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STOCHASTIC INTEGRALS IN ABSTRUCT WIENER
SPACE II: REGULARITY PROPERTIES

HUI-HSIUNG KUO*

Introduction

This paper continues the study of stochastic integrals in abstract
Wiener space previously given in [14]. We will present, among other
things, the detailed discussion and proofs of the results announced in
[16]. Let H C B be an abstract Wiener space. Consider the following
stochastic integral equation in H C B,

(1) Xt = + j:A(s, X(s)AW(s) + f :a(s, X(s))ds ,

where W(t) is a Wiener process in B. TUnder certain assumptions on A
and ¢ we showed in [14] that (1) has a unique non-anticipating continuous
solution and that this solution is a Markov process. If A and ¢ are
differentiable in the second variable we can differentiate the above equa-
tion “formally” with respect to the starting point x to obtain the formal
operator-valued stochastic integral equation

(2) Y® =1+ f:Axs, X(s)Y(s)dW(s) + f;az(s, X($)Y(s)ds

where A, and ¢, are derivatives of A and ¢ in the second variable, re-
spectively. (2) is a linear integral equation and obviously has a unique
solution which qualifies to be called the derivative of X(f) in some sense.
If A and ¢ are furthermore twice differentiable we can differentiate (2)
formally in the same manner to obtain another stochastic integral equa-
tion whose solution is the second derivative of X(¢). Thus roughly speak-
ing, the solution X(¢) of (1), regarded as a function of its starting point,
is as smooth as A and o.

Let f be a real-valued continuous function in B. Let 6(x) =
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E. [f(X(®)]. If r is differentiable then formally by the “chain rule” we
have ¢'(x) = E [Y®)*(f'(X(t)))], where Y(t) is the solution of (2) and *
denotes the adjoint of operators of H. If f is twice differentiable then
so is 6 and a formal expression for 6/(x) can be written by using also
the second derivative of X(f). Thus if A and ¢ are C~-functions then 4
is as smooth as f. Furthermore, if f”(x) is a Hilbert-Schmidt operator
then 6”(x) is also a Hilbert-Schmidt operator.

The above approach of discussing the regularity properties of X(%)
and 0(x) was first introduced by Gikhman [3;4]. It was carried over to
infinite dimensional Hilbert spaces by Dalec’kii [1;2]. See also[18; 23].
We generalize it to Banach spaces (§2) and, furthermore, study the
related operator-valued stochastic integrals and prove the corresponding
versions of Ito’s formula and Girsanov-Skorokhod-McKean’s formula (§ 1).
In case A and ¢ are time-independent we show in the end of the paper
that X(f) generates a semi-group on the Banach space of bounded con-
tinuous functions on B vanishing at infinity. The proof is due to K. Ito.

Recently, Kannan and Bharucha-Reid [10; 11] have defined several
operator-valued stochastic integrals and proved some generalizations of
Ito’s formula. However, there is no apparent relation between their
work and ours.

This paper is closely related to Piech’s. In a series of papers [19;
20; 21; 22] she studies the corresponding parabolic equation of (1) with
o =0 and A satisfying stronger assumptions. In particular, 4 is non-
degenerate. She constructs a fundamental solution {q,(s,dy)} which is

related to the process X(¢) by L T aq.(z, dy) = ELf(X(#)] for bounded

Lip-1 functions f [17]. Her conclusions about the regularity properties
of the function 6(x) = E,[f(X(t))] are stronger than ours in this parti-
cular case.

Notation
1. F expectation
2. HCB abstract Wiener space
3. B*CHCB (through identifications)
4. || H-norm (see 7)
5 -1 B-norm (see 8)
6. L"(X;Y) continuous n-linear maps from X X X X .- X X into Y
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norm of L*(H; R)

norm of L*(B; R)

Hilbert-Schmidt operators of H (see 12)

norm, inner product of L,'(H; H). (see 13)
T(@)=T@,-,---,-). Te LNX;R),T e L(X;L"%X;R))
(cf. 33).

Hilbert-Schmidt type n-linear forms of H.

norm, inner product of L%,(H ; R)
So;T,SeL™X;R), Te L(X;X);So;TeL™X; R).
(SosT(@yy vy @ygy ey @) = S@,y, + o, T2y -+ Tp)
norm of L(X; X).

Wiener process in B.

o-field generated by {W(s); s < t}

non-anticipating stochastic processes & with state
space L%,(H ; R) such that J‘TE €@ dt < oo for each
finite z. (see 20) '

non-anticipating stochastic processes & with state
space X such that rEIS(t) [% dt < oo for each finite <.
(ef. 27) '
trace-class type bilinear form from s X 5 into & .
trace of Se ¥ (#; H).
a) TeL*H;R), Se(LYH; R); L""'(H; R))
SaTeL™H; R).
((SaT)” =8.T)
¢) Sel™H;R), TeL(L>H;R); R); SaTeH.
(S aT, by = TEM)).
trace class operators of H.
diffusion process starting at z.
n-smooth functions in H-directions.
square integrable random variables taking values in
D. (cf. 20)
MS-H-derivative of a random variable ¢ at x.
MS-n-smooth random variables in H-directions.
MS-H-derivative of a diffusion process Z.
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31. ~ SeL™H;R), SeL*VH;H)

(Shyy s ha ), W)Y = Sy by, - -+, B )
32. : TelXH;R), SeLH;R);S:TeL"(H; R).

(S: T(hyy gy =y hny ) = Ty, SRy + -+, 1), ).
33. v SeL™H;R), Se L(H; L"'(H; R))

Sh) = SC-, -, -+, k). (cf. 11)

1. Operator-Valued Stochastic Integrals

Let H C B be an abstract Wiener space. |-| and | -| denote the H-
norm and B-norm, respectively. We will regard B*c H* = HC B in
the natural way. As in [14] we assume that there is a sequence @, of
finite dimensional projections such that (i) Q.(B) C B* and (ii) Q, con-
verges strongly to the identity both in B and in H. Furthermore, we
will assume that there exists an orthonormal basis {e,} of H such that
S illexlf < co. This additional assumption is satisfied by all of the
presently known abstract Wiener spaces.

