M. Itô Nagoya Math. J. Vol. 92 (1983), 153-161

# TRANSIENT MARKOV CONVOLUTION SEMI-GROUPS AND THE ASSOCIATED NEGATIVE DEFINITE FUNCTIONS

# MASAYUKI ITÔ

# Dedicated to Professor Makoto Ohtsuka on the occasion of his 60th birthday

§1. Let X be a locally compact and  $\sigma$ -compact abelian group and  $\hat{X}$  be the dual group of  $X^{1}$ . We denote by  $\xi$  a fixed Haar measure on X and by  $\hat{\xi}$  the Haar measure on  $\hat{X}$  associated with  $\xi$ . It is well-known that (see, for example, [1]):

(A) For a sub-Markov convolution semi-group  $(\alpha_i)_{i\geq 0}$  on X, there exists a uniquely determined negative definite function  $\psi$  on  $\hat{X}$  such that

(1.1) 
$$\hat{\alpha}_t(\hat{x}) = \exp\left(-t\psi(\hat{x})\right) \quad \text{for any } \hat{x} \in \hat{X} \ (t \ge 0) ,$$

where  $\hat{\alpha}_i$  denotes the Fourier transform of  $\alpha_i$ .

(B) For a negative definite function  $\psi$  on X, there exists a uniquely determined sub-Markov convolution semi-group  $(\alpha_t)_{t\geq 0}$  on X satisfying (1.1).

In this case,  $\psi$  is called the negative definite function associated with  $(\alpha_t)_{t\geq 0}$ .

There is an interesting characterization of the transience of sub-Markov convolution semi-groups.

THEOREM. Let  $(\alpha_t)_{t\geq 0}$  be a sub-Markov convolution semi-group on X and  $\psi$  be the negative definite function associated with  $(\alpha_t)_{t\geq 0}$ . Then  $(\alpha_t)_{t\geq 0}$ is transient if and only if  $\operatorname{Re}(1/\psi)$  is locally  $\hat{\xi}$ -summable, where  $\operatorname{Re}(1/\psi)$ denotes the real part of  $1/\psi$ .

The "only if" part is easily seen (see, for example, [1]). But it is known only to show the "if" part by probabilistic methods (see [3]).

The purpose of this note is to give a simple and non-probabilistic proof of the "if" part.

Received October 7, 1982.

<sup>1)</sup> We denote by + the product of X and that of  $\hat{X}$ .

§2. We denote by:

 $C_{\kappa}(X)$  the usual topological vector space of all real-valued continuous functions on X with compact support;

M(X) the topological vector space of all real Radon measures on X with the vague (weak\*) topology;

 $M_{K}(X)$  the subspace of M(X) constituted by real Radon measures on X with compact support;

 $C_{\kappa}^{+}(X)$ ,  $M^{+}(X)$  and  $M_{\kappa}^{+}(X)$  their subsets of all non-negative elements.

A family  $(\alpha_t)_{t\geq 0}$  in  $M^+(X)$  is called a convolution semi-group on X if  $\alpha_0 =$  the unit measure  $\varepsilon$  at the origin 0,  $\alpha_t * \alpha_s = \alpha_{t+s}$  for all  $t \geq 0$ ,  $s \geq 0$  and the mapping  $R^+ \ni t \to \alpha_t \in M^+(X)$  is continuous, where  $R^+$  denotes the totality of non-negative numbers.

It is said to be transient if  $\int_0^\infty \alpha_t dt \in M^+(X)$ , which results from  $\int_0^\infty dt \int f d\alpha_t < \infty$  for all  $f \in C^+_K(X)$ . Put

$$N=\int_0^\infty lpha_\iota dt$$
 .

We call it the Hunt convolution kernel on X defined by  $(\alpha_t)_{t\geq 0}$ .

