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COMPLETELY OPERATOR-SELFDECOMPOSABLE

DISTRIBUTIONS AND OPERATOR-STABLE

DISTRIBUTIONS

KEN-ITI SATO AND MAKOTO YAMAZATO

§ 1. Introduction

Urbanik introduces in [16] and [17] the classes Lm and L^ of distribu-
tions on R1 and finds relations with stable distributions. Kumar-Schreiber
[6] and Thu [14] extend some of the results to distributions on Banach
spaces. Sato [7] gives alternative definitions of the classes Lm and L^ and
studies their properties on Rd. Earlier Sharpe [12] began investigation of
operator-stable distributions and, subsequently, Urbanik [15] considered
the operator version of the class L on Rd. Jurek [3] generalizes some of
Sato's results [7] to the classes associated with one-parameter groups of
linear operators in Banach spaces. Analogues of Urbanik's classes Lm

(or LJ) in the operator case are called multiply (or completely) operator-
selfdecomposable. They are studied in relation with processes of Ornstein-
Uhlenbeck type or with stochastic integrals based on processes with
homogeneous independent increments (Wolfe [18], [19], Jurek-Vervaat [5],
Jurek [2], [4], and Sato-Yamazato [9], [10]). The purpose of the present
paper is to continue the preceding papers, to give explicit characteriza-
tions of completely operator-selfdecomposable distributions and operator-
stable distributions on Rd, and to establish relations between the two
classes. For this purpose we explore the connection of the structures of
these classes with the Jordan decomposition of a basic operator Q.

Let 0>(Ra) be the class of probability distributions on Rd, and M+(Rd)
be the class of linear operators on Rd all of whose eigenvalues have
positive real parts. Let

tq = Σ (n]y\log t)nQn for t > 0 .
0
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For H C &(Rd) and Q e M+(Rd), let &Q(H) be the class of probability distri-

butions μ on Rd such that there are independent -Revalued random vari-

ables Xn9 an e Rd, and tn > 0 satisfying

( i ) the distribution of Xn belongs to H,

(ii) the distribution of t% ΣJ1=I^J ~~ an converges to μ as n-> oo,

(iii) for every ε > 0, m a x K K β Pflί&X",! > ε) -> 0 as ra -* oo.

Define

OL0(i?*, Q) = J ^ W O ) ,

OLm(J?d, Q) = ^(OL^R*, Q)) for TO = 1, 2, ,

Let OS(Rd, Q) be the class of probability distributions μ on i?ώ such that

there are independent identically distributed Xn, aneRd, and tn > 0 that

satisfy (ii). We denote OLm(Rd, Q), OL^ίi?^, Q) and OS(Rd, Q) shortly by

Lm(Q\ Lco(Q), and S(Q), respectively. Let /!>(£*) be the class of infinitely

divisible distributions on Rd. Let / be the identity operator. We use the

notation (Tμ)(E) = μ{T~\E)) for a linear operator Γ. The characteristic

function of μ is denoted by μ(z). For μ e ID(Rd) and t > 0, //* denotes

the distribution with characteristic function μ(zy. The delta distribution

at a point a is denoted by 5α. The following characterizations are known.

PROPOSITION 1.1 (Sato [7] for Q = /, Jurek [3] for general Q, see also

Sato-Yamazato [10]). Let 0 < m < oo. A distribution μ belongs to Lm(Q)

if and only if, for every te(O, 1), there exists μt in Lm_i(Q) such that

iϊβrβ w e understand L

PROPOSITION 1.2 (Sharpe [12] and Jurek [3]). A distribution μ belongs

to S(Q) if and only if μe ID(Rd) and there exists some a > 0 such that, for

every t > 0,

(1.2) μta - t?μ*δait)

with some a(t) e Rd.

By Proposition 1.1, a distribution in L0(Q) is called Q-selfdecomposable.

The property (1.2) in Proposition 1.2 is said as μ is operator-stable with

exponent a^Q. We call distributions in Lm(Q) m + 1 times Q-selfdecom-

posable, and call distributions in ZΌO(Q) completely Q-selfdeeomposable.
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If μ is in L^Q) for some Q e M+(Rd), then μ is called completely operator-

selfdecomposable. It is easy to see that

(1.3) ID ID L0(Q) 3 UQ) ID . . . ID L^Q) 3 S(Q) ,

and each of Lm(Q), 0 < m < oo, and L^Q) is closed under convolution,

convergence, and raising to the t-th power.

§2. Condition for complete operator-selfdecomposability

We use the following notations throughout: (x,y} is the Euclidean

inner product in Rd or the Hermitian inner product in Cd

9 \x\ denotes

<x, x)1/2, and &(Rd) is the class of Borel sets in Rd. The adjoint operator of

a linear operator T is denoted by T'. For a real symmetric (or Hermitian)

operator A, φj<z) stands for (Az, z), the quadratic (or Hermitian) form

associated with A. Further,

g(z9 x) = β*<* > - 1 - i(x, z)(l + Ixl2)"1 ,

h(s) =

Let QeM+(Rd). There are constants c, > 0 (1 <j < 4) such that

(2.1) c,uC2 \x\ < \uQx\ < c3u
ci \x\ for 0 < u < 1 ,

(2.2) C3-V1 \x\<\uQx\< cixuc* \x\ for u > 1 .

Denote by SQ the set of ξ e Rd such that \ξ\ = 1 and \uQξ\ > 1 for every

u > 1. Every x 9̂  0 in i?d is uniquely expressed as x = αρf, ? e SQ, u > 0.

An infinitely divisible distribution μ has the Levy representation (Γ,

A, v), that is,

(2.3) fi(z) = exp (i <Γ, z) - 2-1^(^) + J^^ g(z, x)v(dxή , « € R* ,

where Γ is in Rd, A is real symmetric nonnegative definite, and v is a

measure on Rd satisfying v({0}) = 0 and h(\x\)v(dx) < 00. The measure v

is the Levy measure of μ. The operator A is the Gaussian covariance

operator of μ. We call μ purely non-Gaussian if A = 0. If ϊ = 0 and

A = 0, then we call μ centered purely non-Gaussian. If Γ = 0 and i> = 0, then

μ is called centered Gaussian. The class of μ 6 ID(Rd) such that its Levy

measure v satisfies log |x| v(dx) < 00 is denoted by lD(Rd)l0^
J|a?|>l

The class of Q-selfdecomposable distributions on Rd is characterized
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by properties of A and v. In Sato-Yamazato [9] the following is called

the first representation (ϊ, A, λ, kξ(u)) of μ e L0(Q).