Notation:

(i) L™X;Y)=the Banach space of all continuous n-linear maps from
X" into Y, where X and Y are Banach spaces. L' will be written as L.
(ii) L*'(X; X*) = L"X; R)
(iii) ||-|| and |-| denote the norms of L*(B; R) and L"(H ; R), respectively.
Clearly L*(B; R) C L™(H,R) and |-| is dominated by | -|| with some con-
stant depending on n.
(iv) L(H; H) (=L,(H; R)) denotes the Hilbert space of all Hilbert-
Schmidt operators of H with H-S-norm |-}, = {, >*. It can be shown
easily that |S], < 25 lled®|IS|| for all Se L*B; R), where {¢;} is given
in the additional assumption. Thus we have LXB; R) C L},(H; R).
(v) Let TeL™X;R). Define TeL(X;L" ' (X;R) by T() = T(z, -, -,
cee ).

Now we want to define inductively a sequence of Hilbert spaces
L (H; R), n>1, with L, (H;R)=H by convention and L},(H ; R) given
above.

DEFINITION 1. Let TeL™(H; R), n > 3. T is said to be of Hilbert-
Schmidt type if (i) T(H) c Lz;'(H ; R) and (ii) T is a Hilbert-Schmidt op-
erator from H into L% '(H ; R).
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Let L%,(H; R) denote the space of all Hilbert-Schmidt type n-linear
forms of H. It is a Hilbert space with the inner product {S, T, = the
Hilbert-Schmidt inner product of S and T, S, TeLy(H; R). Clearly,

<S’ T>2 - Zil.iz,---,i,. S(vily Vigs ** vin)T(vils Vigs ** > vi,,) ’

where {v,} is any orthonormal basis of H. Let |S|, = <{S,S)y%. Note
that we have used the same notation |-|, and {, >, to denote the norm
and the inner product of L% (H; R) for all n > 2 since there is no con-
fusion. For example, the meaning of the following equality is clear,
when S, T e L% (H; R),

(3) {8, T, = §<§(vk>, Ty, -

LEmMMA 1.1. (a) |S|< S}, for all S in L%(H ; R).

) [T}, < cT| for all T in L™(B;R), where ¢ is a constant. Thus
we have the relation L"(B; R) C Ly(H; R) C LH; R), n > 1.

(¢) L™B; R) is dense in L% (H; R).

Proof. Let {v;} be an orthonormal basis of H. Then

Sy, by, « <5 By = 55i(h, v)SWy, Ry, - - -, BY)Y
<A, v {2 Sy by - - -, i)}
= |, [ Zj S('vj’ hoy « - oy hy)
SN TR w [ RaP 3 stg0eeesin Sagags =+ 5 V3)" s
whence (a) follows. To prove (b) and (c) let {Q,} and {e;} be given in
the beginning of this section. Then

TR = 2 i00ein T(@i,, €ip9 "7 61',,)2
< 2lintgeenin (TN €501 €51+ - -l €2, ID?
= Qe llelO™ I T -

Moreover, if UeLpy(H;R), let U; = U@Q,(-), Q,(-), -+, Q;(-)). Then
Uj c Ln(B M R) and IUj —_ U'Z — 0.

EXAMPLE 1. Let H = L*0,1) (real-valued). Suppose ¢ is a meas-
urable function on (0,1)® such that

ﬁf. : .f|¢(tl,t2, e P dbdt, - dt, < oo .
0 0

Define K: H* —» R by
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E(fo for - Fa) = j j . j :¢(t1, by - ED AV SAE) - Fult )bty -t

Then K is a Hilbert-Schmidt type n-form on H and |K|, = UT- .
1 0Jo
J.|¢(t1, ty - oy b dbydtye - -dt,,]w .

0

EXAMPLE 2. Let C consist of all real-valued continuous functions
on [0,1] which vanish at the origin. C is a Banach space with the sup
norm. Let C'={feC,; f is absolutely continuous and f’e L*0,1)}. C’

is a Hilbert space with the inner product <7, g> =f’ FOF®At. ¢ cC
0
is an abstract Wiener space [5; 6 pp. 388-390]. Define K: C'* — R by

E(fufor - f) = ﬁf{(t)fz(t)- - fu(Ddt .

Then K is a Hilbert-Schmidt n-form on C’ and it can be checked easily
that |K|,=n""?. However, K can not be extended to C». This example
shows that L"(C; R) & L3 (C’; R).

Notation. Let X be a Banach space. Let SeL™X;R) and
TeIL(X; X). Define the composition So;T of S and T in the j-th factor
by: So;T(@y, @y vy Tygy v vy &) = Sy, Xyy + -+, T2y, -+, 2,), 2,€ X, b =1,2,
«+-,n. Thus So;TeL™X;R). ||T|x denotes the operator norm of T.

LEMMA 1.2. (@) [|So;TI| <|IS|IIT s Se L*B; R), T e L(B; B).

®) [Se;T|<|SI|T|g, Se L™H; R), T € L(H ; H).

(¢) If SeLy(H; R) and TeL(H; H) then So;TeLy(H; R) and
[So; Tl <|SENT e § = 1,2, - -+, 7.

Proof. (a) and (b) are trivial. We use induction to prove (¢). The
cases with » =1, 2 are well-known. Assume we have the lemma for
n—1. Let SeLy(H;R)and Te L(H; H). Clearly (So;T)"(W=8"(")o;_,T
for = 2,8,.--n. Hence by induction So;Te L% (H;R), j=2,8,---,n.
Furthermore, let {v,} be an orthonormal basis of H,

[So;Th = 21(So; T) (W)}

k

= A\; IS™(Wp) o5 Th

< IS WBITIE by induction
k

= |SEIT | -
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It remains to show the conclusion for So,;7. But (So,T)” =S o T.
Thus (So,T)"(H)c S"(H) C L%;(H ; R). Moreover by definition |So,T|, =
the H-S-norm of (So,T)” = the H-S-norm of S”oT < the product of H-
S-norm of S™ and |T|y = |SL||T|z. Hence |So, T}, < [SL Tz

We have now various spaces L"(B;R), L% (H;R) and L*(H;R),
n > 1. BEach such space has three topologies, namely, the uniform
topology, strong topology and weak topology. However, it can be shown,
by a similar argument used in [9], that these topologies generate the
same Borel field. Thus we do not need to specify the Borel field cor-
responding to a particular topology when we talk about the measur-
ability of a random variable with values in those spaces.

