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MODULAR FORMS OF DEGREE n AND REPRESENTATION
BY QUADRATIC FORMS II

YOSHIYUKI KITAOKA

Let S™, T™ be positive definite integral matrices and suppose that
T is represented by S over each p-adic integer ring Z,. We proved
arithmetically in [3] that T is represented by S over Z provided that m
> 2n 4+ 3 and the minimum of 7T is sufficiently large. This guarantees the
existence of at least one representation but does not give any asymptotic
formula for the number of representations. To get an asymptotic formula
we must employ analytic methods. As a generating function of the numbers
of representations we consider the theta function

02)= 2.  expQaio(S[G]-2)),

GEMu,n(Z.

where Z® =X +iY=2', ImZ =Y >0, and ¢ denotes the trace. Put
N(S, T) = #{Ge M, (2)|S[G] = T}; then we have

0(Z) = > N(S, T)exp (2rioc(TZ)) .
T
0(Z) is a modular form of degree n and we decompose 8(Z) as 6(Z) = E(Z)

+ g(Z), where E(Z) is the Siegel’s weighted sum of theta functions for
quadratic forms in the genus of S. Put

E(Z) = 3, a(T) exp(2ric(TZ)) ,
8(Z) = 3 b(T) exp(2nia(TZ)) .

Then o(T), T > 0, is given by
n,n(2m—n+1)/4 ﬁlfl((m _ k)/z)—llsl—n/leI(m—n—l)lz I‘[ Olp(T, S) s
k=0 ?

and it is easy to see that the constant term of g(Z) vanishes at every
cusp. Now it may be expected that
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NS, T) = a(T) + b(T)

gives an asymptotic formula. In fact, for n = 1, this is the case if m > 5,
and m = 4 with some restrictions on T. (For n > 2, see [4,9]). To get an
asymptotic formula, it is sufficient to prove

(i) b(D)|T| ¢m-"-b tends to zero,

(il) Tle (T, S) > x(S)(> 0) for every T if T is locally represented
by S.

In the former part of this paper we prove (i) for n = 2. More pre-
cisely, we prove the following:

Let g(Z) = > 6(T)exp(2rioc(TZ)) be a modular form of degree 2, weight
k(e 1Z) with level such that the constant term of g(Z) vanishes at every
cusp. Then we have, if £ > 3

W(T) = O(m(T)e-"r2| T |- for T>0,

if m(T)(= the minimum of T) is sufficiently large.

We use the generalization of the Farey dissection due to Siegel. But
his method is rather rude for our aim. It was effective for T close to
scalar matrices [9, 13]. Hence we improve it although it is technical. It
may be regarded as an establishment of a generalization of quite standard
applications of the circle method. In the latter part we prove (ii) in case
of m > 2n + 3, which is the best possible condition so that (ii) holds.
Combining with the former analytic result, we have an asymptotic formula
of N(S,T) for n =2, m > 7. Finally, we discuss some questions.

1.1. We denote by Z, R, and C the ring of rational integers, the field
of real numbers, and the field of complex numbers. For a ring A, M,, (A)
is the set of m X n matrices with entries in A. If Xe M, ,(A), then X’
is the transposed matrix. If Xe M, .(C), then ¢(X) is the trace, and for
Ye M, ,(C) we put X[Y] = Y'XY.

For a positive definite matrix Pe M, ,.(R) we put m(P) = min Plal.

0#a€ Mm,1(2)

1, is the unit matrix of order n, J, = <_(1) (1)") and we put

re ={XeM,,.(2)|J,[X] =},
H" ={Z=X+iY|X,YeM, (R), Z' = Z, ImZ =Y >0}.

For a natural number ¢, we put

r'o(g) = {M - (g‘ g) e '™|C = 0 mod q} .
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I'™ acts discontinuously on H™ by the mappings Z — M{(Z) = (AZ + B)
(CZ+ D), M = (‘é IB;) We denote by # ™ the fundamental domain
I'™\H™ described in [11] and in Theorem on p. 169 in [6]. If Z =X +
iYe # ™, then there exists a positive number 2, such that m(Y) > 2,.

A complex valued function f(Z) on H™ is called a modular form of
degree n, level ¢ and weight & if

(i) f(Z) is an analyillc %Slction on H™,

(ii) for every M = (C D) el (@,

(fIM)(Z) = f(MXZ))|CZ + D|** = v(M)f(Z) ,

v(M) being the multiplicator corresponding to M with |[v(M)| = 1, and

(ii1) for every M = (é IB;) eI'™, (flM)(Z) has a Fourier expansion of
the form

(fIM)(2Z) = 2. oM, T)expQria(TZ)/q(M)),
TEMn,n(Z)

where g(M) is a natural number dependent on M.

If a(M, 0) in the condition (iii) vanishes for every M e I'™, then we
say that the constant term of f(Z) vanishes at every cusp.