PROPOSITION 2.1. Let Q e M+(Rd). If μe L0(Q), then

(2.4) fi(z) = exp (i<r, z) - 2-ιφA{z) + £ λ(dξ) ^ g(z,

where T e Rd, A is nonnegative definite,

(2.5) <f>A(e~tQ'z) is nonincreasing in t > 0 for every zeRd ,

λ is the zero measure or a probability measure on SQ, kζ{u) is measurable

in ξ, nonnegative, right-continuous, nonincreasing in u and

(2.6) 0 < Γ h(\uQξ\)kξ{u)u~ιdu = c < oo
Jo

with c independent of ξ. These ϊ, A, and λ are uniquely determined by μ

and kξ(ύ) is uniquely determined by μ up to ξ of λ-measure zero. Con-

versely, given ϊ, A, λ, and kξ(u) with the above properties, one can find μ

in L0(Q) satisfying (2.4).

Remark. 2.1. In [9], the property (2.5) is expressed in another form.

Each of the following two conditions is equivalent to the condition (2.5):

(2.7) ΦA(Z) = φB(e~tQ'z)dt with some nonnegative definite B
Jo

(2.8) QA + AQ' is nonnegative definite .

In fact, (2.7) implies (2.5) since

The condition (2.5) implies (2.8) and (2.8) implies (2.7), because

Note that the integral in (2.7) is finite by virtue of (2.1).

Let us give a characterization of completely Q-selfdecomposable distri-

butions. This generalizes results of Urbanik [16], Sato [7] and Jurek [3].

THEOREM 2.1. Let QeM+(Rd). A measure μ belongs to L^iQ) if and

only if μeL0(Q) and A and kξ{u) in its first representation satisfy the fol-

lowing:
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(2.9) φ-A(β~tq'z) is completely monotone in t > 0 for every zeRd,

(2.10) kξ{eι) is completely monotone in — oo < t < oo for λ-almost every

ξeSQ.

Proof. If μ 6 LQ(Q), then we can find a unique μ0 e ID(Rd)log such that

Λoo

/?(2) = exp log μQ(e-tQ'z)dt.
Jo

The mapping ΨQ defined by ¥Qμ = μ0 is one-to-one and onto (Jurek [2] and

Sato-Yamazato [9]). Let (Γ, A, v) and (α, J5, />) be the Levy representations

of μ and μ0, respectively. Let (ΐ, A, λ, kξ(u)) be the first representation of

μ. Then we have

v{E) = f λ(dξ) Γ XE(uQξ)kξ(u)u~ιdu = f o{dx) Γ Xx(e'iQx)dt,
J-Sρ Jo JΛ<* JO

= - ί ^(df) ί" %,(μ*ξ)dkt(μ) for £ e Λ(Λ*),
J SQ JO

where %£ is the indicator function of E (Sato-Yamazato [9]). For 1 < m

< oo, it can be proved that μeLm(Q) if and only if ΨqμeL^^Q) (Jurek

[4] and Sato-Yamazato [10]).

Suppose that μ e L^Q). Then we can operate ¥Q on μ as many times

as we like. Thus we obtain

with some nonnegative definite Bm, hence (2.9). Suppose v Φ 0. Then

p Φ 0. Let (a, B, λ°, k\(u)) be the first representation of μ0. Then

p(E)=\ λ\dξ){"
J So JoJ SQ

Hence we have

(uλ) - kξ(u2) = b(ξ) fM2 k\(u)u-χdu for 0 < wt < w2 ,
J Ml

where

It follows that
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( - dldtχkξ(e<)) = &(£)*?(*') > 0 .

Hepeating this, we see that (2.10) holds.

Conversely, suppose that μ e L0(Q) satisfying the conditions (2.9) and

(2.10). Then φB(e~tQ'z) is also completely monotone. We define k]{u) and

Λ° by the above formulas. Then we see that μo(z) has the representation

(2.4) with α, B, λ°, and k°ξ(u) in place of Γ, A, λ, and kξ(u), and that k](eι)

is completely monotone in t. Hence μ0 e L0(Q), that is, μ e LX{Q), and,

moreover, B and k°ξ(u) satisfy the conditions (2.9) and (2.10). Repeating

this argument, we see μ e Lm(Q) for every m.

Remark 2.2. The argument above shows that if μ e L^Q) then φA{e~tQ'z)

is completely monotone not only in 0 < t < oo, but also in — co < t < oo.

§3. Gaussian completely operator-selfdecomposable distributions—

Complex characterization

We consider Gaussian distributions on Rd. Let Q e M+(Rd). Since

Xoo(Q) is closed under translation, we can restrict our attention to centered

Gaussian distributions. The structure of L«,(Q) heavily depends on the

Jordan decomposition of Q. So it is convenient to use the complex d-

dimensional space Cd. A linear operator on Rd and its unique extension

to Cd will be denoted by the same symbol. Thus Q and Qf both act on

Cd. Let {au , ap} be the set of distinct eigenvalues of Q. Then {au ,

ap} is the set of distinct eigenvalues of Q'. Since Q is real, Q and Q'

have the same set of eigenvalues. Let /(ζ) be the minimal polynomial of

Q (equivalently, of QO That is, / is the polynomial of the least degree

with real coefficients, satisfying f(Q) = 0, with coefficient 1 in the highest

term. Decompose it into linear factors

/(ζ) = (ζ - ctj»v (ζ - «,)»<*> ,

where n(ί)9 , n(p) are positive integers. Let

(3.1) Vj = Kernel (Q - a,J)»<'> in Cd for 1 < < p .