Let W(t) be a Wiener process in B. Let .#; be the o-field generated
by {W(s); 0 < s < t}. A stochastic process {(¢,w), 0 < ¢t ann w € 2, is non-
anticipating if it is (¢, w)-jointly measurable and (¢, ) is #,-measurable
for each ¢. Let #[L% (H; R)] denote the space consisting of all non-
anticipating stochastic processes &£(¢) with state space L%, (H ; R) such that

I1E|E(t) Edt < oo for each 0 < 7 < co. We will define a linear operator
0

J from Z[L%(H; R)] into Z[L%'(H; R)], n > 3. (The cases =1, 2 have
been defined in [14], L,,(H ; R) = R by convention). In order to do this,
we prove first a lemma about the space Z[L*(B; R)] consisting of all
non-anticipating stochastic processes {(t) with state space L"(B; R) such

that IE' I1E() | dt < oo for each 0 < < co. By Lemma 1.1 Z[L*B;R)]
0

C Z[L%(H; R)]. Moreover, Z[L*(B; R)] is dense in Z[L% (H ; R)] in the
following sense:

LEMMA 1.3. If &e ZI[L%,(H; R)] then there exists a sequence &, ¢
LILMB ; R)] such that IE [€,() —E@)EdEt— 0 as n— oo for each 0 < < co.
0

LEMMA 1.4. If {e ZIL"(B; R)] then
(@) for s<t, E|Es)(W(t) — W(E)E = (t — E L)
®) for s < t<u<w, BEESWE — W(s), Ew)(Ww) — Wmw)>, = 0.

Remark. The special cases n = 1,2 appeared in [14].

Proof. Let {Q;} be the projections given in the beginning of this
section. Let

¢ = LW (E) — W)
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and
$r = |EEQW (@) — W(SHNE .

Since @, converges strongly to the identity in B, ¢, — ¢ almost surely.
Furthermore,

g < ¢ [|EENQUW () — WM by Lemma 1.1,
< L@ QW (@) — W)
L LIl | WE) — W) P
< constant [|E() P | W({E) — WP .

Recall that sup,||@:ls < co by the Uniform Boundedness Principle. But
gince ¢ is non-anticipating,

E(ZOFIW@E) — WEH = B IDEGWE) — WP
— B - 9 [z pdz) ,
where p, is Wiener measure with variance parameter 1. Therefore, by
the Lebesgue dominated conyergence theorem,
(4) E LW — WE)E = }B}}E 1E6E)QW() — W(s) .
Without loss of generality, we may assume that @, is the orthogonal

projection onto the span of {f;;7=1,2,..-,k}, where {f;} is an ortho-
normal basis of H. Then

€@ (@) — W)
= {&&QW @) — W), UNQW(E) — W(s))),

= f‘. (W(t) — W), fHW(E) — W(S), f)EE S, UD(Sfn)D: -

Jym=1

Recall that ¢ is non-anticipating and also that E(W(t) — W(s), f)(W(t) —
W), fu) = (t — 8)3;,. Hence we have

(5) EE)QuW®) — WE)E = ]Z'.: t — E LS IR -
It follows from (4) and (5) that

E L) — W(s)E = Zl (t — OE L Dh
= — EL)E by 3.

Clearly, (b) can be shown in the same way.
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Now, we are ready to define the linear operator J from Z[L% (H ; R)]
into Z[L%Y(H ; R)]. Let ¢ e ZIL™(B; R)] be simple with jumps at 0 < ¢,
<t,<...<t, Define, if t; <t<¢;,,0<7<Ek,

J () = 25 EGD(W (i) — W(E)
+ EtNW (@) — W(Ey)

Here t, =0 and t;,, = oo by convention. Clearly J,e Z[L""'(B; R)] C
ZLIL%Y(H ; R)]. Without loss of generality we may assume that ¢ = ¢;
for some j. Thus

J(t) = YU @)W (i) — WD) .
Hence
[J(D) =i§0 E@IW (i) — WD), EGIW(E,,) — W(ED)D, .

It follows immediately from Lemma 1.4 that
BTk = 235 (G — LIE|EED

6 t
(6) _ Ejolé(s) Bds .

Moreover, it is easy to see that
(7) EWJ.@®|A) = J(s) s<t.

From Lemma 1.3, (6), (7) and a standard argument in stochastic
integral, we have

PROPOSITION 1.1. There exists a linear operator J from L[L%,(H ; R)]
into ZLIL'(H ; R)], denoted by J(t) = fs(s)dW(s), such that

(a) J. has continuous sample paths(,)

(b) J. is o martingale,

(¢) prob {ossltlg |J:@®)], > 0} < 07 E |J (o),

@ EI(®) =0 and BJ®k=E |l ds.

DEFINITION 2. Let o# and & be two Hilbert spaces. A continuous
bilinear map S from s X # into 2 is said to be of trace-class-type if
(i) for each xe ., S, is a trace class operator of s, where S,(-, ) =
<S(+, +), x>, and (ii) the linear functional z — trace, S, is continuous.
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Notation. The definition implies obviously that there exists a unique
element, denoted by TRACE S, of o such that (TRACE S, 2>, = trace, S,
for all xe . F(#; A) will denote the vector space of all trace-class-
type bilinear maps from 27 into .

PROPOSITION 1.2. (a) If SeSL(# ;) and {¢,} is an orthonormal
basis of A then 3 5 , S(¢y, ¢) converges in A to TRACE S,

o) IfSeL(H;A)and T, Uel(H ;#),VeL(H ;) then So{T x Ul
and VoS belong to L (# ;A4 and TRACE VoS = V(TRACE S),

(o0 L¥B;LYB;R)) c ¥(H;Ly(H; R)).

Proof. (a) and (b) appeared in [15] in a similar form. (c) follows
from the fact that L*(B; R) = L(B; B*) C L,(H ; H), the Banach space of
all trace class operators of H with the trace class norm |.|. Actually,

IS} < nsnj I pda) for all SeL*B; R).
B

Notation. 1) If TeL*H;R) and Se L(L""'(H; R); L*"X(H; R)) we
define the composition Sa27T of S and T to be an element of L*(H ; R)
by (SaT) = 8SoT. Thus SaT(hy,hy---,hy) = ST by, - -+, hy).