1.2. We give examples of modular forms which are important in this
paper.

Let Se M, .(Z) be a positive definite matrix whose diagonal entries
are even. Let ¢ be a natural number such that qS-'e M, ,(Z) and its
diagonal entries are even. We put

0(Z; X, Y) = . > ” exp(rioc(S[G — Y]-Z) + 27i0(G'X) — nia(X'Y)),

where Ze H™, X, Ye M,, ,(C).
Then 0%(Z; 0, 0) satisfies the conditions (i), (ii) for £ = m/2({1]). For
M= (‘é S) eI'™ with |C| +# 0 it is easy to see, by using Lemma 2 in [1],

|CZ + DI09 (M(Z);0,0) = 5 exp(ria(SIGIAC)
1€ Mmyn
Glmodmc

| 8|~y —1-mr/2-mn) O|mi2-magm (4= C|-¥(CZ + D)C’; — 27 C|"'G,, 0),
and
0¢2,(47*|CI"(CZ + D)C’; — 27'|C|'G,, 0)
= > exp(rid Y| C|%(S-[N]DC’) + 2xie(— 27| C|"'N'G)))

NEMm,n(Z)
NmodB[Cl“lS

-0§2,(16|CF|SFZ[C]; 0, (— 8|CF|SD'N).
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It is known (p. 205 in [6]) that every MeI'™ can be written as M =
(‘é g)( 0 '1'") |C| 0, Se M, .(Z). Combining the above formula with
|— Z + S|""%0%,(16| CF|S(— Z + S5)7'[C"]; 0, (— 8| CP|S))'N)
= Y Imregm e S| O mgg(— (16| CPISP)(— Z + §)ICT;
(— 8|CFISD™'N, 0),

it is easy to see that 9’(Z, 0, 0) satisfies the condition (iii) and the constant
term of 0%(Z, 0, 0) depends only on the genus of S, and hence the constant
term of 0%(Z,0,0) — 0%(Z,0,0) vanishes at every cusp if S, belongs to
the genus of S.

1.3. LEmMA. Let f(Z) = TZ a(T)exp(2ric(TZ)) converge absolutely
20

nan(Z
on H™, and assume a(T) = OTei}; rl({)T <yvO<v<n) If Y=ImnZ runs
over a fixed Siegel domain © with m(Y) > ¢ (> 0), then we have, for some
£ >0,

f(Z) = O(exp(— £o(Y)),
where Y, is the upper left v X v submatrix of Y.
Proof. Let v< h < n and put
ath) = 3, |a(T)|exp(~ 2zo(TY)).
If YeS, m(Y) > ¢, then there exists ¢ > 0 such that Y > ¢1,, and then
as p.p. 184~185 in [6] we have
a(h) < &k, rk;h exp(— no(TY)),

where &, and &, --- occurring hereafter are positive numbers depending
only on ¢, © and f(Z). Decompose T as

7=(%" D, |TI#0, UeGL@® 2),

and here we assume that 7T, is any fixed representative of equivalence
classes. If T'= <Tz 0>[V] is another decomposition, then we have T, = T,

and UV~ = (W) W) T[W] = T, Hence we have

a) <r 3 5 exp(— n'a((T‘ °)[U] Y))

irmy>0 ve{(t* Decrmn\oLm.2)

> > exp(— no(T,- YIFY)),

(T1}>0 F

II
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where {7} means that T, runs over representatives in some Siegel domain
of equivalence classes of positive definite integral matrices, and F runs
over the set {F e M, ,(Z)|primitive}. Let ¢, ---,¢, be diagonal entries of

t
T,. Then we have T, ¥ . , and the class number of positive de-
by
finite integral matrices of determinant |7}| is O(|T}|*) for some a > 0. Hence

A
a, <k >, (b t)* 2 exp(— xaa(( - )-Y[F]))
1€i%h r tn

L
<k 2, exp(-— K5O (( T )-Y[F])) < ks > exp(— x0o(Y[F])
F th F

tiz1
1<i<h

<k 3 3exp(— ma(YICD),

1€i1< - <ip<n
p2h
where G runs over the set {G = (g,,)e M, (Z)|>. .82, + 0 iff i =i, for

Yo, . .
=1 ---,p} If weput Y =1(y;), =2y then Y ¥ . implies
Yn

p h
Sexp(— ka(YIOD < | 3 exp(— 125 5,(3 80))
¢ Ik ggj,k*o =1 =t

3

=f1.(, 5 ew(=mrBe)) <[ (S v+ ven-ry.0)

j=1 2 j=1 =1
’ k=18%%0 I

< ’Caﬁ exp(— ’fey—zj) < ryexp(— /floa(Yp)) < kgexp(— ’floa(Yv)) .
j=
Q.E.D.

1.4. Put I'™(c0) = {(‘é g) el'|C = O} and let N, be representa-

tives of the right cosets of I'™ modulo I"™(c0), i.e.,
re = (Jre)N,, No=1,.
q=0

We can normalize N, ¢ > 1, as follows: Putting N, = (é g),

@n=((G v (5 . )v)
0 0 0 1,.,
where |C,| #= 0, Ue GL(n, Z).
If we put U= (F™", %), then the coset I'™(c0)N,, g > 1, corresponds
bijectively to C;'D, € the set of rational symmetric matrices of degree &
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and FGL(h,Z), 1 < h < n. (p. 160 and p. 166 in [6]).
Let #™ be a fundamental domain I'™\H™ in 1.1 and put

@ = ST MIGF ™

MEeT ™) (o)

= (F"UI+8) (UeGL(n,Z), S = 8"eM,,(2)),
U,8
and %, = N/Kg™).

