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THE b-FUNCTIONS AND HOLONOMY DIAGRAMS OF
IRREDUCIBLE REGULAR PREHOMOGENEOUS
VECTOR SPACES

TATSUO KIMURA

Introduction

The purpose of this paper is to investigate the micro-local structure
and to calculate, by constructing the holonomy diagrams, the b-functions
(See [2]) of irreducible regular prehomogeneous vector spaces (See [1]).

Since we know the relation of b-functions with respect to castling
transformations (See § 12), it is enough to calculate them only when they
are reduced. In this paper, we shall deal with twenty of all twenty nine
reduced regular P.V.’s in the Table in [1]. Together with other articles,
this completes the list of b-functions of irreducible reduced regular pre-
homogeneous vector spaces (See § 12) except (SL(5) X GL(4), 4, & A,, V(10)
® V(4)) which is the most complicated case (See I. Ozeki [11]). This paper
consists of the following twelve sections and one Appendix with I. Ozeki.

§

Preliminaries

Regular P.V.’s related with GL(n)

(Sp(n) X GL(2m), 4, & 4,, V(2n) ® V(2m))

(Spin (10) X GL(2), half-spin rep. ® 4,, V(16) @ V(2))
(GL(1) X Spin (12), I ® half-spin rep., V(1) ® V(32))
(GL(1) X E;,, O ® 4,, V(1) ® V(27))

(GL(1) X E,, O ® 4,, V(1) ® V(56))

(GL(6), 4,, V(20))

§ 9. (GL() X Sp(3), O ® 4,, V(1) ® V(14))

§10. (GI(7), 4, V(35))

§11. (SL(5) X GL(@3), 4,® 4,, V(10) ® V(3))

§ 12. Table of the b-bunctions of irreducible reduced regular P.V.’s
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Appendix with I. Ozeki. (GL(1) X Spin (14), (] ® half-spin rep., V(1)
® V(64))

In § 1, we shall review the main results of [2] which will be used later.
From §2 to §11, we do the classification of the orbits, construction of
the holonomy diagrams and calculation of the b-functions. In §12, we
shall give the list of b-functions for irreducible reduced regular P.V.’s.
Some of them have been already calculated by M. Sato and the author
using the different method (See [7]). The holonomy diagrams in §2, §8
and § 10 are first obtained by M. Sato. The author would like to express
his hearty thanks to Professors Mikio Sato and Masaki Kashiwara for
their invaluable advice and encouragement.

§1. Preliminaries

Let (G, p, V) be an irreducible regular prehomogeneous vector space
(abbrev. P.V.) with the singular set S. Then S is the zeros of the relative
invariant f(x): S = {x € V;f(x) = 0}, f(o(g)x) = x(g)f(x) for all g € G and
x € V. We shall consider the micro-differential equations I = &f° where
& is the sheaf of micro-differential operators of finite order on the cotan-
gent bundle T*V = V X V* (See [2]). Note that the group G acts on
T*V by (x,y) — (o(2)x, p*(g)y) for xe V, ye V* and g e G where p* denotes
the contragredient representation of p. Let 4 be the Zariski-closure of a
conormal bundle of some G-orbit p(G)-xy(x, € V). Since we consider only
the Zariski-closure of a conormal bundle, we shall omit the word “the
Zariski-closure” for simplicity. Assume that 4 is G-prehomogeneous and
is contained in W = {(x, gradlog f(x)*); xe V — S,se C}. In this case, 4
is called a good holonomic variety. It is an irreducible component of the
characteristic variety of M. We can show that there exists a local b-
function b,(s) which is unique up to a constant multiple (See [2]). We
have b, ,(s) = 1 and b yy+(s) = b(s) where b(s) denotes the b-function of
this P.V. When two good holonomic varieties 4, and 4, intersect with

codimension one, we have the relation between b,(s) and b,(s) as follows
(See [2]).

THEOREM 1-1 ([2] Theorem 7-5). Let A, and A, be good holonomic
varieties whose intersection is of codimension one with the intersection ex-
ponent (u:v). Assume that M = &f° is a simple holonomic system with
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ord, f* = — ms — 1,/2 (i = 0,1). Then we have, up to a constant muliiple,

< 1 + 2k
b, (5) = duf — ord, ) + LE2h
a2 = 1| ordar - ordury + LR

where [¢] = alw + 1)-- (¢ + & — 1) .