2) If SeL*H;R) and TeIL(L*H; R); R) we define SA T to be an
element of H by: {SaT,hy=T&h), he H. Of course if Se L% (H;R)
and T'e L% '(H ; R) then define <SaT,h) =T, S(h)>,.

Remarks. (1) If TelLy(H;R) and L% (H; R) is invariant under
S then SaTe Ly (H; R).

(2) For the case n =2 in Notation 2, it is easy to see that Sa h =
S*h, he H.

In [14] we proved an infinite dimensional analogue of well-known
Ito’s formula [8]. This formula was used in [17] to show the relation
between the work of [14] and that of [19]. Later, in [15] we proved
another version of Ito’s formula and used it to construct diffusion pro-
cesses in a Riemann-Wiener manifold. We will give three versions of
Ito’s formula for stochastic processes with state space L™(H; R), n > 2.
Let Z[L"(H ; R)] consist of all non-anticipating processes {({) with state

space L"(H ; R) such that IE [CE)E dt<oo for each 0 < z < co.
0

THEOREM 1. (Ito’s formula). Let 6 be a twice Frechet differentiable
map from L*(H;R) into itself such that for all SeL™H;R) (1)
¢'(S)(L,(H ; R)) C Ly(H; R), (ii) 6"(SYL(H ; R) X Lg(H ; B) C L,(H ; R)
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and (i) 0/(S)e SLn(H; R); Ly(H; R). If OF) = 0, + j: E(s)dW(s) +
f‘c(s)ds, where & e ZILEH; R)] and (e ZIL"H; R)]. Then

mm&>=0@o+xﬁm@@»aawdww>+juw@w»@w»
+ £ TRACE 6”7(9(s)) o [E(s) X é(s)]} ds .

Proof. Kunita-Watanabe’s method [12; 13] can be employed here.
We will sketch the outline only. Let ¢ > 0 and {o;} be an increasing
sequence of stopping time converging to co such that o, = 0 and for ¢, <,
t < 0;,,, We have

ﬁwm@

<e/2
2

and

ﬂc(s)ds' <e/2.

Thus, whenever ¢; < s,t < 0;,,
|O@) — D(s)| < e

Because ¢ is twice Frechet differentiable, we have, whenever « and v are
near in L*(H ; R),

0@) —0y) =0 —y) + 30" — y,x — y) + o(x — yP) .

Time parameter will be also subscribed from now on. Let ¢; =t A a;.
Thus

oD@) — 6(D) = 255., [6(D.) — 0(D.,_,)]
= 2700, )P, — D.,_)
+ 3270709, )09, -9, ,0,— 0., )
+ 0(9D,, — @.,_.P) .

Putting 0, — @,,_, = j” §©)dW(s) + || ¢(s)ds into the above equation,
Tj—1 Tj—1

we see that to finish the proof it is sufficient to show the following two
equalities :
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(8) 0(®,) ( j ‘(AW (2)) = j 0(@,) 2 E)AW ()
(9) (0, ( f ‘(@AW (), j ‘sde(f))
— j "TRACE /(@) - [£(z) X &()ldc

(8) is easily checked, while (9) follows from the following observation:
If s<wu <o then

E0" (@) Ew)(W(w) — Ww)), Ew)(W(v) — W(w))
= (v — w)E TRACE 6"(0(s)) o [E(w) X &(w)] .

If s<u<ov <o < then
E0"( @) Ew(W®) — W), Eu)W®) — Ww)) = 0.

THEOREM 2 (Ito’s formula). Let I' be a twice differentiable map
from L% (H ; R) into itself such that I'"'(S) e #(Lg(H ; R) ; Ly(H ; R)).  If

o) = @y + f:E(S)dW(s) + ft_’.(s)ds, where Ee ZILH; R)] and (e ¥
0
[Li(H; R)]. Then

@) = I'@,) + j ‘or/(cb(s)) A &(s)AW(s)
+ j ‘F’(@(s))(C(S) + L TRACE I"(0(s)) o [&(8) X é(s)}} ds .

THEOREM 3 (Ito’s formula). Let f be a twice Frechet differentiable
t

function from L"(H ; R) (resp. Ly, (H ; R)) into R. If O(t) = @, + j E(s)dW(s)
0

+‘r<‘;(s)ds, where & and { are same as Theorem 1 (resp. Theorem 2).
0
Then

@) = F@) + j :(s<s) A FUD(s)), AW(S)
+ j:{ PO + b trace 77(D(s)) o [E(s) X ES)N)ds .

Remark. The proof of the above theorems goes in the same way as
that of Theorem 1. We point out that &(s) a f’(@(s)) (see Notation 2)
following Proposition 1.2) is a non-anticipating process with state space

H and the stochastic integral J-t(S(s) & f(D(s)), dW(s)) was defined in the
[1]
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previous paper [14]. Furthermore, f”(9(s))o[£(s) X &(s)] is a non-anti-
cipating process with state space L,(H ; H), the Banach space of all trace
class operators of H. To see this, note that if Se L*(L*(H; R); R) and
Te Ly (H; R) then So[T x T1is a trace class operator of H.

THEOREM 4 (Girsanov-Skorokhod-McKean’s formula). Suppose &ée¢ ¥
[L%,(H; R)] and ne ZIL¥H; R)] and with probability 1, {£@)(x), n(t);
0 <t < oo, xe H} forms a commutative family of operators of H(L*(H ; R)
= L(H; H)). Then the solution of

(10) Y =1+ [ ¥(9)o:66)*dW) + j Y(©) o n(s)ds

con be represented by
an ¥ = exp {[¢@aWe) + [ {19 — ITRACE re14) x &1} ds,

where r is the map from L(H;H) X L(H; H) into L(H; H) given by
(S, T) = SoT.

Remark. We will discuss stochastic integral equation below. More-
over, in [16] we define, for Se L(H; H) and Te L)(H; R), SaTe L}(H; R)
by S2aT) (x) = So(T(x)), xeH. It is easy to see that Sa T is nothing
but To,S*. Thus equation (10) is the same as the equation in §4 of [16].