If X+iYe%™, then m(Y)>2, for some positive constant 1,. We intro-
duce the “dissection” due to Siegel. Let T be a positive definite matrix
and put

E* = X+ iTX=(x;), 0<x,=x,<1}cH®,
D,=E*N%,, Ef=D,—DU---UD,.),
and E, = {X|X + iT-' e E*}.

Then we have {X = (x,,)|0 < x,; = x;;, < 1} = U, E, (finite and disjoint).
If m(T) is sufficiently large, then D, is empty. When N,, ¢ > 1, cor-
responds to R®, F™MGL(h, Z), we put E(F, R) = E,.

1.5. Hereafter we confine ourselves to the case of n = 2.
Let f(Z)= >, a(T)exp(2rio(TZ)) be a modular form of degree 2,
1

half-integra
. >0
some level and weight k(€ $Z) and assume that the constant term of f(Z)
vanishes at every cusp. Our aim is to prove

TureoreM. If T® is positive definite and m(T) is sufficiently large,
then we have

a(T) = O(m(T)E-»r2| T|k-32) for k>3.

We prove this in 1.5 and 1.6. By definition of a modular form, we

have |a(T)| = |a(T[U])| for every Ue GL(2,Z). Hence we may assume
that

-5 Ol 9] whs s wem

Then we have T' 2 (t‘ ) and m(T) X t,. Moreover we assume that Z, is
sufficiently large. We fix such a T and use the dissection for 7' in 1.4 in
this and the next section. Since ¢, is sufficiently large, we have D, = ¢.
By using the dissection for T, we have
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a(T) = exp(4n) L: dlf(X—l— iT-Yexp(— 2rie(TX))dX
= exp(4r) Z:}l . f(X 4+ iTYexp(— 27ic(TX))dX,
X, X,

Here E, is empty for sufficiently large gq. From the definition of
(fIM)(Z) in the condition (ii) follows that

where dX = dx,dx,dx,, X = > xz)‘

£(&) = 1CZ + DIHIMHME)  for M= (4 Blere,
and the number of functions f|M, MeI'®, up to the constant multiples

with the absolute value = 1, is finite. Hence from Lemma follows that
for X< E,,

(FINGYN X + iT7D)| < krexp(— em(Im N(X +iT77)),

where &, £, are positive constants independent of g, since N(X + iT-
€ %®, and hence m(Im N, (X + iT"')) > .
We put

a(F,R) = L(F’m N1C(X 4+ iT-*) + Dj *exp(— r;m(Im M{X + iT-DH)dX,
where N, = M = (‘é g) corresponds to R, F. It is clear that |a(T)| <
exp(dn)e, Oz r a(F, R).

Suppose rk F = 2. Then we can take 1, as F, and as in [13] we have,
for & > 3,

2 a(l, R) < g,m(T)¢C-B2| T |32,

R

1.6. Let N, — M — (fC‘ B), ¢>1, and assume |C|=0. Then we
may assume (C, D) = ((8 8) v, (gl ‘1’>U) ¢,>0, UeGL(,Z). Then
we have

Im M(X 1S = <(a1 + al_l(ql + r)2)—1 0 )[(Cfl q/) ,
mM{X + 1 > 0 ol T 0 1 ]

where T-[U] = (3 &), r = ci'd, XU = (& &), ¢ = ar'aq, + 1) — g

~1.2)~1 -1 -1 .
Put P = P(g;, q;) = ((“1 tore al_ll%_l)[@ G e qs)].
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Suppose m(P) > 4. Then we show that |u,,| <&k, where U= (u, ;)

and «, is a positive absolute constant, and that if m(P) = P[g‘], then b, 0.
2

Since 3m(P)*/4 < |P| for a positive definite matrix P of degree 2, we have

344 <(a, + ar'g) e | T e < a?|T|™.

Put F = (f‘) = the first column of U. Then T X (t‘

i ) implies

t,
a, = T-'[F] > x3(tf ' t_l)[F] — B+ YD) and |T| > kbt -

Hence 32/4 < a*|T|™' implies
3434 < k(71 4 GD I < kGG

if f #0, and then |f,| < &, since ¢/t, < 4/3. Next we assume that m(P)
= P[(l)] = ¢;¥a, + ar’q)™'. Then m(P) > 2, implies c¢;%a, + a7'¢g) ™ > ..
On the other hand 3m(P)*/4 < |P| implies

3er¥(a, + ar'q) 4 <(ay + ar'g) e T er?,

and then 3c;*(a, + a7'q) /4 < oY T|7

Hence we have 32,/4 < oY |T|™* < &5 '@ 2 + 74 ¢, This yields
Ak A3 > (47 2 + 71 f)) >t or ¢, This is a contradiction if ¢, (X m(T))
is sufficiently large.