A sub-Markov (resp. Markov) convolution semi-group  $(\alpha_t)_{t\geq 0}$  on X is, by definition, a convolution semi-group on X which satisfies  $\int d\alpha_t \leq 1$  $\left(\operatorname{resp.} \int d\alpha_t = 1\right)$  for all  $t \geq 0$ . In this case, we see that, for any  $0 , <math>(\exp(-pt)\alpha_t)_{t\geq 0}$  is a transient sub-Markov convolution semi-group on X. Put

$$N_p = \int_0^\infty \exp\left(-pt
ight) lpha_t dt \qquad (p>0)$$
 ;

 $(N_p)_{p>0}$  is called the resolvent defined by  $(\alpha_i)_{i\geq 0}$ , and it satisfies the resolvent equation:

 $N_p-N_q=(q-p)N_p*N_q \qquad ext{for all } p>0 ext{ and } q>0 ext{ .}$ 

LEMMA 1. Let  $(\alpha_i)_{i\geq 0}$  be a sub-Markov convolution semi-group on Xand let  $(N_p)_{p>0}$  be the resolvent defined by  $(\alpha_i)_{i\geq 0}$ . Then, for any  $p\geq q >$  $0, N_p \ll N_q$ , that is, for any  $f, g \in C_K^+(X)$  and any  $a \in R^+, N_p*f \leq N_q*g + a$ on supp (f) implies that the same inequality holds on X, where supp (f) denotes the support of f.

It is well-known that  $N_p \ll N_p$  (the complete maximum principle of  $N_p$ )

154

(see, for example, [1]). This and the resolvent equation show that  $N_p \ll N_q$ .

LEMMA 2. Let  $(\alpha_t)_{t\geq 0}$  and  $(N_p)_{p>0}$  be the same as in Lemma 1. If there exist p > 0 and  $\eta \in M^+(X)$  such that  $N_p*\eta$  is defined in  $M^+(X)$ ,  $\eta \geq pN_p*\eta$  in X and  $\eta \neq pN_p*\eta$ , then  $(\alpha_t)_{t\geq 0}$  is transient.

*Proof.* We write inductively  $(pN_p)^1 = pN_p$  and  $(pN_p)^n = (pN_p)^{n-1}*(pN_p)$  $(n = 2, 3, \cdots)$ . Then, for any integer  $n \ge 1$ ,

$$\eta \geq \left( \varepsilon + \sum_{k=1}^n (pN_p)^k \right) * (\eta - pN_p * \eta) \; .$$

Since  $\eta - pN_p * \eta \in M^+(X)$  and  $\eta - pN_p * \eta \neq 0$ ,  $\sum_{n=1}^{\infty} (pN_p)^n$  converges vaguely. We see easily that

$$\int_{_0}^{\infty}lpha_\iota dt = rac{1}{p}\sum_{_{n=1}}^{\infty}(pN_p)^n$$
 ,

which shows Lemma 2.

LEMMA 3. Let  $(\alpha_i)_{i\geq 0}$  be a Markov convolution semi-group on X and assume that the closed subgroup generated by  $\bigcup_{i\geq 0} \operatorname{supp}(\alpha_i)$  is equal to X. If  $(\alpha_i)_{i\geq 0}$  is not transient, then X is generated by some compact neighborhood of the origin.

**Proof.** Let V be a compact neighborhood of the origin and let  $X_v$  denote the closed subgroup generated by V. We denote by  $\alpha_{t,v}$  the restriction of  $\alpha_t$  to  $X_v$ . Then we see easily that  $(\alpha_{t,v})_{t\geq 0}$  is a sub-Markov convolution semi-group on  $X_v$  and that  $(\alpha_t)_{t\geq 0}$  is transient if and only if, for any compact neighborhood V of the origin,  $(\alpha_{t,v})_{t\geq 0}$  is transient. Hence there exists a compact neighborhood  $V_0$  of the origin such that  $(\alpha_{t,r_0})_{t\geq 0}$  is not transient, that is,  $(\alpha_{t,v_0})_{t\geq 0}$  is a Markov convolution semi-group on  $X_{r_0}$ . Consequently  $\alpha_t = \alpha_{t,v_0}$  for all  $t \geq 0$ . This implies that  $X = X_{r_0}$ . Thus Lemma 3 is shown.