Proof. As in one dimensional case, we can solve (10) directly by
using log function. Here, we prove this theorem in the reverse direc-
tion. Theorem 5 below implies that (10) has a unique solution. Thus
it suffices to check that (11) satisfies (10). Consider the function 6(z) =
exp(x), xe L(H; H). 6 is a C--function from L(H ; H) into itself satisfy-
ing the hypothesis of Theorem 1 and, in particular, if x and ¥ commute
we have #(x)y = e*y and 0"(x)(y,y) = e*y?. Let

o(t) = j :s(s)dW(s> + j ;{n(s) — L TRACE ro [£(s) X &@s)]}ds .

Then Y(¥) = exp {@(f)}. By stochastic differentiation given in Theorem 1,
we have

Ay () = 0'(@@) 2 E()AW () + 0(@(B)(5(D)
12) — 4 TRACE ko [&(t) X &B)Ddt
+ 3+ TRACE ¢”(®(t)) o [E(t) x E)]dt .
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Recall the notation 1) following Proposition 1.2. Let &, h,, h,e¢ H

0"(D(1)) & (&) Ay, sy k)
= @(DE)ED ) (hyy k)
= e®WE(t)(h)(hy, hy) by commutativity assumption,
= {Y@ER)(h)h,, hy)
= @) (h)hy, Y(E)*R5)
= Et)(hy, hyy YD *Ry)
= () s YO *(hyy by, 1) .

Therefore, we have

13) 0(D() & E(t) = &(t) o, Y()* .
Clearly,
ay P (D)D) = Y(B) on(t) .

Moreover, it can be checked easily that
(15) g@D) (ko [5() X §@B)] = 6"(@®)) - [£@) x £ .
Putting (13), (14), and (15) into (12), we obtain

dY (1) = &) o, Y(£)*dW() + Y(8) o p(t)dt ,

or
Y =1 + [£©) . Y©*AW) + [ Y() on()ds .

THEOREM 5. Let f and g be maps from [, o) X L"(H;R) X 2
(t, > 0,n>2) into L%(H; R) and L™(H ; R), respectively. Assume that
f and g satisfy the following conditions:

(@) for each SeL™(H;R), f(-,S,-) and g(-, S, -) are non-anticipat-
ing,

(b) there is a constant ¢ such that with probability 1,

[f@8) — f&, D + 9@, 8) — 9@, D < ¢S -TJ,
and
S + 92, 9] < el + |S)
for all telt, ) and S,T ¢ L"(H ; R).
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Let Ce Z[L™(H; R)] have continuous sample paths. Then the L"(H ; R)-
valued stochastic integral equation

Y(t) = £(t) + j £(s, Y()dW(s) + j 9(s, Y(s))ds

has a unique continuous solution Y ¢ L[L*(H ; R)]. Moreover, Y(t) is a
Markov process if ¢(t) is so.

Proof. We may assume that ¢, <t <, < co. Let % be the Banach
space of all non-anticipating processes Y(f) in L*(H ; R) with norm

N = U:EIY(t)IZ dt}m < oo,
Clearly, Z[L*(H; R)] C %. Define a map @ in %« by
D)D) = L(t) + j £(s, Y(s)AW(s) + j 9(s, Y(s)ds .

It is easy to see that @ is a map from ¥ into itself and &(Y) has
continuous sample paths. Furthermore,

(16) E10@)®) — 0@OF < | B|¥(©) — Z@Fds
to
where « is a constant depending only on ¢, ¢, and ¢,. (16) implies that
there exists an N such that whenever m > N,
NO™Y) — O™DI|| < Y — Z]|| -
The rest of the proof goes in the same way as Theorem 5.1 of [14].

THEOREM 6. In the hypothesis of Theorem 5 replace L™(H; R) by
Lyw(H; R) and L™(H; R)-norm |-| by L%(H; R)-norm |-, Then the
L7, (H ; R)-valued stochastic integral equation

720 = () + j £(s, Z()dW(s) + j (s, Z(s)ds

has a unique continuous solution Ze X[L%)H;R)l. Z({) is o Markov
process if L(t) is so.

Remark. Theorem 5 with n =2 and Theorem 6 with n > 3 will be
used in the next section. Proof of Theorem 6 is obvious.
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2. Regularity Properties

We assume that A and ¢ satisfy the following conditions:
(A —-1) A is of the form A(t,x) = C + K(t,x), where Ce L(B; B) and
K is a continuous map from [0, c0) X B into L, (H ; H),
(A — 2) There is a constant y such that for all { > 0 and 2,y € B,

[K(t, @) — K@ WE <7z —yl and [K(E )| <@+ (2],

(6 — 1) o is continuous map from [0, ©) X B into B such that for all
t >0 and z,ye B, |lot,2) — ot, V| < 7llz — || and [0, 2)| < 71 + (2.

Although the above conditions are weaker than those in Theorem 5.1
[14], it is easy to see that the proof there goes in the same way to
conclude that under (A — 1),(4A — 2) and (¢ — 1) the stochastic integral
equation (1) has a unique non-anticipating continuous solution. More-
over, this solution is a Markov process. In the sequel, we denote this
solution by X,(t), where x is the starting point.

DEFINITION 3 [7]. A map f from B into a Banach space D is said
to be Frechet differentiable at x in H-directions (briefly, H-differentiable
at x) if there exists a linear operator T ¢ L(H ; D) such that | f(x + h) —
f@) —T)|p = o(h]), he H. T is easily checked to be unique and will
be denoted by f’(x), called the H-derivative of f at x. f is said to be
Cy if f'(x) exists for all x e B and jf’ is continuous from B into L(H ; D).
Inductively, we can define n-th H-differentiability and C%.

Notation. Let D be a Banach space. (D) will denote the Banach
space of square integrable random variables taking values in D. Note
that in Section 1 we used Z[D] to denote the space of all non-anticipat-

ing processes { such that JE' 1E@) | dt < oo for each 0 < 7 < oo.
0

DEFINITION 4. A function £ from B into £(D) is said to be mean-
square differentiable at x in H-directions (briefly, MS-H-differentiable
at x) if there is 6 ¢ Z(L(H ; D)) such that F ||&(x + h) — &) — OA)|3 =
o(hP), he H. 6 is unique and will be denoted by 6&,, called the MS-H-
derivative of & at x. MS-H-differentiability and MS — C% (»n > 1) are
defined in an obvious way.