Then, denoting the direct sum by Θ, we have

(3.2) cd = v>e ••

Let Tj be the projector of Cd onto V$ in the decomposition (3.2). Namely,

x = Txx + + Tpx where 7 > e y, for 1 < j < p. Let
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(3.3) yj = Kernel (Q' - a}iγ^ in Cd for 1 < y < p .

Then

(3.4) c d = y ί θ ••• Θ V ; .

We see that (3.4) is the decomposition dual to (3.2). That is, Vj and Vk

are orthogonal for j Φ k. The adjoint operator Tj of Tj is the projector

of Cd to Vj in the decomposition (3.4). The following is a main result.

THEOREM 3.1. Let μ be a centered Gaussian distribution with covariance

operator A. Then, μ e L^Q) if and only if

(3.5) (Q - α,)AΓ; = 0 forl<j<p.

Remark 3.1. An alternative expression is that μ e L^Q) if and only if

(3.6) A(Qf - a^T'j = 0 for 1 < j < p ,

(3.7) Γ M Γ ; = 0 for j φ k .

We need three lemmas.

LEMMA 3.1. Lei 20 e Cd. If A is nonnegatίve definite and φA(zQ) = 0,.

then Az0 = 0.

Proof. For every w e Cd and real number £, we have

0 < ^(w + teo) = ΦA(W) + 2t Re <A2:0, w)

and hence Re <A 0̂, w} = 0. Also Im <A20, ^> = Re <A<ε0, iw} = 0. Hence-

<A 0̂, w} = 0 for every w eCd.

LEMMA 3.2. Lei # > 0 and a, b, c real, and let g(t) = e~at(a + bt -{-

ct). If g(t) is completely monotone in — oo < t < oo, then a > 0 and 6 =

c = 0.

Proo/. It follows from g > 0 that α > 0 and c > 0. Suppose that

c > 0. Let

gn(ί) = β"αί(α - (4c)-162 - na-2c + cf) , n = 0, 1, .

Since g(t) = eab/(2c)g0(t + (2c)"16), go(t) is completely monotone. We see that

{—dldt)gn.1{t) = ae~xgn{t — α"1). Hence, by induction, gn(£) is completely

monotone. This implies

a - (4c)"162 - na~2c > 0 for n = 0,1, ,
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which is absurd. It follows that c = 0. Hence 6 = 0.

LEMMA 3.3. Let a and β be distinct complex numbers with positive real

parts. Let a and b real and c be complex. Let

gζη(t) = aζζe~t(a+s) + 2~Re(cζηe~Ha+β)) + bηηe~Hβ+β) .

If, for every choice of ζ, ηe C, the function gzη(t) is completely monotone in

a neighborhood of 0, then a > 0, b > 0, and c = 0.

Proof. Nonnegativity of (—dldt)ngζv(O) means that the matrix

(a(a + a)n c(a + β)n\

is a nonnegative definite Hermitian. Hence a > 0, b > 0, and

ab(a + a)n(β + β)n - cc(a + ψ(a + β)n > 0 .

Let α = ocj + ia2 and β = βt + iβ2. Then

(a + fl(a + β) = (a, + ^O2 + (a2 - ^2)2 > 4 ^ = (a + ά)(β + Jβ) ,

since a ψ β. Hence we have |c|2 < knab with some k satisfying 0 < k < 1 .

Hence c == 0.

Proof of Theorem 3.1. Suppose that μ e L^Q). Let us prove (3.6). It

is enough to show that, for every positive integer n,

(3.8) (Q ; - a3)
nz, = 0 implies A(Q ; - α,)s0 = 0.

We prove this by induction in n. If n = 1, the assertion is trivial. Sup-

pose that (3.8) is true for n — 1 in place of n, and assume that (Qf — α^)"^

= 0. Then, A(Q' - α^)^ = 0 for £ > 2. Let us write (Qr - a3)
ez, = ̂  and

<*,,• = or. Since

(3.9) e-^'z, = β - ' ^ - ^ + 2-H2z2 + . + ((n - l)ir\- tY'ιzn^ ,

we have

Ae-tQ'z0 = e-ta(Az0 - tAz,) .

Let g(t) = φA(e~tQ'z0). We have

g(t) = e-«*+*>φA(zo - tei) = β-^β+β>(^(2θ - 2t Re (Az0, z,} + fφM))

Since g(t) is completely monotone in — oo < t < oo by Theorem 2.1 and

Remark 2.2, we obtain φA(zϊ) = 0 by Lemma 3.2. Hence A^ = 0 by Lemma
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3.1, which proves (3.8). Let us show the property (3.7). Let z0 e V'j9 w0 e

V'k, and j Φ k. Write a, = a, ak = β, (Q' - α ) ^ = ^, and (Q - fi)ew0 = w4.

We have As, = Aw, = 0 for ^ > 1 by (3.6). For ζ, 9 e C, let gζη(t) =

^(e" ί Q ' (ζ^ 0 + 37it>o)) Using the expression of e"ίQ'<ε0 and e~tQ'ιυ0 analogous

to (3.9), we get

rt{s+β)ζτ](Az0, w0}) + e~HβA

Since gζv(t) is completely monotone, we get (Az0, w0} = 0 by Lemma 3.3.

Thus we have (3.7). Now we have also the property (3.5). In fact, we see

that, for any z and w,

<(Q - ocJAT'jZ, w) = Σ (T'jZ, A(Q' - aj)T'kw) = 0 ,

using (3.6) for k = j and (3.7) for k Φ j .

Conversely, suppose that A satisfies (3.5). Then we have (3.6) since

ΦA((Q' - «j)T'jz) = <(Q - ccί)A{Qf - aj)T'jZ, T)z) = 0, and we have (3.7)

since (3.5) implies that AT) has range in Vs. By the Jordan decompo-

sition of Q\ there are vectors zjt e V) (1 < I < £3) and nonnegative integers

^0) 4) such that (Q7 — aj)
nUiί)+1zji — 0 and that the system {%π =

<Q; - « i ) n ^ : 1 < j < P, 1<£<£J, 0<n< n(j, £)} is a basis of Cd. For

any given z e Cd, we have

* = Σ c^n2;^n for some cm e C

and, hence,

where αr(;) = a5. Therefore, by (3.6) and (3.7),

which is completely monotone. It follows from Theorem 2.1 that μ e L^Q).