Since

jox + i) + i = |(& Yt + ir-wp + (% 9]

G

0o 0 01
=clq + 1+ ial,

we have

aFyr) =t (@ + 1)+ @) Mrexp(— km(P(@: + , a))dX,

where F is the first column of U as above.
If (q‘ qz), (q‘ 4 )eE(F, r[U], (ne Z), then n = 0 follows. Since

q; g, g; ¢, +n
dX = dq.dq.,dq,, we have

3 aFr) <ty j

ro=7 modl

@+ 7+ ) e

E(F,r+n

X exp(—em(P(q, + r + n, q,)))dq.dq,dg,
<ot [ (@t + a)-exp(—rm(Pla, 00 da.dada.
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where S={@,aua)eR xO,D|(% 7~ " % NUTeEFr+n)

for some m, ne Z}. Note that if (g,, 45, q), (@1, ¢ + 1, q) € S, (n € Z), then
n = 0, and that for (q,, q;, q.) € S we have m(P(q,, g5)) > 2.
For a natural number b,, we denote by S(b,) the set
{@ 9 2 € Sim(P@, a)) = Pla, a)|}] for some b,z

Then we have S = {U5,.; S(b,) and

B aF <t B (gt + a)exs(—mPlan o) 5] Jdadada.,
where b, is an integer such that m(P(q,, q5)) = P(q,, ¢;) [2;] b, depends on
i, gs Since P[g;] = (@, + ar*g) ' bi(ci b, b + a7l a,qy — @) + o' | T3
and b, is an integer such that |c['b,b: + a'a.q, — @5 < (2c,b,)7'. Hence
for fixed q,, g, we have

I exp( —rP(qy, qa)[g’])dqa
(q1,93,94) € S(2) 2

< cb, j exp(— (e, + ar'@) Biq + ait| T b)) dg,

a3l < (2e1b3) 1
<ab, | exp(—nl(@ + ar'q) big: + or'| T 6))da,

= ¢;b, exp(— ka7 | T 0DV 7 65V a, + a7 'gib;*
< e wa| T|b7* a7Wal + qi .

Thus we have

ST a(F ) < Aty 7| T S bty L (@ + g)"-"'dg,
ba=1

ro=rmodl

< kg1 ¥| T2 % < koet *6,(87 7 + t1 2",
Therefore we have

oo

2ial,r) <wm 2 c'h 3L @i+ af)
o 1

(f1,f2)=1
1F11<rs

< ’flotltz(t{c_ﬁ/z + téc_ﬁ/z Z [les-n) < /futltg_sm
Sa#0
< yom(T)2=%| T |5-32 if £ > 3.

c1=

Combining the estimate in 1.5, we complete the proof.
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Remark. A result in [4] suggests that there is room for improvement
of the Siegel’s method of the estimate of Ja(1,, R) in 1.5.

2. In this part we study local densities of quadratic forms. It is
necessary to show that the expected main term of the representation
numbers of quadratic forms is the real one. Terminology and notation
are generally those from [7].

2.1. Let p be an odd prime.

Lemma 1. Let M, N be quadratic spaces over Z|(p) and dim M = m
> 2, dim N = n < m, and assume that M is regular and that there is an
isometry from N to M. Decompose N as N = N, | rad N and put t = dim
N,, ¢ = (D)™ 92dN,dM|p) (Legendre symbol), if m =t mod 2, where we
put dN, = 1 if Ny ={0}. Then we have

preriz=mn s {the numbers of isometries from N to M}

2 ifm—2n+¢t=0,
=[[Qxp ™ X{1l+ep?t ifm—2n+t=2,
i=1
1 otherwise,

where 2 < r, < b and a, b are smaller than the number depending only on
m = dim M.

Proof. For quadratic spaces K, L over Z/(p), we denote by A(K, L)
the number of isometries from K to L. By the assumption there is an
isometry from N, to M. Hence we have M = N, | M, for some regular
quadratic space M,, and rad N is represented by M,. It is easy to see
AN, M) = A(N,, M)A(rad N, M,). Put 6 = (—1)™*dM|p) if m is even.
Then it is known ([10])

t/2-1
(1 — op~ ™)) (L + ep®—™") 11 1 — p-m-)

k=1

m=t=0mod2,

. -m/2 2 — - (m-2k)
A—op) Il @—p )
p“”l)/z""‘A(]Vo, M) = J m=¢t+1=0mod2,
(1 + Ep(t-m)/z) (tﬁm (1 _ p—(m+1—2k))
k=1

m=t=1mod2,

\ﬁ(l—p"’"“'m) m=t+1=1mod2.
k=1
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As on p.p. 119~120 we have
p— (m-t)y(n-t)+ (n—t)(n—t+1)/2A(rad N, M)

I:[o (1 — p-(212+m—2n+t+1)) m — t = 1 m0d2 ,

-1
{(1 — ep—(m-2n+t)/2—i—-1)(1 + ep—(m—2n+z)/2—i)} m—t= 0m0d2 s
0

k2

Since dim M, > 2dimrad N implies m — 2n + ¢t > 0, p*¢*v2-" A(N,, M) is
equal, up to the factors 1 + p=" (r = 2), to

A= 1 4 ept-m™12 m = tmod 2,
T m % tmod 2,

and p-m-be=nrm-ne-t+02 4 (rad N, M)) is equal to

o 1 — p-(met-nen m == tmod 2,
PTLA - A 4 ep ) m= tmod 2.

