the dual form of (1) = (8). Therefore it suffices
to show the implication (1) = (8). Suppose that (1) is valid. Put 2 =
U {o: open, capg (w) = 0} and X' = X — Q. Let G’ the restriction of G
to X’ x X’. Then G’ is a continuous function-kernel on X’ satisfying
the domination principle and the condition (x). Therefore, by Theorem 2,
G’ satisfies the continuity principle. Let us remember the existence
theorem of Kishi ([4]).

PROPOSITION 5. Let G be a lower semi-continuous function-kernel
on o locally compact Hausdorff space Y. Assume that G(xz,x) > 0 for any
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zinY and é satisfies continuity principle. For a given compact set F
n Y and a given non-negative finite continuous function u on F, there
exists a positive Radon measure 2 in Y supported by F such that Gi(x)
> u(x) G-p.p.p. on F and Gi(x) < w(x) 2-a.e. on Y.

We continue our proof. Let K be a compact set in X and p be a
pogitive Radon measure in X with compact support. First we suppose
Sy N K=4¢. Let ¢/ be a positive Radon measure in X obtained in
Proposition 5 for the case of G = G/, F = K N X’ and u = Gg. We have
evidently Gp/(x) = G'¢/(x) on X’ and ¢/ ¢ E((®), and “G’-p.p.p. on K N X
is equal to “G-p.p.p. on K N X’”. By virtue of the domination principle
for G and the inequality G¢/(x) < Gu(x) p/-a.e. in X, we obtain, by the
usual way, the inequality G¢/(z) < Gu(x) everywhere in X. Consequently
¢ is a G-balayaged measure of ¢ on K N X'. For an arbitrary v in
E(G) supported by K,v is supported by K N X’. In fact, if v(2) > 0,
there exists an open set o C £ such that capg (w) =0 and v(w) > 0,
which is a contradiction. Hence “G-p.p.p. on K” is equivalent to “G-
p.p.p. on K N X, Therefore p/ is a G-balayaged measure of p on K.

We remark here that, to show immediately the existence of a G-
balayaged measure of ¢ on K in the case of Sy N K = @, it is necessary
that G satisfies the continuity principle (cf. [3]). But, by the above
discussion, we obtain that G satisfies the domination principle. In fact,
suppose that for a v in E,(G) and a 1 in M,, Gu(z) < Gi(x) on Sy. For
an arbitrary y in CS», there exists a G-balayaged measure ¢, of ¢, on
Sy, and hence we have

Goly) = fGey(x)du(x) = IGe;(x)dy(x) = J Gu(a)de ()

< f Ga()de(z) = j Ge(x)dA(z) < JGey(x)dz(x) = G2) ,

ie., Gv < G2 on X. Consequently G satisfies the domination principle,
and hence G satisfies the continuity principle (cf. Proposition 4). In
the same way as in [3], we obtain that G satisfies the balayage principle.
This completes the proof.

By the present theorem and Proposition 4, we have the following

COROLLARY. Let G be a continuous function-kernel on X satisfying
G > 0on 4. If G satisfies the domination principle, then G and G satisfy
the continuity principle.
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M. Kishi discussed other potential theoretical properties for G im-
plied by the domination principle for G under the condition that @
satisfies the continuity principle (ef. [3], [4], & c.). By the above corollary,
in these cases, we can omit the continuity principle for G. In particular,
the following theorem is fundamental.

THEOREM 4. Let G be a continuous function-kernel on X satisfying
G>0 on 4. Then G satisfies the complete maximum principle if and
only if G satisfies the domination principle and the classical maximum
principle.
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