DEFINITION 5. A transformation Z from B into Z[D] is said to
be MS-H-differentiable if there is a transformation Y from B into
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ZIL(H ; D)] such that for each t > 0, Y(¢) is the MS-H-derivative of Z(%).
Y is unique and will be denoted by 6Z. Higher order MS-H-derivatives
will be denoted by 6°Z, n > 2.

ExXAMPLE 1. Let X(t) = x 4+ W(t), where W is Wiener process start-
ing at the origin. Then 6X,(f) = I for all « and "X (t) =0, n > 2.

ExXAMPLE 2. Consider the Langevin equation dU(t) = dW(t) — U(t)dt.
Its solution U(t) is called Uhlenbeck-Ornstein process. We have U (f)
= ¢~t] for all z,6"U,(t) = 0,n > 2.

ExaMprLE 3. Let KeL,(H;H), TeL(B;H) and z,¢H N ker T%,
where * denotes the adjoint of operators of H. Consider the equation
dX(t) = A + KdWwW() + f(TX (@) Px,dt, where f is a real-valued differen-
tiable function with compact support. We have X, (f) = %, where

Coe PIL(H; H) is given by Cu(f) = 2[ j:f'(l TX () P{T*X.(5), ->ds]xo.

Remark. Two transformations Z, and Z, from B into Z[D] have
the same MS-H-derivative if and only if there exists & € Z[D] such that
Z, — 7Z,=¢&. Moreover, if £ is an MS-H-differentiale function from B

into (D) then &,,, — &, = f&éu,h(h)dr, xeB and heH.
0

PROPOSITION 2.1. Suppose &e LILE'(H; R), »n > 0. Then E|J ()]}
_ 2j:E[|J6(s) B|&(s)Elds + 4f:E 1&(5) & Jo(S) P ds.

Remark. &aJ.e £[H]. See Notation 2) following Proposition 1.2.

Proof. Apply Ito’s formula in Theorem 3 to the function f(x) =
|xh, x e L% (H ; R) and to the process J.(t) = ré(s)dW(s), ge ZILYW(H; B
Note that f'(x) =4|z}<x, >, and f"(x) :04[90];(-, O+ &z, >z, D,
Hence we have

UL = I:(S(S) & 7T L(s)), AW(s))
+1 j:trace FIT9)) o [E() X &()1ds
After taking expectation, we get

an BT = %J:E trace f"(J () o [E(s) X &)1ds .
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Let {e;} be an orthonormal basis of H, then

trace |J ()t <&(s), &(9)),
(18) = > 1J:(9)E E(s)ey, E(s)e;>,
= |J(DEIEG)E,

and
trace {J.(8), E(8)>,{J:(8), E(5)D,
19 = 315 {J(9), (e,
= 21 <6(8) aJ(9), €;)*
= &) aJ (] .

Combining (17), (18), and (19), we obtain the conclusion.
PROPOSITION 2.2.  Suppose & e Z[L%(H; R)], n > 0. Then E|J ()]
< 36t J'LE |&(8) [} ds.
0

Proof. First note that from the previous proposition E|J.(f)]; is an
increasing function of ¢. Hence

E[J )k 6Bl < {E [T () B} E |§(s) B}
<AB|T O RE |§S) LY

Now, recall that for Se L2(H; R) and Te L% (H; R), SaT is an element
in H defined by <SaT,k> =<T,8(h)>. Thus we have |SaT|<|T}|Sl,.
So,

E|&(s) a J.()F < EIESE|T(s)E]
< {E|J.OLE &1 .

Therefore, by the previous proposition
t
BTk < 6 |J.(0) jD{E |&(s) Ly eds
13 1/2
< 6E @t Bletd]
0
and
E|J®) < 36t jE &)k ds .
0

Notation. 1) Let SeL"(H;R). SeLr(H;H) is defined by <(S(h,,
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ey b )y B> =S, hy by, -+ -, hy_)). Note that for n=2,S =S, while
S*,

2) Let TeL*H;R) and SeL*H;R). Define S: TeL**'(H;R) by
St Ty By« + s hony hay) = Ty, Shyy ++ -, ha), hayy). Note that if Te L,
(H;R) and SeLj(H;R) then S:TeLyi'(H;R) and |S: T|, < |[S||T).
But for n = 2, |S: T}, < |S]|T}..

hz"
S =

Remark. 1f TeIXH;R), SeL¥H;R) and T(h) commutes with S
for all he H. Then S:T = To,S.

THEOREM 7. Assume A and o satisfy (A — 1), (A —2), (¢ — 1) and
the following conditions:
(A—-38 K@, x is C4 in =z wvariable with K'(t, x) e L},(H; R) and
K'(t,x)e L{,(H; R). K'(-,-) and K"(-,:) are bounded continuous maps
from [0,7) X B into L%,(H; R) and L},(H ; R), respectively, for each <.
(A—4) forall t and z, K'(t,x) e L}, (H; R) and K"(t,x) € L}, (H; R) are
symmetric in the first two components,
(¢ —2) o,x) ir C% in x variable with o'(t,x) e L(H; H) and ¢"(t,x) e
Ly(H;R). d(-,-) and ¢"(., ) are bounded continuous maps from [0, )
X B into L(H ; H) and L%,(H ; R) respectively, for each . Then the diffu-
sion process given by the solution of the stochastic integral equation

(20) X(t) = X(0) + J:A(s, X()dAW(s) + f:a(s, X(s))ds

18 twice MS-H-differentiable. The first derivative at x is given by the
solution of the operator-valued stochastic integral equation

@) Y& =1I+ ﬁns): K'(s, X,()dW(s) + j:a'(s, X,(3) o Y(s)ds .

The second derivative at x is given by the solution of the 3-form-valued
stochastic integral equation

@2 Z@®) = ¢ + f:Z(s): K'(s, Xo()dW(s) + j:Z(s) 030"(3, Xo(8))*ds ,
where
(t) = jK(s Xo(8)) 0, X (s)T*dW(s) + j:a"(s, Xo(3)) 03X o(8) X 5Xo(9)1ds -

Furthermore, 6X,e IL(H; H)] and "X, e LIL3,,(H; R)].
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Proof. We need to show that F | X,,.(t) — X () — Y@OLR|? = o(hP),
he H. Butitis easy to see that X, ,(t) — X (¢) is in H. Thus we will
show below a stronger statement, namely, F|X,,,() — X (f) — YOI} =
o(hP), heH. Assume 0 <t <7 Let ¥,(t) = X;,2(t) — X,(t). Then

23) a®) = h + [£@EATE) + |G s ,

where £,(s) and {,(s) are given by

@) & = [ A6, X + s = [ K6, Xul6) + ea@)ie
25) 6u(s) = [[0/(5, Xus) + eva(Dds .