If m —2n +t=0, then M, is a hyperbolic space and e =1 and A, =1
+pr ™ A=21—p~ ™). m—2n+t=2, then A, =1+ ep'*" ™ and
A=0Q—-—ep"" ™A +ep)and m—n—1=n+1—t>1. If m—2n
+t=0mod2 and m — 2n + ¢+ 0, 2, then m — 2n + ¢t > 4 and (m — ¢)/2
>2, m—0)2—n+t>2 I m—2n+t=1mod2, then A =1 and
m+t—2n+4 1> 2. These complete the proof.

Remark. f m>2n 4 3, then m — 2n + ¢t £ 0, 2.

2.2. Let p be a prime and M, N regular quadratic lattices over Z,
with tk M = m, vtk N =n and uM, nlN C 2Z,. For any quadratic lattice
the letters @, B denote the quadratic form and the bilinear form (Q(x) =
B(x, x)).

Put

A, (N, M) = {u: N— M/p'M|B(ux, uy) = B(x,y) modp* for x,ye N},

B,(N, M) ={u: N— Mp'M|Q(ux) = Q(x) mod 2p* for xe N and u
induces an injective mapping from N/pN to M/pM},

C,(N, M) = {u: N— M[p'M*|Q(ux) = Q(x) mod 2p* for xe¢ N and u
induces an injective mapping from N/pN to M/pM}.

It is known ([10]) that 2-mn(pt)~+0/2-mng 4 (N, M) is independent of ¢ if
t is sufficiently large, and we denote the value by «,(IV, M)
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LEmmaA 2. lim(p9)"®*v/2-m"4B (N, M)

t—oo

— pn ordde(pT)n(n+l)/Z—mn#CpT(M M) ,
where T is a natural number such that p”'nM* C 2Z,.

Proof. Since nM C 2Z, implies M* D M, there is a canonical mapping
¢ from B,(N, M) to C,.(N, M). If o(u) = ¢(u,) for u,, u, € B,(N, M), then
(u, — u)(x) e p'M* for xe N and p~"(u, — u,) € Hom (N, M*/M). Conversely
for ve Hom (N, M*/M), u e B,(N, M) we put & = u + p'v. Suppose ¢t > T;
then p'~'nM* C 2Z, and it implies p*~'M* C M, and then & e C,(N, M). It
is easy to see that ¢ is surjective since we may assume that u € C,.(N, M)
is isometry for ¢t > T by virtue of Satz in § 14 in [5]. Thus we have

$C, (N, M) = $B,dN, M)[[M* : M]* = §B,{N, M)p~"°rt»¥

By the same “Satz”, (p")*"*v/*-""¢C, (N, M) is independent of ¢ if ¢ > T.

Q.E.D.

We put
d, (N, M) = 27*»]im (p*)"+v/2=m" ¢ B (N, M)
t—co
— 2—5n,mpnordde(pT)n(n+1)/2—-mn #CpT(M M) s

where 7' is a natural number such that p”~'nM* C 2Z,. The set of values
d, (N, M) for any fixed lattice M is a finite set. If M is unimodular and
p # 2, then we can take 1 as T and #C,(V, M) = the number of isometries

from N/pN to M/pM over Z,/(p).
Hilfssats 17 in [10] implies immediately the following

LEmMmA 3. a (N, M) =2"»» 37 [N,: N]*"™*'d (INy, M),

QpNONoDN

where M, N are regular quadratic lattices over Z, and tk M = m, rk N = n.

2.3. Let N be a free lattice over Z, with rk N = n. Then the number
A(n, s) of the lattices containing N with index p* is equal to > pZi-at-be;,
where the summation with respect to e; is over all n-tuples (e, ---,e,)
of non-negative integers which satisfy > 7.,e;, = s and it is easy to see
p(n-l)s < A(n, S) < (1 . p—-l)l—np(n—l)s.

ProrosITION 4. Let M be a regular quadratic lattice over Z, with
nwM C 2Z,. Then there is a positive constant (M) such that

a,(N, M) < x(M)
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for any regular quadratic lattice N over Z, with vtk M > 2rk N.
Proof. From Lemma 2 follows that
sup 2V ®2d (N, M) = (M) < oo,
N

where N runs over regular quadratic lattices. Put n =rk N, m =rk M
and assume m > 2n; then from Lemma 3 follows

“p(N9 M) < ICI(M)(xZ;’ A(n, S)ps("‘m“))

< IIT1(M)(1 + (]_ —_ p—1)1~n si:;lps(zn_m)>
= 51 + (1 — p ¥~ — p")"p" ") = (M) QE.D.