] (mo—~m1)/(v+1)

Here we denote by ord,f* the order of f* at 4 (See [2]). Note that m,
and m, are non-negative integers, and (z:v) = (1:0) or (#:v) is a pair of
positive integers satisfying ¢>2, v>1, and (m, — m,) is a multiple of
@+ 1.

CororrLary 1-2 ([2] Corollary 7-6). If A, and A, intersect regularly,
ie, p=1and v =0, we have

=1 -~ to— s —1
(1.2) bule)fbae) =1 <(m° m)s + - 2 + k)

where ord,, f* = — m;s — % i=0,1).

Let 4 be a good holonomic variety. Then 4 = G(x,, ¥,) for some
x eV, yoe V¥ where G(x, o) = {(0(€)%0, 0(2)y0); £ € G}. In this case, we
can calculate the order ord,f* by the following proposition.

ProposiTioN 1-3 ([2] Proposition 4-14). Let A, be an element of the
Lie algebra g of G satisfying dp(Ay)x, = 0 and dp*(A))y, = ¥.. Then we
have

(L.3) ord f* = s0(A) — trys, dp.(A) + b dim Vi

where V} denotes the conormal vector space (dp(g)-x,)*, and dp,, denotes
the representation of g,, = {A €g; dp(A)x, = 0} induced by dp*.

Now let 4, = G(x,, yo) and A, = G(x,,y,) be good holonomic varieties
such that (x,, y) e 4,N4; and dim G(x,, y) = dim V — 1. In this case, the
intersection exponent (y:y) is given by the following proposition.

Prorosition 1-4 ([2] Proposition 6-5). Let A, be an element of g
satisfying dp(A)x, =0 and dp*(A)y, =y,. Then A, acts on the one-
dimensional vector space V = V¥ modulo do,(a..)y.. Let B be its eigen-
value, i.e., 8 = try A,.. Then pn and v are given by § = pul(x + v), (1, v) = 1.
If 3 is not determined uniquely, i.e., 3 depends on A,, then we have y =1,
v =0, and A,, A, intersect regularly.
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Let 4 = T(o(G)x,)~ be a conormal bundle of a G-orbit p(G)x,. Then
G acts on /A prehomogeneously if and only if the colocalization (G.,, 0z,
V¥ at x, is a P.V. We shall consider some sufficient conditions that
ACW, i.e., 4 is a good holonomic variety.

ProrositioN 1-5 ([2] Proposition 6-6). Let A, and A, be two conormal
bundles of some G-orbits. Assume that dimg,-p = dim V — 1 for some
ped,N A, where g, = {Aecq;dg(A) = 0}. Assume that A, (or A,)CW. Then
we have A, A,C W. Moreover W is non-singular and W = {(x,y) e VX V*;
{dp(A)x,yy = 0 for all A eg,} near p.

Let V,, = Vmod dp(g)x, be the normal vector space. Then the isotropy
subgroup G,, acts on V.. We denote this action by g,. Let f,, be the
localization of f(x) at x, (See [2]). This is a relative invariant of (G,,, g.,,
V., corresponding to x|G,,. Let S,, be the singular set of (G.,, 3z Vao)-

ProposritioN 1-6 ([2] Proposition 6-9). If gradlogf,,: V,, — S,,— VX

is generically surjective, then A, = T(o(G)x,)* C W, i.e., 4, is a good holo-
nomic variety.

CororLARY 1-7 ([2] Corollary 6-10). Assume that the colocalization
(Gaoy 0200 VE) of (G, p, V) at x, (€ V) is a regular P.V. If dy|g,, is a non-
degenerate element, then the conormal bundle A, = T(o(G)x,)* of the G-orbit
o(@)x, is a good holonomic variety.

CororrARY 1-8 ([2] Corollary 6-11). Assume that the colocalization
(G5 P20s V) of (G, p, V) at x( € V) is an irreducible regular P.V. Then the
conormal bundle A, = T(o(G)x,)- of the orbit p(G)x, is a good holonomic
variety.