LEMMA 4 (see, for example, [1], p. 156). Let  $(\alpha_t)_{t\geq 0}$  be a transient sub-Markov convolution semi-group on X. Put  $N = \int_0^\infty \alpha_t dt$ . Then N satisfies the equilibrium principle, that is, for any relatively compact open set  $\omega$  in X, there exists  $\gamma \in M_K^+(X)$  such that  $\operatorname{supp}(\gamma) \subset \overline{\omega}$ ,  $N*\gamma = \xi$  in  $\omega$  and  $N*\gamma \leq \xi$  in X.

Here supp (i) denotes also the support of i. We say that i is an *N*-equilibrium measure of  $\omega$ .

#### MASAYUKI ITÔ

LEMMA 5. Let  $(\alpha_i)_{i\geq 0}$  and N be the same as in Lemma 4,  $\omega$  a relatively compact open set in X,  $\tilde{\gamma}$  an N-equilibrium measure of  $\omega$ . Then, for any  $\sigma \in M^+(X)$  with  $\int d\sigma \leq 1$ , any  $a \in R^+$  and any  $f \in C^+_K(X)$  with  $\operatorname{supp}(\check{f}) \subset \omega$ ,

$$N*(a\tilde{\gamma})*(\varepsilon-\sigma)*f(0)\geq 0$$
.

Here we denote by  $\check{f}$  the function defined by  $\check{f}(x) = f(-x)$  for all  $x \in X$ . In fact, this follows from

$$N*(a\imath)*(\varepsilon-\sigma)*f(0)=a\Bigl(\int\check{f}d\,\xi-\int\check{f}dN*\imath*\sigma\Bigr)\geqq a\Bigl(1-\int\!d\sigma\Bigr)\int\check{f}d\,\xi\geqq 0\;.$$

There exists a very useful result concerning the convolution equation:

LEMMA 6 (see [2]). Let  $\sigma \in M^+(X)$  with  $\int d\sigma = 1$  and let  $\mu \in M(X)$ . Assume that  $\mu$  is shift-bounded, that is, for any  $f \in C_{\kappa}(X)$ ,  $\mu * f$  is bounded on X. If  $\mu * \sigma = \mu$ , then every point x in the closed subgroup generated by  $\operatorname{supp}(\sigma)$  is a period of  $\mu$ , that is  $\mu = \mu * \varepsilon_x$ , where  $\varepsilon_x$  denotes the unit measure at x.

LEMMA 7. Let  $(\alpha_t)_{t\geq 0}$  and  $(N_p)_{p>0}$  be the same as in Lemma 1. If  $\overline{\bigcup_{t\geq 0} \operatorname{supp}(\alpha_t)}$  is non-compact, then  $\lim_{p\to 0} pN_p = 0^{2}$ .

Proof. Since  $p \int dN_p \leq 1$ ,  $(pN_p)_{p>0}$  is vaguely bounded. Let  $\lambda$  be an arbitrary vaguely accumulation point of  $(pN_p)_{p>0}$  as  $p \to 0$ . Then  $\int d\lambda \leq 1$ . Choose a net  $(p_iN_{p_i})_{i\in I}$  with  $p_i \to 0$  such that  $\lim_{i\in I} p_iN_{p_i} = \lambda$ . Then, for any  $0 , the resolvent equation and <math>p \int dN_p \leq 1$  give

$$\lambda_*(pN_p) = \lim_{i \in I} (p_iN_{p_i})_*(pN_p) = \lim_{i \in I} (p_i(N_{p_i} - N_p) + p_i^2N_{p_i}*N_p) = \lambda \ .$$

If  $p \int dN_p < 1$ , this and  $\int d\lambda \leq 1$  give  $\lambda = 0$ . Assume that  $p \int dN_p = 1$ . Then the above lemma shows that for any  $x \in \bigcup_{t \geq 0} \operatorname{supp}(\alpha_t) = \operatorname{supp}(pN_p)$ ,  $\lambda = \lambda * \varepsilon_x$ . Since  $\int d\lambda \leq 1$  and  $\overline{\bigcup_{t \geq 0} \operatorname{supp}(\alpha_t)}$  is non-compact, we have  $\lambda = 0$ . Thus we obtain that  $\lim_{p \to 0} pN_p = 0$ .