The proof of Theorem 3.1 is complete.

§4. Gaussian completely operator-selfdecomposable distributions—

Real characterization

We rewrite the characterization in Theorem 3.1 in a real form and,

then, give a decomposition theorem of Gaussian distributions in L^ (Q).
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Arrange the distinct eigenvalues of Q in such a way that au , aq are

real and aq+1, , av are not real, a} = aj+r (q + l<j<q + r), and q +

2r = p. Here q or r may possibly be zero. Let βs and Γj be the real and

the imaginary part of aj9 respectively. The minimal polynomial of Q' is

(4.1) /(O = /i(C)n(1) Λ+r(O ( β + r ) ,

where /,(© = ζ - a3 = ζ - β3 for 1 < ; < q and /,(ζ) = (ζ - &)2 + ϊ) for

<7 + 1 < j < q + r. Let

(4.2) W'j = Kernel fj(QTU) in Rd for 1 <j < q + r .

Then

(4.3) Rd= W ί θ - . - Θ WJ+ r.

As in the proof of Theorem 3.1, let zn e V'j (1 <j < p , 1 < ̂  < ^,) and

τι(Λ ^) > 0 be such that (Qr - a^^^z^ = 0 and the system

{zm = (Q7 - s,)»*,,: 1 < < p, 1 < ̂  < £j9 0 < τι < n(j, £)}

is a basis of Cd. For 1 < j < g, we can choose zje real so that \zjίn\ 1 <

•ί < tjy 0 < λi < n(j, £)} is a basis of WJ. For g + 1 < < q + r, we have

£j = £j+r and n(j, £) = n(j + r, £) and we can choose zu and ^ + r > / in such

a way that 2^ = zj+rJ. Let f<//n and ^ / n be the real and the imaginary

part of zJin, respectively, for q + 1 < j < q + r. The system {ξJin, ηjen: 1 <

& < £j, 0 < n < n(j, £)} is then a basis of Wj. The following theorem gives

martrix representation of A when these bases are used.

THEOREM 4.1. Let μ be centered Gaussian with coυariance operator A.

Then μ e L^Q) if and only if the following four conditions are satisfied:

(4.4) φA(zj£n) = 0 for 1 < j < q, 1 < i < £j9 n > 1;

(4.5) φA(ξm) = φA(ηj£n) = 0 for q+l<j<q+r,l<£<£jy n>l;

0, ηjm0) and (Aξjm ηjm0} = —(Aηji0, ξjm0}
( β)

for q + 1 < j < q + r, 1 < £ < £j9 1 < m < £s (£ = m inclusive);

(4.7) (Az,w) - 0 forzeW'j9weWί,l£j£q+r,l£k£q+rJΦk.

Proof. Suppose that μeL^Q). Then (4.4) and (4.7) follow directly

from (3.6) and (3.7). The condition (4.5) also follows from (3.6) since ξjen

and ηJin are linear combinations of zjin and zJ+rtitU. Since ξji0 + iηJi0 = zJi0

e V'j and ξjm0 - iηjm0 = zjmQ e V'j+r, we get (4.6) from (3.7), rewriting

\AZj£Q, Zjrao) = 0.
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Conversely, suppose that the conditions (4.4)-(4.7) are satisfied. Then
(3.6) follows from (4.4) and (4.5), because (3.6) is equivalent to that φA(zjen}
= 0 for 1 < j < p, 1 < £ < £j, n>l. For 1 < j < q, the system

{zjίn: 1 < £ < £j, 0 < n < n(j, £)}

is a basis of Vj in Cd. For q + 1 < j < q + r, the system {ξJtn, ηjin: 1 <
£ < £j, 0 < n < n(j, £)} is a basis of V< ® V^r in Cd. Hence (3.7) follows,
from (4.7) except in the case where j > q + 1 and k = j + r. It remains
to show that <Az, w} = 0 for 2 = z^Λ and w = £Jms when g + 1 < j < q
+ r, 1 < £ < £j, 1 < m < £j9 n > 0, and s > 0. If τι > 1 or s > 1, then
this is proved by (4.5). If n = s = 0, then this is a consequence of (4.6).
The proof is complete.

Before proceeding to examples we give a lemma.

LEMMA 4.1. Let T be an ίnvertible linear operator on Rd. Then, μ 6
if and only if TμeL^TQT1).

Proof. It suffices to prove that μ e Lm(Q) if and only if Tμ e Lm{TQT~ι).
We can show this by induction, using Proposition 1.1. Note that the
relation (1.1) is equivalent to

Tμ = f^-'Tμ^Tμ, for 0 < t < 1 .

EXAMPLES. If we change Q to TQT1 then A changes to TAT by
Lemma 4.1. So we assume that Q itself has the real Jordan canonical
form. Let d = 2. The form of Q has the following four possibilities:

(a 0\ /« 1\ (a, 0\ (β -ΐ\
β

where a, au a2, and β axe positive, <xx Φ α2, and ϊ Φ 0. The necessary and
sufficient condition for a symmetric, nonnegative definite matrix A to be
a covariance matrix of a Gaussian distribution in L^(Q) is that A has,
respectively, the form

(a c\ (a 0\ (a 0\ (a 0\
\c δMθ 0M0 &Mθ a/'

Similarly we can determine the form of A for L^(Q) in higher dimensions.

Write J{a, b) = ί ? ~" j . Let us consider, for <i = 3 or 4, four typical

cases where Q has the form
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s, r)j'o o «/\o o J ' U ( O ' O ) <^)/'V(o,o) j(^r)r

Here a > 0, β > 0, and Γ # 0. In the respective case, the form of A is

as follows:

J(a>0) J(c d ) ϊ (J(a'0) J{0'0))

In order to formulate the next theorem, let

(4.8) Wj = Kernel fj(Q)nU) in Rd for 1 < j < q + r

where fj(ζ)9 1 < j < ^ + r, are the polynomials of degree 1 or 2 in (4.1).