ProposiTioN 1-9 ([1] Proposition 14 in § 4).

(1) For d=degf and n= dim V, we have d|2n and yx(g)™* =
det, p(g)* for g€ G.

(2) 0y(A) = (d/n)trdp(A) for Acg.

Remark 1-10. Let (G, p, V) be an irreducible regular P.V. with finitely
many orbits. Let & = {4, A4, ---, 4"} be the set of all conormal bundles
in W, of some G-orbits in V. The holonomy diagram is, by definition,
given as follows.

If dimANA =dimV — 1, and AN A Z A” for any other 4” in %, then
we write the diagram as in Figure 1-1. Moreover, if 4 and 4’ are good
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)G o

bu(s)
b(s)
24
—mys — £
a T2
Figure 1-1. Figure 1-2. Figure 1-3. (muy >m,)
holonomic varieties, we write the orders ord,f* = — m,s — p,/2 for 4 and

A’, and the ratio of the b-functions as in Figure 1-3. If dimAN A = dim
V —1and 4NA'CA” for some A”, then we write the diagram as in Figure
1-2 (e.g. Figure 11-1). Although some general theory for such cases has
been established, it is not published yet and hence in this paper we avoid
to argue this case. Actually, only in § 11, such case will appear and to
calculate the b-function in § 11, we can use another part of the holonomy
diagram. Although usually we do not write the conormal bundles outside
W (e.g. Figure 3-2), sometimes we write them (e.g. Figure 4-1, Figure 11-1).
Since G is reductive, we have (G, p, V) = (G, p*, V*) and we identify them.

We sometimes write as @ ~~~~~ @ when T and 7" are the dual
orbits of each other (See § 11) where 4 and A" are the conormal bundles of T
and 7" respectively. If T = T, we write as @:2"} (e.g. Figure 4-1 and
Figure 11-1).

§2. Regular P.V.’s related with GL(n)

We shall use the same notations as in [1].

2-1. (G x GL(m), § ® 4,, V(m) ® V(m)) where §: G — GL(V(m)) is an
m-dimensional irreducible representation of a connected semi-simple alge-
braic group G(or G = {1} and m = 1)

The representation space V = V(m) ® V(m) can be identified with the
totality of m X m matrices M(m,C). Then the action p = §® 4, is given
by o(@)X = d(g)X's, for g = (g,8)eG= G x GL(m), Xe M(m,C). The
relative invariant f(X) is given by the determinant: f(X) = det X. Since
we are concerned with relative invariants, we may assume that G = SL(m)
and § = 4,. It is well-known that there exist (m 4 1)-orbits
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(X, = {Xe M(m,C); rank X = p}
where X, = 0 for p=0,1,.---,m.

We identify the dual V* of V with V= M(m,C) by (X, Y) = tr ‘XY
for X, Ye M(m,C). Then the dual p* of p is given by p*(g)Y = ‘g;'Yg;’
for g = (g, 8) € G = SL(m) X GL(m), Ye M(m, C).

Since dp(A)X, = AX, + X,'B = (éliﬁ t_Bs_) for A= (A, B)eg
B, B A 0
with A = (i; ﬁi) and B = ( B: Bi)’ the conormal vector space Vi, =

(do(@X,)* is given by V¥, = {(8 %ﬂ);Yﬂ eM(m — p, C)} The isotropy

subalgebra g,, = {4 e g; do(A)X, = 0} is given by

_tA
o= (8 A3 B ewacmmonnn

e Mz, m — ,C), A, B, e M(m — p, C)} :

2.1)