In the case that  $\overline{\bigcup_{t\geq 0} \operatorname{supp}(\alpha_t)}$  is compact, the similar argument shows that  $\lim_{p\to 0} pN_p$  exists and it is equal to 0 or a Haar measure on the compact subgroup generated by  $\bigcup_{t\geq 0} \operatorname{supp}(\alpha_t)$ .

<sup>2)</sup> For a net  $(\mu_i)_{i \in I} \subset M(X)$  and  $\mu \in M(X)$ , we write  $\lim_{i \in I} \mu_i = \mu$  if  $(\mu_i)_{i \in I}$  converges vaguely to  $\mu$  along I.

For a real Radon measure  $\mu$  on X, we denote by  $\check{\mu}$  the real Radon measure on X defined by  $\int f d\check{\mu} = \int \check{f} d\mu$ .

LEMMA 8. Let  $(\alpha_i)_{i\geq 0}$  and  $(N_p)_{p>0}$  be the same as above and let  $(a_p)_{p>0}$ be a family of positive numbers such that  $(a_pN_p*\check{N}_p)_{p>0}$  is vaguely bounded. Assume that the closed subgroup generated by  $\bigcup_{i\geq 0} \operatorname{supp}(\alpha_i)$  is equal to X. Take a vaguely accumulation point  $\eta$  of  $(a_pN_p*\check{N}_p)_{p>0}$  as  $p \to 0$  and a net  $(p_i)_{i\in I}$  of positive numbers with  $p_i \to 0$  and  $\lim_{i\in I} a_{p_i}N_{p_i}*\check{N}_{p_i} = \eta$ . If, for any q > 0,  $\lim_{i\in I} a_{p_i}N_{p_i}*\check{N}_q = 0$ , then  $\eta = 0$  or  $\eta$  is proportional to  $\xi$ .

*Proof.* Since  $N_{p_i} * \check{N}_{p_i}$  is of positive type, for any  $f \in C_{\scriptscriptstyle K}(X)$ ,

$$(a_{p_i}N_{p_i}*\check{N}_{p_i}*f*\check{f})_{i\in I}$$

is uniformly bounded. Let  $0 < q \in R^+$ . Since  $q \int dN_q \leq 1$ , we have

$$\lim_{i\in I}a_{p_i}q^2N_{p_i}*\check{N}_{p_i}*N_q*\check{N}_q*f*\check{f}(x)=q^2\eta*N_q*\check{N}_q*f*\check{f}(x)$$

for all  $f \in C_{\kappa}(X)$  and  $x \in X$ , which implies that

$$\lim_{i\in I}a_{p_i}q^{\scriptscriptstyle 2}N_{p_i}*\check{N}_{p_i}*N_q*\check{N}_q=q^{\scriptscriptstyle 2}\eta*N_q*\check{N}_q$$
 .

On the other hand, we have, by our assumption,

$$\lim_{i\in I}a_{p_i}q^2N_{p_i}*\check{N}_{p_i}*N_q*\check{N}_q=\lim_{i\in I}a_{p_i}(N_{p_i}-N_q)*(\check{N}_{p_i}-\check{N}_q)=\eta\ .$$

Thus we have

$$\eta = q^2 \eta {*} N_q {*} \check{N}_q$$
 .

Assume that  $\eta \neq 0$ . Since  $\eta$  is of positive type,  $\eta$  is shift-bounded. Hence  $q^2 \int dN_q * \check{N}_q = 1$ . Evidently  $\sup (N_q) = \bigcup_{t \geq 0} \operatorname{supp}(\alpha_t)$  and  $\operatorname{supp}(N_q)$  is a closed semi-group. Hence  $\sup (N_q * \check{N}_q) = X$ , and Lemma 6 gives  $\eta = c\xi$  with some constant c > 0. Thus Lemma 8 is shown.