Then

(4.9) Rd= W^. ΦW^r.

This is the decomposition dual to (4.3). Let Uj be the projector of Rd

onto Wj in the decomposition (4.9). Namely, x = U& + + Uq+rx where

UjX eWj for 1 < j < q + r. The adjoint operator Uj of U3 is the projector

onto Wj in the decomposition (4.3). For q+l<j<q+r, recall that

ai = α i + r ; it is easy to see that V5 = Vj+r and that Tόx = Γj+r.Λ: and

^Λ: = ϊ > + r j + r x for JC e i2ώ. For 1 <j < q, we have U3x = Γ.Λ: for JC e

R\ Let

(4.1) iV,. = Kernel/XQ) in 22d for 1 < < q + r .

THEOREM 4.2. Suppose that μ is a centered Gaussian distribution in

LOO(Q). Then, Spt μ is a Q-ίnvariant linear subspace of Rd and the minimal

polynomial of the restriction of Q to Spt μ does not have double roots. There

exists a unique decomposition

(4.11) μ = μx* *μq + r ,

where each μi is a centered Gaussian distribution such that Spt μs C Wj.

Moreover, μό e LOO(Q) and Spt μό c JV̂ .

We need a simple lemma. Proof is omitted.

LEMMA 4.2. If μ is centered Gaussian with covariance operator A,

then Spt μ = A(Rd).

Proof of Theorem 4.2. Let fl(z) = exp (2-^(2)). By (4.7) of Theorem

4.1, we have



DISTRIBUTIONS 83

(4.12) UtAU'j = 0 for j Φ k .

It follows that

(4.13) A =

Let Aj = E7,A17;. Note that, by (4.12), As = CT̂A = At/;. Let μ, be

centered Gaussian with covariance operator Aά. Then we have (4.11) and

A3{Rd) c Wj. Hence Spt μs c Ŵ  by Lemma 4.2. The uniqueness of the

decomposition is obvious. Using Theorem 3.1 and the relations between

{Uj} and {Tj}, we see that μs e L^iQ) and Spt//, c iV, . If 1 < j < g, then,

for each x e Rd, QAjX = QAT]x = α,A2> e A,(βd) by (3.5). If <? + 1 <

j < q + r, then, for each x e R\ QAjX = QA(T'j + T'j+r)x = ajAT'jX +

ajAT'j+rX = 2 Re (ajAT'jx) = βjAU'jX - ϊ^Ay^ e Aj(Rd), where y, = 2 Im T;x

= rXΪ 7 ; - r ; + r ) x e VF<. Hence, Aj(Rd) is Q-invariant. Hence, A(jRd) is

^-invariant. Since it is contained in Nt Θ Θ Nq+r, the restriction of

Q to it has a minimal polynomial without double roots. The proof is

complete. (Another proof of Q-invariance of Spt// is to use Proposition

4.1 of Yamazato [21]. Indeed, it is true for all centered Gaussian distri-

butions μ in L0(Q) )

Remark 4.1. Assume that all eigenvalues of Q are real. Then the

following converse of Theorem 4.2 is true: If μl9 - ,μq are centered

Gaussian distributions such that Spt μi C Nj for each j , then the convolu-

tion μ = //j* *μq belongs to L^Q). In fact, μ5 6 L^Q) as a consequence

of Theorem 3.1 and Lemma 4.2, and the class L^Q) is closed under con-

volution.

§5. Purely non-Gaussian completely operator-selfdecomposable

distributions

Let us describe conditions for centered purely non-Gaussian distribu-

tions to belong to L^Q). We continue to use the notations in the

preceding sections on the decompositions of Rd and Cd induced by Q e

M+(Rd). For ζeRd with |f| = 1, we define βζ = β(ξ) and nk = n(ξ) as

follows:

βζ = min{/V. 1 <j < q + r, U3ξ Φ 0} = min{/3,: 1 <j <q + 2r, Γ,f # 0} ,

n(ξ,j) = max {n: n > 0, (Q - α,)" ! 7 ^ # 0} for Tόξ Φ 0 ,

n, = max {n(f,j): 1 < < q + 2r, Tόξ Φ 0, βs = ft} .
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Note that, iΐq+l<j<q+r and x e Rd, then Usx = 0 and T3x = 0 are

equivalent. A system of measures {ΓJ is said to be measurable in ξ if

Γξ(E) is measurable in ξ for each Borel set E. The following is a theorem

similar to results of Sato [7] and Jurek [3].

THEOREM 5.1. If μ is a centered, purely non-Gaussian distribution in

then

(5.1) fi(z) = exp f λ(dξ) ί Γe(da) Γ g(z, u^)u-^du ,
J SQ J (0,2βξ) JO

where λ is the zero measure or a probability measure on SQ and Γξ(dά) is

a measure on (0, 2βξ) such that the system {Γξ} is measurable in ξ and

(5.2) 0 < f Γξ(da) Γ h{\u<>ξ\)u-a-'du = c < oo
J(0,2βς) JO

with c independent of ξ. This λ is uniquely determined by μ and this

Γξ(da) is uniquely determined by p up to ξ of a set of λ-measure zero.

Conversely, given any λ and Γξ(da) with the above properties, one can find

μ e Loo(Q) described by (5.1). If a measure Γξ(da) on (0, 2/3̂ ) satisfies (5.2),

then

(5.3) 0 < ί (a'1 + (2βξ - a)-nM-ι)Γt(da) < oo .
J{0,2βξ)

If a family of measures {Γ\(dά)} satisfies (5.3) for each ξ with Γξ replaced

by Γ°ς, and if {Γ°ξ} is measurable in ξ, then one can find a positive meas-

urable function a(ξ) such that Γξ(dά) = a(ξ)Γ°ξ(da) satisfies (5.2) with c

independent of ξ.

For Q e M+(Rd), we denote by ck positive constants that depend only

on Q. By bk(ξ) we denote positive functions that depend only on Q.