Remark. Let n < m < 2n. There exist regular quadratic lattices IV,
M with vk N, = n, vk M = m such that

a,(N,, M) —> o as t— oo .

ProposITION 5. Let M be a regular quadratic lattice over Z with nM
C 2Z. Then there is a positive constant (M) such that

[l a'p(ZpM ZpM) < k(M)

for any regular quadratic lattice N over Z with vtk M > 2rk N + 3.

Proof. Put tk M = m and rk N = n and let p be an odd prime such
that Z,M is unimodular. Then for each regular lattice K over Z, with
rk K = n we have

dp(K, ZpM) = pn(n+1)/2—mn#cp(K’ ZPM) .
On the other hand,
1 + (1 —_ p~1)1—n(1 . pZn—m)-lpzn-m

= = FL+ PP = p ) = D)
<@ =p"")IA+p"),
if p is sufficiently large. Hence, by virtue of Lemma 1, the product of
the constants #(Z,M) in Prop. 4 over {p +# 2|Z,M : unimodular} converges
if m > 2n + 3. By virtue of Prop. 4 we have [[, 0y @,(Z,N, Z,M) <[] pj2an
#(Z,M).

Remark. Let M be a regular quadratic lattice over Z. If tk M = 2n
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+ 2, neZ, then there exist regular lattices N, over Z with rk N, =n
such that
1 a,(Z,N,, Z,M) — oo as t— oo,

p

From this follows that for a modular form f(Z) = > a(T)exp(2ris(TZ)) of
degree n, weight 2 =n + 1, a(T) = O(|T|*-**) does not hold in general
(c.f. [4D).

2.4. LEMMA 6. Let M be a maximal quadratic lattice over Z, with
tk M=m. If N is a regular quadratic lattice over Z, with vk N = n,
nN C nM, and m > 2n + 3, then N is primitively represented by M.

Proof. We may assume nM = Z, and let M = _Lk<2“‘<(1) (1))> | M,
where M, is an anisotropic Z,-maximal lattice. From m = 2k + rk M; >
2n + 3 and rk M, < 4 follows that 2(n — k) <rk M, — 3 <1 and then
n < k. Any element in Z, is primitively represented by 2“‘((1) (1))> Hence
we have only to show that 2““‘(? é>>, <2“”‘(% ;)> are primitively repre-

sented by |, <2“((1) (1)) . Let v, ---,u, be a basis of _|_2<2"‘<(1) (1))> such
that @0 x,v) = xx, + xx,. Put 2, = v, 2, = v, + 2°v, — 2%, + v,, and w,

= 0+ 20, W= 20, + v, + 20, then (B, 2)) = 27§ 7). (Blw, w)) =

2““(% 5) Thus N is primitively represented by _Ln<2“(2 (1)>> and hence

by M. Q.E.D.

LemmA 7. Let M, N be regular lattices over Z, and assume that nM
C 2Z, and N is represented by M. Let E be an orthogonal summand of
N, that is, N=E | N, for some sublattice N, of N, and E,, ---, E, sub-
lattices of M which are representatives of sublattices of M isometric to E
modulo the orthogonal group of M. Denote by K, the orthogonal comple-
ment of E, in M. Then we have

k
ap(N: M) 2 g ap(E: M; Ei)ap(]vl’ Kt) ’

where a,(E, M; E;)) = lim(p*) v/~ "#{u: B — M[p'M u : E— M: isometry
t—oo
vuE = E, for some
\ ve O(M)

and here e =rk E, m = rk M.

Proof. The existence of a,(E, M; E,) is proved as usual, noting that
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regular sublattices L, = Z,[v,,,, - -+, V;,,] of a regular quadratic lattice L
over Z, are transformed by O(L) if (B(v,., Uy, 7)) = (B(Uy, s, Uy, 1) and v, ,,
v,,, are sufficiently close for every h. Suppose that ¢ is sufficiently large.
If u,, u; are isometries from E to M such that vu,E = v'uE = E, for some
v, Ve OM) and u,, u, are isometries from N, to K, then u = u, | v'u,,
v = u; | v 'u; are isometries from N to M. Suppose that u = v’ mod p'M
and u,, u; (resp. u,, u;) are representatives of A, (E, M) (resp. A,(V,, K))).
Then we have u, = y{mod p’M and so u, = u,, v =v. Hence u, = uj; mod
p'M. Since K, is a direct summand of M, we have u, = u;mod p‘K, and
so u, = u;. Hence we complete the proof. Q.E.D.

ProrosiTiON 8. Let M, N be regular quadratic lattices over Z, with
nM C 2Z, and assume that N is represented by M. Then there exists a
positive constant k(M) such that

o, (N, M) > x(M) if tkM>2rk N + 3.