§3. A complex valued continuous function  $\psi(\hat{x})$  on  $\hat{X}$  is, by definition, negative definite if  $\psi(\hat{0}) \geq 0$ ,  $\psi(-\hat{x}) = \overline{\psi(\hat{x})}$  and for any integer  $m \geq 1$ , any  $(\hat{x}_j)_{j=1}^m \subset \hat{X}$  and any  $(\rho_j)_{j=1}^m \subset C$  with  $\sum_{j=1}^m \rho_j = 0$ ,

$$\sum\limits_{k=1}^{m}\sum\limits_{j=1}^{m}\psi(\hat{x}_{j}-\hat{x}_{k})
ho_{j}\overline{
ho}_{k}\leq0\;.$$

Here  $\hat{0}$  denotes the origin of  $\hat{X}$  and C denotes the totality of complex numbers.

*Remark* 9 (see, for example, [1]). Let  $\psi$  be a negative definite function on  $\hat{X}$ . Then we have:

(1) Re  $\psi$  is also negative definite.

(2) Re  $\psi(\hat{x}) \ge \psi(\hat{0})$  for all  $\hat{x} \in \hat{X}$ , that is, Re  $\psi(\hat{x}) \ge 0$ . So we can write  $\psi(\hat{x}) = |\psi(\hat{x})| \exp(i\theta_{\hat{x}})$  with  $|\theta_{\hat{x}}| \le \pi/2$ .

(3) Let  $\alpha \in R^+$  with  $0 < \alpha \leq 1$  and put

$$\psi^{lpha}(\hat{x}) = egin{cases} |\psi(\hat{x})|^{lpha} \exp{(ilpha heta_{\hat{x}})} & ext{if} \ \psi(\hat{x}) 
eq 0 \ 0 & ext{if} \ \psi(\hat{x}) = 0 \ , \end{cases}$$

where  $\theta_{\hat{x}} = \arg \psi(\hat{x})$  with  $|\theta_{\hat{x}}| \leq \pi/2$ . Then  $\psi^{\alpha}$  is negative definite.

Evidently we have the following

Remark 10. Let  $(\alpha_t)_{t\geq 0}$  and  $\psi$  be a sub-Markov convolution semi-group on X and the negative definite function associated with  $(\alpha_t)_{t\geq 0}$ . Then we have:

(1)  $\psi(\hat{0}) = 0$  if and only if  $\int d\alpha_t = 1$  for all  $t \ge 0$ .

(2)  $p(1-p\hat{N}_p)$  converges uniformly to  $\psi$  on any compact set as  $p \to \infty$ , where  $(N_p)_{p>0}$  is the resolvent defined by  $(\alpha_t)_{t\geq 0}$ .

Consequently, if  $\psi(\hat{0}) \neq 0$ , then  $(\alpha_{\iota})_{\iota \geq 0}$  is always transient. We remark here that  $\hat{N}_{p}(\hat{x}) = 1/(p + \psi(\hat{x}))$ .

§4. In this paragraph, we shall show the "if" part of Theorem.

PROPOSITION 11. Let  $(\alpha_i)_{i\geq 0}$  and  $\psi$  be a sub-Markov convolution semigroup on X and the negative definite function associated with  $(\alpha_i)_{i\geq 0}$ . If  $\operatorname{Re}(1/\psi)$  is locally  $\hat{\xi}$ -summable, then  $(\alpha_i)_{i\geq 0}$  is transient.