LEMMA 5.1. There are ck (k = 5, 6, 7) and bk(ξ) (k = 1, 2, 3) such that,

for |fI = 1,

(5.4) \uQξ\ < c,u^ I log u\n^ fotO<u< 1/3 ,

(5.5) \u*ξ\ > 62(f)w«« I log u\n^ forO<u< bβ),

(5.6) c.a-1 + b,(ξ)(2βζ - a)-2^-1 < Γ h{\u^ξ\)u-a-ιdu
Jo

< φ-1 + (2βt - a)-*"^-1) forO<a< 2/3{ .

If a > 2β(, then, for \ξ\ = 1,
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(5.7) V h(\uQξ\)ira-ιdu = oo .
Jo

Proof. We have

(5.8) u*Tjξ = κβ<» ^Σ (niyXlog u)*(Q - a^T.ξ ,

where a(j) = aά. Hence

\uQξ I < c8 Σ κ«'> I log up 1"'" for 0 < u < 1/3 ,
. 7 = 1

where βO') = βj. Hence (5.4). It follows from (5.8) that there are b^ξ) and

b£ξ) such that, for 0 < u < ^(ζ),

ζJ)iyi |log u\*«>» \(Q - a^

for all j satisfying Tsξ φ 0. Choose a norm || || in Cd such that \\x\\ =

Σf-illϊj^ll Since arbitrary two norms are equivalent, we have aj | jc |<

Il#|| < <h\%\ ϊov some positive at and a2. Choosing j such that βξ = β3 and

n e = n(ξ,j), we obtain

Hence (5.5) follows. Let 0 < a < 2βξ. We have

fl/3 Λl/3

Jo Jo
Γl/3

< ĉ  «*««—«(log u|2t!«»(ίu ^ <4Γ(2Λ«
Jo

from (5.4), and

Γ hduQξDu-o-'du < Γ u~a-ιdu < c%a~x .
J 1/3 J 1/3

This proves the second inequality in (5.6). The first inequality is obtained

from (5.5) as follows. We may suppose bx(ξ) < 1. Since h(s) is increasing

in s > 0, we have

Γδi(O fδi(

Adit'fDu-'-'du^
Jo Jo

> 65(|) f1(f) u2^"-11 log u| "

Jo

= 6,(f)(2j8(f) - a ) " " " ' " 1 Γ
J(2ί(
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Since h(\uQξ\) > c6 for u > 1, we have

Γ hdu^Du-^du^CsCc-1 .

Hence the first inequality in (5.6). The proof of (5.7) for a > 2βξ is similar.

Proof of Theorem 5.1. For μ e L^Q), the function kξ{u) in the first

representation is such that Ae(e*) is completely monotone in — oo < t < <χ>

for ^-almost every ξ (Theorem 2.1). By modification we may assume the

exceptional set of ξ is void. By Bernstein's theorem, there is, for each

f, a unique finite measure Γζ(da) on [0, oo) such that

= ί
J

e-«Ύξ(da) .
[0,oo)

The system {Γξ} is measurable in ξ. Since kξ(u)^Ό as w—>oo by (2.6), we

have Γξ({0}) = 0. Rewriting (2.6), we get (5.2) with the domain of inte-

gration (0, 2βξ) replaced by (0, oo). By (5.7) of Lemma 5.1, this shows that

Γξ(dά) is concentrated on (0,2/^) and we have the representation (5.1).

The uniqueness assertion is obvious from the uniqueness of the represen-

tation (2.4). The converse assertion follows from that of Theorem 2.1.

The assertion (5.3) follows from (5.2) by (5.6) of Lemma 5.1. If a family

{ΓJ} satisfies (5.3), then, let

a(ξ) = (f r°ζ(da) Γ h(\u«ξ\)u~«-
\J(0,2βξ) JO

This is a positive function by (5.6). The measure Γξ(da) = a(ξ)Γ°ξ(da)

satisfies (5.2) with c = 1. The proof is complete.

Let us give some results on supports of operator-selfdecomposable

purely non-Gaussian distributions. A measure μ in Rd is said to be genu-

inely d-dimensional (or full), if no (d—l)-dimensional hyperplane contains

Spt μ. A measure μ is said to be full in an ^-dimensional affine subspace

W of Rd, if Spt μ a W and μ is genuinely ^-dimensional. The following

fact is used in Sato [8] and Yamazato [20].

LEMMA 5.2. Let μ be a centered, purely non-Gaussian distribution in

Rd with Levy measure v Φ 0. Denote by Wμ or Wv the smallest linear sub-

space that contains Spt μ or Spt v, respectively. Then Wμ = Wv and μ is

full in Wμ.

Proof. We have Spt μ c Wv since fi(z) = 1 for z in the orthogonal
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complement W± of Wv. Hence Wμ c Wv. Let μ0 be the symmetrization

of μ. Then Spt μ0 c W .̂ Let 20 be orthogonal to Spt μ0. Then

1 == po(tzo) = exp ί2 J (cos <x, teo> - i)v(dx)J ,

and hence cos (x, teo> = 1 for ^-almost every x. Hence <x, z0) = 0 for

v-almost every x, that is, Wv C {̂ o}1. It follows that Wμ = Wυ. If μ is

not full in Wμ, then Spt/z0 is contained in a proper subspace of Wμ and,

by the argument above, there is a non-zero z0 in Wμ such that Ŵ  C {z^L,

which is absurd. Therefore μ is full in Wμ,

THEOREM 5.2. If μ is a centered, purely non-Gaussian distribution in

L0(Q), then μ is full in a Q-invariant linear subspace of Rd.

Proof. Let v be the Levy measure of μ. If v = 0, then the assertion

is trivial. Suppose v Φ 0. Let λ be the probability measure in the first

representation of μ. Let W be the smallest Q-invariant linear subspace

that contains SptΛ. Then, by Lemma 5 of Yamazato [20], W is the smal-

lest linear subspace that contains Spty. Hence, by Lemma 5.2, μ is full

in W.