Proof. Let M, be a maximal lattice in M with nM, = (p*). Suppose
nN C nM,. Then N is primitively represented by M, by virtue of Lemma
6. Hence we have a, (N, M) > d (N, M) > e(M;) >0 by Lemmas 2, 3.
Denote by ¢ the canonical mapping from M,[p‘M, — M[p‘M. Since o¢u,
= pu, for u, € A, (N, M,) implies (u, — u,)(x) e p'M for xe N, we get

BAL(N, M) < $A,(N, M)§{u: N — p'M|p' M} .

Thus we have «a, (N, M) < a,(N, M)[M : M,]" (n = rk N), and then «,(N, M)
> a,(N, My) [M: M] "> «(M) [M: M]". Now we come back to the
general case and assume that M has the minimal rank so that the propo-
sition is false. Suppose that N, is represented by M and rk N, = rk NV and
a,(N;, M) -0 as i — oo. By the former part we may assume nN, & nlM.
Let N, = N | ... ] N be the Jordan splitting such that N{ is p®"-
modular and 0 < o <---<a®. ulN, & nM, implies a{® < a. Since the
number of p°-modular lattices K such that 0 <c¢< a and rk K <rk N is
finite up to isometry, we may assume that N{® = L for every i and rk L
< rk N, taking a subsequence. Applying Lemma 7, there exist sublattices
L, K, of M with rk K; = rk M — rk L such that

Mo M) = 3 (L, M; L), (V;, Ko,

where N/ is the orthogonal complement of N{® in N, Since rk K, —
(2rk N} 4+ 3) >0 and «,(N/, K,) > &(K,)(>0) if N} is represented by K,,
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we have a contradiction. Q.E.D.

Remark. If n <m < 2n + 2, then there exist regular quadratic lattices
M, N, over Z, with rk M = m, rk N, = n such that

0< ayN,M)—>0 asi—oco.
ProrosiTiON 9. Let M be a regular quadratic lattice over Z with
nM C 2Z. Then there exist a positive constant (M) such that
ﬂ “p(ZpN» ZpM) > (M)

p

for any regular quadratic lattice N over Z if rk M > 2rk N + 3 and Z,N
is represented by Z,M for every prime p.

Proof. Let p be an odd prime such that Z,M is unimodular. Then
from a,(Z,N, Z,M) > d (Z,N, Z,M) = p~@02-m"4C (N, M)(n =rk N, m =
rk M) and Lemma 1 follows that there is a positive constant &, such that

n “p(ZpM ZpM) >k,

p

where p runs over the set {p # 2|Z,M: unimodular}. Prop. 8 completes
the proof. Q.E.D.

Remark. Let m > n be natural numbers. Let M be a regular quadratic
lattice over Z with rk M = m and denote by P the set of primes p such
that p ## 2 and Z,M is unimodular. Then there exists a positive constant
#(M) such that
1 ax(Z,N, Z,M) > k(M) ] (1 4+ ¢ep™"),

peP)

pEP

if N is a regular quadratic lattice over Z with rk N = n such that
Z,N is primitively represented by Z,M for each pe P.

Here ¢,, P(IN) are defined as follows:

For pe P, Z,N/pZ,N becomes a quadratic space over Z/(p). Decompose
Z,N/pZ,N as Z,N/pZ,N = (Z,N/pZ,N), | rad Z,N/pZ,N and put ¢, = dim
(Z,N/pZ,N),. Then, by definition, pe P(N) iff m — 2n 4+ ¢, =2

¢, = ((—1)m'"~‘d(zl';N/prN)odM ) ]

Since ¢, = n if Z,N is unimodular, P(N) is a finite set if m > n 4 2.
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Assume m = 2n + 2. If nZ N C Z,, then Z,N is primitively represented
by Z,M for pe P as in the proof of Lemma 6 since the Witt index of
Q,M > n. Since p € P(N) implies ¢, =0 and nZ,N C pZ,, we have
Moeron( + &™) = TT,us( — p™) > (WN)~* for any ¢ > 0 if nN C Z.

3. THEOREM. Let M be a positive definite quadratic lattice over Z
with nM C 2Z with Yk M = m > 7. Let N be a positive definite quadratic
lattice with Yk N = 2 and suppose that Z,N is represented by Z,M for every
prime p. Then we have:

The number of isometries from N to M

— 71:7"—1/2 ) (dN)(m—a)/z )
- T(m2I(m — 1)[2) aM E[“p(ZpN, z,M)

+ O(m(N)©e-m/a/t. dN m-917) for m>17,

when m(N) = min,. .y Q(x) is sufficiently large.

Proof. Let M, be representatives of classes in gen M and S, the
corresponding matrix to M,. Put 6,(Z) = 6$(Z,0,0) (in 1.2.). Then the
constant term of 6,(2)-0,(Z) vanishes at every cusp. Put E(Z) = M(S)™*
210(S)|70(Z), where M(S)™ ! = >|O(S))]'. Then the constant term of
0.(Z)-E(Z) vanishes at every cusp. From the Siegel formula and Theorem
in 1.5. follows our theorem. Q.E.D.

Remark. The formula in Theorem gives an asymptotic one when
m(N) tends to infinity by virtue of Prop. 9.