*Proof.* Evidently we may assume that  $(\alpha_t)_{t\geq 0}$  is a Markov convolution semi-group, that is,  $\psi(\hat{0}) = 0$ . Furthermore, we may assume also that the closed subgroup generated by  $\bigcup_{t\geq 0} \operatorname{supp}(\alpha_t)$  is equal to X (see, [1], p. 105). For any  $0 , we put <math>\psi_p(\hat{x}) = p(1 - p\hat{N}_p(\hat{x}))$  on  $\hat{X}$ . Then  $\psi_p(\hat{x}) = p\psi(\hat{x})/(p + \psi(\hat{x}))$ , so that  $\operatorname{Re}(1/\psi_p)$  is locally  $\hat{\xi}$ -summable. Furthermore, we remark that  $(\alpha_t)_{t\geq 0}$  is transient if and only if  $\sum_{n=1}^{\infty} (pN_p)^n$ converges vaguely.

Consequently, we may assume that  $\psi(\hat{x}) = 1 - \hat{\sigma}(\hat{x})$  on  $\hat{X}$ , where  $\sigma \in M^+(X)$  with  $\int d\sigma = 1$  and  $\operatorname{supp}(\sigma) - \operatorname{supp}(\sigma) = X^{3}$ . Then  $|\psi(\hat{x})| \leq 2$  and  $\psi(\hat{x}) \neq 0$  if  $\hat{x} \neq \hat{0}$ .

158

<sup>3)</sup> For a subsets A, B of  $X, A-B = \{x-y; x \in A, y \in B\}$ .

Assume that  $(\alpha_t)_{t\geq 0}$  is not transient. Then X is non-compact, and Lemma 3 shows that X is generated by a certain compact neighborhood of the origin. Hence we may assume that  $X = R^n \times Z^m \times F$ , where n, mare integers  $\geq 0$ , R is the additive group of real numbers, Z is the additive group of integers and where F is a compact abelian group (see, for example, [4], p. 109). Let  $\xi_F$  be the normalised Haar measure on F. By considering the canonical projection of  $\alpha_t * \xi_F$  on  $R^n \times Z^m$  for all  $t \geq 0$ , we may assume that  $X = R^n \times Z^m$ . Then  $\hat{X} = R^n \times T^m$ , where  $T^m$  is the *m*-dimensional torus.

Assume that  $n \ge 1$ . First we shall show that Re  $(1/\psi)\hat{\xi}$  is temperate. Since  $|\psi(\hat{x})| \ge a |\hat{x}|^2$  in a certain neighborhood of  $\hat{0}$  with some constant a > 0, there exists an integer  $m \ge 1$  such that  $(1/|\psi|^2)^{1/m}$  is locally  $\hat{\xi}$ -summable. Here  $|\hat{x}|$  denotes the distance between  $\hat{x}$  and  $\hat{0}$  in  $\mathbb{R}^n \times T^m$ . Let  $(\alpha_{t,m})_{t\ge 0}$  be the Markov convolution semi-group on X satisfying  $\alpha_{t,m} = \exp(-t\psi^{1/m})$  for all  $t\ge 0$  and let  $(N_{p,m})_{p>0}$  be the resolvent defined by  $(\alpha_{t,m})_{t\ge 0}$ . Since, for any p > 0,

$$\widehat{N_{p,m}} * \check{N}_{p,m}(\hat{x}) = rac{1}{|p + \psi^{1/m}(\hat{x})|^2} \qquad ext{on } \hat{X} ext{ ,}$$

 $(N_{p,m}*\check{N}_{p,m})_{p>0}$  is vaguely bounded. This implies that  $(\alpha_{t,m})_{t\geq 0}$  is transient. Put  $N_{0,m} = \int_{0}^{\infty} \alpha_{t,m} dt$ . Then  $N_{0,m}*\check{N}_{0,m}$  is defined and

$$\widehat{N_{0,\,m}*\check{N}_{0,\,m}}=\Bigl(rac{1}{|\psi|^2}\Bigr)^{1/m}\hat{\hat{arepsilon}}$$