On the other hand,

26)  YOh=h+ [ K XNTGNAWE + [ o/, X(NT@Ms .

Here we have used the condition (4 — 4) to bring » into the integral
sign.
Now, it can be shown with some computation that

E [£4(8)(rn(8)) — K'(s, Xo(N(Y (9D f;

27

< GE |y (8) — YR 4+ E( V()| Y(SRP) ,
and
28) E8(8)(ra(8)) — o'(5, X,(sN(Y (8)R)

< E [Yu(s) — YORE + e,E( ()P | Y (ORP) ,

where ¢, and ¢, are constants independent of s and ¢{. From (23)-(28),
we obtain for all 0 <t < 7,

t
B — YOE < ea(h) + ¢, IOE In(s) — Y(SREds
where ¢, and ¢, are constahts independent of £, and
AW = [ Bl Y@t ds

Hence by Gronwall’s Lemma,

E | (t) — YORE < e A(h)er 0<t<r.
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But (k) < [RF f E [V (8) | Y ()| ds, hence we are remained to prove that
0

(29) lim LE' (S| Y ()| ds = 0 .

By a complicated computation using Proposition 2.2 and Gronwall’s
Lemma, we have

E |4, < constant |A]*, 0<t<e,
and
E||Y(®)|# < constant , 0<t<r.

Hence (29) is evident and, in particular, we have also that Y e Z[L(H ; H)].
We should not try to prove the second assertion. But we will show
that ¢ given in (22) is in Z[L},(H; R)]. ¢ is clearly non-anticipating.

IBHE < 2 \fK"(s, X () o, [6X ()" T*AW (s) ]
(30) . o

) ] f (s, X.(5) o [3X.(6) X 0X.(5)lds ] .
Apply Proposition 1.1 to get

E ' f :K”(s, X () 0, [0X,(8)T*AW(3)

2
2

= j "B K" (8, Xo(8) 0, [6X ()1, ds
31) (:
< J B 0X.(9)| [K"(5, X)) ds

<a JE 16X.(9) | ds

where a = SUDj<;<. se5 | K (S, ) < oo.
On the other hand,

E j 6/(8, X o(9)) 0 [6Xo(8) X 6X(8)]ds

2
2

<t I "B 1673, X4(8)) 0 [6X o(8) X 3X ()1} ds
(32) X
<t j B0"(s, Xo(s)E 0X(5) [l ds

< ot [ 10X.05) 1} ds
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where 8 = SUD¢c<.,zen|0”(8, Xo(8)f < co.

Note that we have used the property that if Se L, (H;R) and
TeL(H; H) then So[T X Tle L%, (H; R) and |So [T X T1l, <|SL||T|%. This
can be seen by observing that So[7 X T] = (So,T) o, T and then applying
Lemma 1.2. (30), (381) and (32) clearly show that I;E |[p(®)dt < co for each

0 << . Hence ¢ Z[L},(H; R).

THEOREM 8. Assume A and ¢ satisfy (A —1), (A —2), (e —1) and
the following conditions:
(A —3* K(t,x) is Cx (n > 2) in = variable with KY(t,x) e Li3*(H ; R),
7=1,2,.--.,n. K9 is bounded and continuous from [0,7) X B into
Li3*H; R) for each 0 <t < o0, j=1,2,---,7.
(A — H* for all t and x, KL, x) € Li3*(H ; R) is symmetric in the first
two components, j =1,2,.--,n.
(¢ —2)* o(t,x) s Cy (n>2) in = variable with ¢'(t,x) e L(H; H) and
o, x)e LiZ'(H; R), 1 =2,8,---,n. a and ¢ are bounded, continuous
from [0,7) X B into L(H ; H) and Li;'(H; R), respectively, for each 0 < z
< oo, 1=2,8,-+,Mm.

Then the diffusion process X(t) given by the solution of the equation

X(t) = X(0) + j :A(s, X(S)AW(s) + f :a(s,X(s»ds

18 n-th MS-H-differentiable. Furthermore, 6X ¢ Z[L(H ; H)] and 6’X e &
[Li(H R, =2,8, -, n.

THEOREM 9. Suppose A and o satisfy the conditions (A—1), (A—2),
(A—-3)* (A—D* (6—1 and (¢ —2)*. Let X(t) be the diffusion process
given by the diffusion coefficients A and o. If f is a Ch-function in B
with bounded derivatives, 0 < k < n, then the function 6(x) = E_[f(X())]
18 also C%. Its first two H-derivatives are

(33 0'(x) = E[oX (O*(f" (X1,
(B4 ") = E{0"X, ()" (f"(X() + f" (X))o [6X,(8) X 6X, (D]} .

Moreover, 0"(x) is a Hilbert-Schmidt operator of H for all xe B if f”
8 S0.

Notation. If SeL*(H;R) then S” e L(H; L"'(H; R)) is defined to
be S(h)=S(-, -, -+, -, h). Note that if Se L% (H; R) then S(h) e L%'(H ; R)
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and S is a Hilbert-Schmidt operator from H into L%'(H ; R).
Proof. Let V() = Xpua(®) — X,(t). Then
JX @) — S X (D)
= [P Xu®) + O, O3 .

Hence

Fan®) — FXD) — GXLOH X0, B
= [PE® + c®) — FE), ¥aD>de
+ (X)), @) — 6X (OB = al) + pR) .

Obviously, E [f(h)| = o(k]) since f’ is bounded and X(f) is MS-H-differ-
entiable.
On the other hand,

Ela)] < [ B1/X0 + ca®) ~ X0 [4®)] de
< (Bl [B 17X + @) — XDz
< el{[ B17X0 + o) — rxanrae

where ¢ is a constant independent of 2. Apply Lebesgue’s dominated
convergence theorem to conclude that E |a(h)| = o(h)). Therefore,

Ef(Xz(®) — f(X,(@) — X O (X)), k)| = o(k), heH.