§6. Operator-stable distributions

Let Q e M+(Rd) and a > 0. We call a distribution μ operator-stable

with exponent (a, Q) or, in short, (a, Q)-stable, if μ e ID(Rd) and, for every

t > 0, there is a(t) e Rd such that

(6.1) μta = *Vaβ(o

The relation (6.1) is equivalent to

(6.2) μ' = r~ίQμ*δHt)

with some b(t) e Rd. Thus μ is operator-stable with exponent (a, Q) if and

only if μ is operator-stable with exponent (1, aιQ). In Sharpens termi-

nology in [12], it is operator-stable with exponent cc~xQ. In our new

naming, stable distributions with exponent a are (a, I)-stable, and vice

versa. Results on stable distributions with exponent a thus find natural

generalization to (a, Q)-stable distributions. Sharpe [12] determines con-

ditions on Q in order that there exist full (1, Q)-stable distributions.

Further he finds a structure of general full operator-stable distributions

and an expression of their Levy measures (see also Hudson-Mason [1]).
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But he does not determine the whole structure of Gaussian operator-

stable distributions. It is done by Schmidt [11] in some degree. We will

describe all operator-stable distributions without the fullness assumption.

The following two lemmas are basic.

LEMMA 6.1 (Jurek [2]). If μ is (a, Q)-stable for some a > 0, then μ e

Proof For 0 < t < 1, we have

Hence μeL0(Q). It follows that μt = δaW*μι'ta eL0(Q). Hence μeL,(Q)

by Proposition 1.1. Repeating this, we get μ e L^Q).

LEMMA 6.2 (Sharpe [12]). Let μ be infinitely divisible with Levy repre-

sentation (Γ, A, v). Then, μ is (a, Q)-stable if and only if

(6.3) φA(tq'z) = taφA(z) for zeRd , t > 0 ,

and

(6.4) (tQv)(E) = tav(E) for E e &(Rd) , t > 0 .

Proof. By (6.2) it is enough to consider only the case a = 1. If a = 1,

this is Proposition 5 of Sharpe [12].

We continue to use the decompositions (3.2), (3.4), (4.3), and (4.9)

associated with Q and the projectors Tj9 T'j9 Uj9 and Uj.

THEOREM 6.1. Let μ be Gaussian with covariance operator A. Then,

μ is (a, Q)-stable if and only if (3.5) is satisfied and

(6.5) AT'j = 0 for every j such that Re as Φ a/2 .

Proof. Suppose that μ is (a, Q)-stable. By Theorem 3.1 and Lemma

6.1, it satisfies (3.5). Since (6.3) holds also for zeCd, we have, noting

e-tQ'T'jze V'j and using (3.5),

v ΨA1 jz) — ψA\e -L jZ) — e ΨAK L jZ) ?

where a(j) = ai% Hence we obtain (6.5). Conversely, if (3.5) and (6.5) are

satisfied, then we get, using (3.7),

t φ j ± »φΛ(T'j2) = e-'φA(z) ,

which implies (a, Q)-stability of μ by Lemma 6.2. The proof is complete.
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THEOREM 6.2. Let μ be a purely non-Gaussian infinitely divisible distri-

bution with Levy measure v. Let Wia) be the direct sum of all the subspaces

Wj for which Re a3 > α/2. Then μ is {a, Q)-stable if and only if

(6.6) v(E) = ί λo(dξ) Γ XE(u*ξ)u—ιdu for E e @(Rd) ,
JsQr\wιa) Jo

where λ0 is a finite measure on SQf] Wia). For every finite measure λ0 on

SQΠ W(a), there exists an (a, Q)-stable purely non-Gaussian distribution with

Lέvy measure v described by (6.6).

Proof. Assume that μ is (a, Q)-stable. For any Fe&(SQ), let F =

{uQξ: ξeF,u>l} and define ^0(^) = w(F). Then λ0 is a finite measure

on SQ, since F c {x: \x\ > 1}. Define a measure vx by

vx{E) = f λo(dξ) Γ XB(μ*ξ)u—ιdu for Ee@(Rd) .
J SQ JO

Let α > 0 and .B = {ufiξ: ξeF,u> a}. Then

^(JS) = f Λ0(de) Γ M — ^ U = α^o-ioίF) = a~
JF Ja

Since F = {(ula)Qξ: ξeF, u > a} = (l/α)«£, we have

using (6.4) of Lemma 6.2. Hence 1̂ (2?) = v(E). It follows that vx = y. We

have

oo > f ΛQ*|Mdχ) = f Udξ) Γ Ad"βf D""""1

J J*Sρ JO

> f Λ(dί) flW

J sQ JOsQ

using (5.5) of Lemma 5.1 and choosing 6j(f) < 1/3. Since

for j8(f) < α/2 ,

we see that β(ξ) > a/2 for Λ0-almost every f, that is, Λo is concentrated in

SQΓi WM. Conversely, if the Levy measure v of μ is expressed as (6.6)

with some λQ9 then (6.4) is an easy consequence and μ is (#, Q)-stable. In

order to prove the last sentence in the theorem, it is enough to show

that, for any finite measure Λo on SQΠ W(β), the measure v defined by (6.6)

satisfies h(\x\)v(dx) < oo. Using (5.6) of Lemma 5.1, we get
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which is finite, since, for some ε > 0, β(ξ) > 2~1<x + ε uniformly in f € VΓ(α>

and since n(ξ) < d. The proof is complete.

Remark 6.1. A purely non-Gaussian distribution μ is {a, Q)-stable if

and only if μ e L0(Q) and, in the first representation of μ,

(6.7) kξ(u) = a(ζ)u-« ,

(6.8) a(ξ) is measurable and 0 < ax < a(ξ) < a2 < oo

with some constants au α2, and

(6.9) Λ(df) is concentrated in SQ Π W{a) .

In fact, it is obvious that (6.7)-(6.9) imply (6.6). Choose ε > 0 so that

there is no eigenvalue aά satisfying 2~xa < R e ^ < 2~1a + ε. There are con-

stants c2, c3, and c4 such that (2.1) and (2.2) hold with cx == 2~~xa + ε for all

x e W{a) (Urbanik [15] p. 139). It follows that there are positive constants

c5 and c6 such that

c 5 < [~ h{\u^\)u~a-ldu < c,
Jo

for all ξ e SQf] W(β). If /̂  is (a, Q)-stable, we choose

b(ξ) = (Γ h(\u^\)u-^duY , a(ξ) = 6(f) f

which are shown to give the first representation satisfying (6.7)-(6.9).