Since  $(\operatorname{Re} \psi)^{1/m}$  is bounded,  $(\operatorname{Re} \psi/|\psi|^2)^{1/m}\hat{\xi}$  is temperate. Consequently,  $(\operatorname{Re} \psi/|\psi|^2)\hat{\xi} = \operatorname{Re} (1/\psi)\hat{\xi}$  is temperate. Since, for any p > 0.

$$rac{1}{2}(\hat{N}_p(\hat{x})+\hat{\check{N}_p}(\hat{x}))-p\widehat{N_p*\check{N}_p}(\hat{x})=rac{\operatorname{Re}\psi}{|p+\psi(\hat{x})|^2}\leq\operatorname{Re}\left(rac{1}{\psi(\hat{x})}
ight)\qquad ext{on }\,\hat{X}\,,$$

we see that for any  $f \in C_{\kappa}^{\infty}(X)$ ,  $((\frac{1}{2}(N_{p} + \check{N}_{p}) - pN_{p}*\check{N}_{p})*f*\check{f}(0))_{p>0}$  is bounded. Here  $C_{\kappa}^{\infty}(X)$  denotes the totality of functions  $f \in C_{\kappa}(X)$  such that for any  $y \in \mathbb{Z}^{m}$ , the function f(x, y) of x is infinitely differentiable on  $\mathbb{R}^{n}$ .

Assume that n = 0. Then  $\hat{X}$  is compact. Hence, similarly as above, we see that for any  $f \in C_{\kappa}(X)$ ,  $((\frac{1}{2}(N_p + \check{N}_p) - pN_p * \check{N}_p) * f * \check{f}(0))_{p>0}$  is bounded.

Thus, in general, there exists  $f_0 \in C_K^+(X)$  with  $f_0 \neq 0$  such that  $((\frac{1}{2}(N_p + \check{N}_p) - pN_p * \check{N}_p) * f_0 * \check{f}_0(0))_{p>0}$  is bounded. Furthermore,  $(pN_p * \check{N}_p)_{p>0}$  is not vaguely bounded. Hence  $(pN_p * \check{N}_p * f_0 * \check{f}_0(0))_{p>0}$  is not bounded. Put

MASAYUKI ITÔ

 $a_p = (1/pN_p * \check{N}_p * f_0 * \check{f}_0(0)) (p > 0).$  Since  $a_p pN_p * \check{N}_p$  is of positive type,  $(a_p pN_p * \check{N}_p)_{p>0}$  is vaguely bounded. We choose a decreasing sequence  $(p_k)_{k=1}^{\infty}$  such that  $\lim_{k\to\infty} p_k = 0$ ,  $(a_{p_k} p_k N_{p_k} * \check{N}_{p_k})_{k=1}^{\infty}$  converges vaguely and that  $(a_{p_k})_{k=1}^{\infty}$  converges decreasingly to 0 as  $k \uparrow \infty$  (Remark that  $X = R^n \times Z^m$ ). Put  $\eta = \lim_{k\to\infty} a_{p_k} p_k N_{p_k} * \check{N}_{p_k}$ . Since  $\int f_0 * \check{f}_0 d\eta = 1$ , Lemma 6 shows that  $\eta = c\xi$  with some constant c > 0. Since

$$((\frac{1}{2}(N_{p_k}+\check{N}_{p_k})-p_kN_{p_k}*\check{N}_{p_k})*f_0*\check{f}_0(0))_{k=1}^{\infty}$$

is bounded, we have also

$$\lim_{k o\infty}a_{{}_{p_k}}(N_{{}_{p_k}}+\check{N}_{{}_{p_k}})=2c\xi$$
 .