4. We discuss here questions about local densities and representations
of quadratic forms.

The most fundamental one is

(a) to evaluate the density «, (N, M).

(b) Let M be a regular quadratic lattice over Z,.

When does the set of accumulation points of {«,(IN, M)|N: regular sub-
lattice of M with a fixed rank} contain 0 and/or oo?

(c) We proved in [3];

Let M, N be positive definite quadratic lattices over Z, and assume
that Z, N is represented by Z,M for every p. Then N is represented by
M if m(N) is sufficiently large and rk M > 2rk N 4+ 3. Our results here
seem to suggest that rk M > 2rk N + 3 is the best possible condition. The
counter-example may be found in the sequence {N,} such that []«,(Z,N,
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Z,M)—0. We can only give the following example in case of rk M =
rk N 4 8. A

Let p, <---<p,,, be primes =1mod24 and M= {p> | --- | Py
L3 18 and N,=<pi) | --- 1 {pr-1y L (8%) be positive definite
quadratic lattices over Z. Then Z,N, is represented by Z,M for every
prime p and m(V,) = 3* — oo, but N, is not represented by M over Z.

(Proof. 1t is easy to see that N, is represented by M over Z,. Suppose
that there is an isometry uw from N, to M. Since {(p!> | --- | {(pi.) =
1.-:{1> over Z, and any sublattice of Z,M which is isometric to | ,_,{1)>
is mapped to Z,({p> ] --- | {p._») by an isometry of Z,M, the orthogonal
complement of u({p> | --- ] {(pi_,>) in M is isometric to {1, | (1) | {3)
| ¢8> over Z,. Hence we have u(3*) = Z-3'x for xe€ M, and then Q(x)
= 1. This is a contradiction.)

(d) Let m, n be natural numbers with m > n 4+ 2, M a positive de-
finite quadratic lattice over Z with rk M = m, nM C 2Z and N) a regular
quadratic sublattice of Z,M with rk N) =n for p|2dM. If a positive
definite quadratic lattice N over Z with rk NV = n satisfies the following
conditions 1) ~5), then is N represented by M?

1) Z,N = N for p|2dM,

2) Z,N is represented by Z,M for every prime p,

3) the corresponding matrix to N is sufficiently large in an appropriate
sense,

4) [Je(Z,N, Z,M) > « for any fixed positive constant «,

5) N is not a spinor exceptional lattice for M in case of m = n + 2.

Analytically it is (almost in case of m = n + 2) sufficient to show the
following

(@) Let f(Z2) = > a(T)exp(2ria(TZ)) be a modular form of degree n
and weight k(e 1Z), and assume that k2 > n/2 4+ 1, and the constant term
of f(Z) vanishes at every cusp. Then does a(T)|T|"*V/*-* = o(1) hold for
T >0? In case of k =n/2 + 1 we restrict T by the condition that |27
is not numbers of form ab* where a, b are integers and a divides 2X(the
level of f(Z)).

When £ is sufficiently large and even, it is known ([4] and a letter
from S. Raghavan) that a(T)|T|"*/2-* = O(m(T)~*) (¢ > 0).

The condition 4) may be weakened:

Suppose n = 1, and consider the following condition 1’) weaker than 1)

1) Z,N = N, for p such that Z,M is anisotropic.
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Then for m > 3 1’), 2) imply

4) [laZ,N, Z,M) > (M, ¢)(dN)-* for a"positive constant #(M, ¢) and
any smallp number ¢ > 0.
When m = 4, the condition 1’), 2), 8) imply the representation of N by M
since for each cusp form f(2) = 2 ¢, exp(2rikz) we know c, = O(k/***), |
e >0. When m =3, via an arithmetic approach of Linnik, Malyshev,
Peters [8] it is shown under generalized Riemann hypotheses that 1°), 2),
3), 5) imply the representation of N by M. Here the condition 5’), which
is stronger than 5), is as follows:

5) dN +# ab® (a, be Z, a|2dM).
Let A be a matrix corresponding to a positive definite ternary lattice M.
Put 6(z) = 6(z, 0,0) = 3 a(n)exp(2zinz) and decompose it as a(n) = b(n)
+ c(n) where b(n) (resp. c(n)) is a Fourier coefficient of Eisenstein series
(resp. a cusp form) as usual. It is known, by the Siegel formula, that
b(n) > k(M)h(— 4n|A|) where £(M) is a positive constant and h(— 4n|A|)
is the class number of primitive positive definite binary quadratic forms
with discriminant — 4n|A| if we assume 1’), 2). If, hence, c(n) = O(n'*~)
(e > 0) for n + ab® (a, be Z, a|the level of A), then the conditions 1), 2),
3), §') imply the representation of N by M. Recent developments of the
theory of modular forms of weight 3/2 show: for a fixed square-free ¢ such
that ¢ f the level of A, c(tn®) = O(n'***) (¢ > 0) holds. Hence a(in?) = b(tn’)
+ c(tn®) gives an asymptotic formula as n — oo if we assume the conditions
1), 2), 9.
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