This gy, acts on Vi as dp(A)Y, = —‘AY, — Y,B, for Aegy,
Therefore we have (Gy,, px, VE) = (SL(m — ) X GL(m — p), 4,® 4,
Vin — @) ® V(n — ). Put Y, = (g L ) where I, , denotes the unit
matrix of size m — p(p=0,1, ---, m). '}L‘hﬂen Y, is a generic point of the
colocalization (Gx,, px,, V#), and Y,,, is a point of the one-codimensional
orbit (¢ < m — 1). We denote by 4, the conormal bundle of p(()X, (0<
¢ < m). Then, we have dim 4,N4,,, = dim V—1. Note that the colocali-
zation (Gx,, px,, V¥) (¢ = 0,1, .--, m) has finitely many orbits with the
unique one-codimensional orbit, it is clear that we have obtained all one-
codimensional intersections among 4, (u = 0,1, ---, m). Since g, = 3((m) D
8l(m), we have dim g(X,, Y,,,) =m’ —1 for 0 =0,1,---,m — 1, and hence
by Proposition 1-5, we have 4, C W, i.e., 4, is a good holonomic variety
(0 < p < m). Note that 4,, = V X {0} is always a good holonomic variety.
We shall calculate the intersection exponent (i:9) of 4, and 4,., by using

0] 0
Proposition 1-4. For any g e C, put AZ = ((O), ( 0 } —B )) €g. Then
- Im -p-1

we have dp(A)X, = 0, dp*(A9)Y,,, = Y,.,, and B = tr A? where tr denotes
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the trace of Af on Vi modulo dpy,(ax,)Y,., since V¥, modulo dpy,(8x,)Y,..
= {yE,.,,.. € M(m,C); y € C} where E,; denotes the matrix unit. Therefore
we have 7 = 1 and & = 0, i.e., they intersect regularly. Now by Proposition
1-3, we shall calculate the order ord,,/° of m = &f° at A, where f(X) =
det X.

Put A, = ((0), (8 o )) 4. Then dp(A)X, = 0 and dp*(4,)Y, =
Y, 0< < m). The char;ncé‘er oy corresponding to f(X) = det X is given
by 6y(A) = tr B for A = (A, B) e g = 3[(m) ®gl(m). Since dim V¥, = (m — p)y’
and tryy, dox,(A,) = (m — w)°, we have ord,, [* = siy(A,) — tryy, dpx,(A,) +
(1/2)dim V¥, = — (m — p)s — ((m — p)*/2). Thus we obtain the holonomy
diagram (Figure 2-1).

By Corollary 1-2, we have b,,(5)/b,,,(s) =s +(m — )OO <p<m —1).
Hence

) = bus) = bun(s)- T 04,801, (9

= mE_[:(s—{— m—yp)=(s+ 1+ 2 -(s+ m).
Note that b, (s) = 1.

0
(s+1)

)
(s +2)

2
—ms — L
2

Figure 2-1. Holonomy diagram of (SL(m)XGL(m), 4;Q4;, V(m)KRXV(m))
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Remark 2-1. The b-function of 2-1 is classically known by using
Capelli’s identity (See H. Weyl: Classical Groups).

2-2. (GL(n), 24,, Vzn(n + 1)) (n > 2)

The representation space can be identified with the totality of n X n
symmetric matrices V = {Xe M(n,C); ‘X = X}. Then the action p = 24,
of GL(n) on V is given by p(g)X = gX‘g for ge GL(n), Xe V. It is well-
known that there exist (n + 1)-orbits p(G)X, = {X e V; rank X = v} where

The relative invariant is given by the determinant f(X) = det X. If we
identify the dual V* of V with V by (X, Y) = tr XY, we have p*(g)Y =
‘g='Yg ! for ge GL(n). We have

do(A)X, = AX, + X,'A = (é%i«_?_)
3

(2.2) A 4
for A= (A; Aj) e gl(n).
Therefore we have
3n = {(47 )54 = — A, e M), A MG, 0 — ),
(2.3) 0 A,
A,eM(n — u)} .

Since dimgy, = n(n — v) + (v — 1)/2), we have dimp(G)X, = nv —
(v(v — 1)/2). The conormal vector space V¥ is given by

@4) vi.={(§ W)W = W.eMm -},
Since dp*((’gl ij)) (g Vg) = (g} — ‘A4V[9—— WA4>’ the colocalization