We may assume that  $(a_{p_k}N_{p_k})_{k=1}^{\infty}$  converges vaguely. Put  $\lambda = \lim_{k \to \infty} a_{p_k}N_{p_k}$ ; then  $\lim_{k \to \infty} a_{p_k}\check{N}_{p_k} = \check{\lambda}$ . Hence  $\lambda \neq 0$ . By Lemma 1, we see easily that for any  $0 , <math>N_p \ll \lambda$  and  $\lambda \ll \lambda$ . This implies that  $\lambda$  is shift-bounded and  $\lambda \geq p\lambda * N_p$  for all p > 0. By Lemma 2, we have  $\lambda = p\lambda * N_p$  for all p > 0. This and Lemma 6 show that  $\lambda$  is proportional to  $\xi$ , which implies  $\lambda = c\xi$ . Thus  $\lim_{k \to \infty} a_{p_k}N_{p_k} = \lim_{k \to \infty} a_{p_k}\check{N}_{p_k} = c\xi$ . We choose a relatively compact open set  $\omega$  in X such that  $\omega \supset \text{supp}(f_0 * \check{f}_0)$ . Let  $\Upsilon_{p_k}$  be an  $\check{N}_p$ equilibrium measure of  $\omega$  and put  $\nu_k = (1/a_{p_k})\Upsilon_{p_k}$   $(k = 1, 2, \cdots)$ . Then  $(\nu_k)_{k=1}^{\infty}$  is vaguely bounded, and hence we may assume that it converges vaguely. Put  $\nu = \lim_{k \to \infty} \nu_k$ . Then  $\int d\nu = 1/c$ , that is,  $\nu \neq 0$ . Let 0 < p $\in \mathbb{R}^+$ . Then the resolvent equation and Lemma 7 give

$$\lim_{k\to\infty}p_kN_{p_k}*\check{N}_{p_k}*(\varepsilon-(p-p_k)N_p)*\nu_k=\lim_{k\to\infty}p_kN_p*\check{N}_{p_k}*\nu_k=0.$$

Lemma 5 gives

$$\check{N}_{p_k}*(arepsilon-(p-p_k)N_p)*
u_k*f_0*\check{f}_0(0)\geq 0$$

provided with  $p \ge p_k$ . Hence, by putting

$$A = \sup_{q>0} \left( rac{1}{2} (N_q + \check{N}_q) - q N_q * \check{N}_q 
ight) * f_0 * \check{f}_0 (0)$$
 ,

we have, for  $p \ge p_k$ ,

$$egin{aligned} &(rac{1}{2}(N_{p_k}+\check{N}_{p_k})-p_kN_{p_k}*\check{N}_{p_k}))*(arepsilon-(p-p_k)N_p)*
u_k*f_0*\check{f}_0(0)\ &\leq 2A\sup_{1\leq k<\infty}\int d
u_k \;, \end{aligned}$$

because  $(\frac{1}{2}(N_{p_k} + \check{N}_{p_k}) - p_k N_{p_k} * \check{N}_{p_k}) * f_0 * \check{f}_0$  is of positive type. Letting  $k \to \infty$ , we obtain that

160

$$N_{{}_{\mathcal{D}}}*
u*f_{{}_{0}}*\check{f}_{{}_{0}}(0) \leq 4A \sup_{1\leq k<\infty}\int d
u_k \; .$$

This implies that  $\left(\int \check{\nu}*f_0*\check{f}_0 dN_{p_k}\right)_{k=1}^\infty$  is bounded, which contradicts

$$\lim_{k\to\infty}a_{p_k}N_{p_k}=c\xi \quad ext{and} \quad \lim_{k\to\infty}a_{p_k}=0 \;.$$

Thus we see that  $(\alpha_t)_{t\geq 0}$  is transient. This completes the proof.

## BIBLIOGRAPHY

- C. Berg and G. Forst, Potential theory on locally compact abelian groups, Springer-Verlag, 1975.
- [2] G. Choquet and J. Deny, Sur l'équation de convolution  $\mu = \mu * \sigma$ , C. R. Acad. Sci. Paris, 250 (1960), 4260-4262.
- [3] S. C. Port and C. J. Stone, Potential theory of random walks on abelian groups, Acta Math., 122 (1969), 19-114.
- [4] A. Weil, L'intégration dans les groupes topologiques et ses applications, Hermann, Paris, 1965.

Department of Mathematics Faculty of Sciences Nagoya University Chikusa-ku, Nagoya 464 Japan