An arbitrary (a, Q)-stable distribution is decomposed into two (a, Q)-

stable distributions, one of which is Gaussian and the other is purely

non-Gaussian, together with a decomposition of the basic space Rd. This

is shown by the following theorem. Note that we do not impose the full-

ness assumption.

THEOREM 6.3. Let μeID(Rd), let μί be the centered Gaussian com-

ponent of μ and let μ2 be the centered purely non-Gaussian component of

μ. Then, μ is {a, Q)~stable if and only if there exist Q-invariant linear

subspaces W^ and W(2) such that W(1) Π W(2) = {0} and, for each j , μ3 is

full in WU) and (a, Q^-stable as a measure on Wu\ where Qj is the restric-

tion of Q to WU).
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Remark 6.2. The theorem above reduces general (α, Q)-stable distri-

butions to the full case studied by Sharpe [12]. Thus the eigenvalues of

the operator Qt have real parts equal to a/2 and the minimal polynomial

of Qx does not have double roots, while the eigenvalues of Q2 have real

parts greater than a/2. But note that there does not necessarily exist a

Q-invariant linear subspace VF(3) such that Rd = W{1) Θ W(2) Θ W{3\

Proof of Theorem 6.3. Suppose that μ is (a, Q)-stable. Then, by Lemma

6.2, both μx and μ2 are (or, Q)-stable. Let W(1) be Spt μl9 and let W{2) be

the smallest linear subspace containing Sptμ2. Recalling Lemma 6.1, we

can freely use our theorems on L^Q). By Theorem 4.2, W(1) is Q-invariant.

By Theorem 5.2, Wi2) is Q-invariant and μ2 is full in W(2). Denote by [μj]ω

the restriction of μs to Wu\ We see that [μJ(J) is (a, Q7)-stable. For we

have

where α;(£) e W(J). By Theorem 6.1 and Lemma 4.2, the eigenvalues of Qx

have real parts a/2, while, by Theorem 6.2 and Lemma 5.2, the real parts

of the eigenvalues of Q2 are greater than α/2. Hence we have W{1) Π VF(2>

= {0}.

Conversely, suppose that Wil) and W{2) are Q-invariant linear sub-

spaces and that, for j = 1, 2, /ί̂  is a probability measure with support in

WU) and [̂ (̂j) is (a, Qy)-stable. Then it is easy to see that μ} is (a, Q)-

stable and that μ1*μ2 is also (a, Q)-stable. The proof is complete.

§7. Relations between completely operator-selfdecomposable distri-
butions and operator-stable distributions

We will establish relations between the classes L^{Q) and S(Q), which

extend results of Urbanik [16], [17], Thu [13], and Sato [7]. By Proposition

1.2, the class S(Q) is the totality of probability distributions which are

(a, Q)-stable for some a > 0.

THEOREM 7.1. Let s be the number of distinct real parts of eigenvalues

of Q. If μ is a Gaussian distribution in L^Q), then μ can be expressed

as the convolution of at most s Gaussian distributions in S(Q).

Proof We may suppose that μ is centered. If ^eL0O(Q), then, by

Theorem 6.1, the decomposition of μ in Theorem 4.2 gives representation

of μ as a convolution of Gaussian distributions that belong to S(Q). Again
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by Theorem 6.1 we see that it is written as the convolution of at most s

Gaussians in S(Q).

THEOREM 7.2. If μe L^Q), then μ is the limit of a sequence {μn} such

that each μn is a convolution of a finite number of purely non-Gaussian

distributions in S(Q).

Proof. Let μ e L^Q). We may assume that it is centered. Consider

the case where μ is purely non-Gaussian with the expression (5.1) such

that, for some ε > 0, Γξ(dά) is concentrated in (ε, 2βξ — ε) for each ξ e SQ.

Then we can choose measures Γf\da) satisfying the following conditions:

Γf\da) is concentrated on the points {2~nk: k = 1, 2, •} in the interval

(ε,2βξ — ε), Γf\da) converges to Γξ(da) for each ξ as τι->oo, the total

mass of Γf\da) does not exceed that of Γξ(da) for each ξ> and {Γ(

ξ

n)} is

measurable in ξ. Define μn by

frn(z) = exp f λ(dξ) \ Γf\da) Γ g(z9 u^u^du .
J SQ J(s,2βξ-ε) JO

By Lemma 5.1 and by \g(z, x)\ < czh(\x\), the integral g(z, uQξ)u~a~ίduis
Jo

bounded in a e (ε, 2βξ — ε) and ξ e SQ and is continuous in a. Hence

as τi->co. Since (5.2) and (5.6) imply that the total mass of Γξ(da) is

bounded in ξ e SQ, we see that μn(z) -> fi(z). It follows from Theorem 6.2

that μn is a convolution of a finite number of purely non-Gaussian distri-

butions in S(Q). If μ is purely non-Gaussian, then the assertion is proved

by approximation of its Γξ(da) measure by X{ε,2βξ-ε)(a)Γε(doc) as ε j 0. Now

recall Theorem 7.1. Then we see that, in order to complete the proof, it

is enough to show that any (a, Q)-stable Gaussian distribution μ is a

limit of purely non-Gaussian distributions in S(Q). Let A be the covari-

ance operator of μ. For 0 < β < 1 let μ°β be a symmetric, (2β, /)-stable

distribution such that μ°β(z) = exp(—2-1\z\2β). Let μβ = Aίβμ°β. Since μ°β is

purely non-Gaussian, so is μβ. Since

/^(z) = exp ( - 2 - ^ ( 2 ) 0 ,

we have, by (6.3),
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Hence μβ is (aβ, Q)-stable. As β 11, μβ tends to μ. The proof is complete.

As a consequence we have the following.

THEOREM 7.3. The class L^Q) is the smallest class closed under con-

volution and convergence and containing the class S(Q).
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