This proves (33). (34) can be proved in a similar way. Furthermore,
09 (x2) (3< 7 < k) can be expressed by using the first j-th derivatives of
f and X(¢). Finally 6”(x) is a Hilbert-Schmidt operator by the remark
in Notation above and by the property: if Se L%, (H; R) and T e L(H ; H)
then So[T x T1eLi,(H;R). In fact, So[T X T] = (S0,T)-,T, hence
[So[T x T, < |SL|IT|E by Lemma 1.2

To finish this paper, we consider the homogeneous case, i.e. A and
¢ are independent of ¢. A and ¢ satisfy (4 —1), (A —2) and (6 —1). In
this case X(f) generates a semi-group {P,;t > 0}, P,f(x) = E [f(X(#)].
Let C, be the Banach space of bounded continuous functions on B vanish-
ing at infinity. C, has the sup norm. Assume the B-norm |-|? is C%
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such that its second H-derivative has bounded range in L,(H ; H).

THEOREM 10. The operators P,, t > 0, form a strongly continuous
contraction semi-group on C,.

Proof*. P,, t > 0 are obviously strongly continuous and contractive.
We need only to show that P,f e C, whenever feC,.

Let 6(x) = log (1 + ||z|P), x € B. @ is C% with |6'(x)| < C,|jall(X + ||z|P*
and (0”@, < C,A + ||z|)~!, where C, and C, are two constants inde-
pendent of x and || - |, denotes the trace class norm. Apply Ito’s formula
(Theorem 4.1 [14]) to the function ¢ and the process X(¢),

X(®) = + [AXEAWE + [o(X(s)ds
IX (D) = 0@) + [ AKX X, AW(E)
+ [ 10X @), oX (@) + § trace A*(X()0" (XN AXE)ds .
It follows easily that

E@(X(@®) — 6(x)* < constant = a ,

or

L+ IXOFT

# |los S0

Now, let feC, and g = P,f. Let ¢> 0 be given and N be large enough
that

If(x)| < e/2  whenever |z|| > N .

But
9@ = EyzaismS X)) + Eyxunsm S EXQ@) .
Hence,
l9(@)| < ¢/2 + | fl prob {| X(®)|| < N},
and

* We learn the proof from Professor K. Ito through a private conversation.
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prob {|X(®|| < N}

< log
1+ Ja|f 1+ lz|f

L+ [XOF _ 1+ ol
el < g SHISH, ei> N,

1+ XD 1+ ||x|l2}
1+ |z 1+ N

1+ =]\~ 14+ XOFT
1+ N ) x E[Iog 1+ 2] ]

Ltlap)? g e
1+ N T 207l

Thus for large ||«|| we have |g(x)| < ¢/2 + ¢/2 =e. Therefore g e C,.

< pr()b log }i“X_@K ﬂ}

= prob ilog

> log

< prob \log

< <log

if || is large .

<a (log

Appendix

It is a pleasure to thank Professor Loren Pitt for pointing out the
fact that P, t > 0, being strongly continuous (Theorem 10) is not obvi-
ous. We present a proof as follows.

LEMMA A.1 (Gronwall’s inequality). If h is a non-negative integrable
function in [0,al, a < co, satisfying

W) < o) + a [ Mds
[1]

where o« > 0 and g is integrable in [0,a]l. Then

13
) < 9@ + afe““‘“g(S)ds .
0
Proof. We can prove inductively that
't (n—1
M) < 9®) + « [ {5 et — 917/ g0)ds
+ aj‘h(s)[a(t — 9"/nlds .
0

The conclusion then follows from Lebesgue’s dominated covergence theo-
rem.

LEMMA A2, E, | X(®) — 2| < ct(X + ||z|P) for all 0 <t <1 and all
x € B, where ¢ is a constant independent of t and x.
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Proof. We use the letter ¢ to stand for any constant independent
of t and . Let 0 <t < 1.

X(t) = @ + f :A(X(s))dW(s) + j :a(X(s))ds
=2+ CW(®) + f:K(X(s))dW(s) + j :o(X(s))ds .
Hence

1X — [ < e{ICWIF + “ [ mCx@nawe) N + [ ['ox@nas “]

(36) " 2 s
< oficwaF + | I oK(X(s))dW(s)| + [loxniras) .

(Recall that || -|| is dominated by |- ).
Thus after taking expectation (36) becomes

X — alf < oft + [ BIREXE)Eds + [ B o(X(s) | ds]
< c{t te j:Ea + 1X(®) s + o j:E(l + 1X(s) nzms}

<cft+ [B1X@I ds]

IN

eft + ¢ [ BUX® — alf + |z]1ds]
< oftt + 2l + [(B1X6) — alf ds] .
Hence by Lemma A.1 we have
XM — ol < et(L + [a]f) + ¢ [e~2esl + |a]Pds
< et + |lzp) + cﬁe”“‘s’ct(l + ||z Dds

= ot(1 + llqu)[l +e ﬂew—wds]
< et + jz|P) .

Now let feC, be also uniformly continuous. A close examination of
the proof of Theorem 10 shows that given ¢ > 0 there exists N independ-
ent of £, 0<t<1

[Pof(x) < e/2 whenever ||z|| > N .
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We may as well assume that
[ f@)] < e/2 whenever ||z|| > N .
Thus we have for all 0 <t <1
37 [P f(x) — f(2)| < e whenever ||z|| > N .
On the other hand, let 6 > 0 be such that
|z —yll <o implies |f(®) — f(y)|<e/2.
Then for ||z| < N,
[P f(x) — f(@)| < B, | f(X(®) — f(x)]
= Eyx@y-zi<a | [(X(@®) — f(@)]
+ Eyxwy-aiz0 | SX®) — f(@)]
<¢/2 + 2| f |l prob {| X(?) — x| > J} .
But

prob {| X(t) — z|| > 6} < 07°E | X(®) — x|
< 57%ct(l + || x| by Lemma A.2
< §%t(l + N?) .

Therefore we can choose ¢, small enough such that whenever ¢ < ¢,
(38) [P f(@) — fx)|<e  for all |z < N.
Clearly (37) and (38) yield that

NPef — fllo < & whenever t < ¢, .

This establishes the strong continuity of P,, ¢ > 0.
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