(Gx,, px,,» V¥) at X, is isomorphic to (GL(n — v), 24,, VE(n — v)(n — v + 1))).
Put Y, = (8 IO )(v =0,1,---,n). Then Y, is a generic point of the
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colocalization at X, and Y,,, is a point of the unique one-codimensional
orbit. Thus we have dim4, N 4,,, = dimV — 1, where 4, denotes the
conormal bundle of p(G)X,. Since dim dp*(gy, N g)Y,.: = dim dp*(gy,)Y,. 1,
we have dimg(X, Y,.,) = (n(n + 1)/2) — 1, and hence 4, is a good holo-

nomic variety by Proposition 1-5 (v = 0,1, - - -, n).
0
Put A} = (_ -8 ) e gli(n). Then we have dp(A)X, =0,
— - %In—v—l
v 1 n—v—1

dp*(ADY,,, = Y,,, and 28 = tr A’ where tr denotes the trace of Af on V}
modulo dpy(3x,)Y,.;. Hence, 4, and 4,,, intersect regularly, i.e., the inter-

section exponent of /4, and 4,,, equals (1:0). We shall calculate the order
ord, f* by Proposition 1-3. Put A, = (8 _ (l)I ) (0<v<n). Then
do(A)X, = 0 and dp*(A))Y, = Y,. Since y(4A,) 2=n2 vtr A = —(n—v), and
tryy, dox,(A) = dimVE = 4(n —v)(n — v + 1), we have ord ,f° = siy(A)
— tryy, doy(A) + $dimVE = — (n —v)s — f(n —v)(n — v + 1).

Thus we obtain the holonomy diagram (Figure 2-2). By Corollary

(s+1)

(s + %)

—(n—v)s—in—-—v)(n—yv+1)

—ns — in(n + 1)

Figure 2-2. Holonomy diagram of (GL(n), 241, VGn(n+1))) (n>2)
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1-2, we have b, (s)/b,,.(s) = s+ (n —v + 1)/2) (0 < v <'n — 1), and hence
b(s) = by(s) = [[i=i(s + (v + 1)/2).

Remark. The b-function of 2-2 is also already known. It can be

obtained by using Capelli’s identity or by a direct calculation of the
Fourier transform of f(x)".

2-3. (GL(2m), 4, V(m(2m — 1))) (m > 3)

The representation space can be identified with V,, = {X e M(@2m, C)|
‘X = — X}. Then the action p = 4, is given by p(g)X = gX‘g for ge
GL(2m), Xe V,. The relative invariant f(X) is the Pfafian of X. It is
well-known that there exists (m + 1)-orbits p(G)X, = {X e V, ; rank X = 2y}

0 01 O
0 00 O
hi X, = 0< p< m).
where X, ~L 00 0 O<p<m
0 00 O
By simple calculation, we have
” m=p " m-p
‘B, — B, ‘B, | A, + ‘D;| ‘D,
= — B A
2.5 do(A)X, = s 3
@5) DX =\ A T A G = =G
— D, C,
A A,B B,
where A = A, A B, B,
C, C,\D, D,
C, C,|D, D,
and hence,
A A B B
0 A, O B
2.6 = 4 t1;'B,= B, ‘C,=C
(2.6) Ax, C. C, ‘A, D, 1 1 G 1
0 C| O D,
0 0 0 0
« _ 10 X 0 Y X=—-X{_{/{XY\.'X=-X
‘/X - ’ :{ ~sl = ] = Vm—#
# 0 0 0 0y “Z=-12 ‘Y\Z) 'Z = — Z
0 —-'Y o ZJ
: % g tx Y v A A A, B,
Since gy, acts on V¥ as X+— — ‘A X — XA, where A, = D and
4 4
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%= (_)i?%) with ‘X = — X, ‘Z = — Z, the colocalization (Gy,, px,, Vi)

at X, is isomorphic to (GL(2m — 2u), 4,, V((m — p)(2m — 2p — 1))). Here
we identified the dual V¥ of V,, with V,, by (X, Y) = tr XY.

0 0 0 0
Put Y, = | g g Imo_# O<p<m).
0 —I,, 0 0

Then Y, is a generic point of the colocalization (Gx,, px,, Vi) at X,, and
Y,.: is a point of the one-dimensional orbit and hence we have dim 4, N
Aoy =dimV — 10 < p < m — 1) where 4, denotes the conormal bundle
of p(G)X,.

By (2.6), we have gy, # g, for p# m, and hence dim dp(g)X, =
dim dp(g,)X, for p + m. Applying this fact to the colocalization at X,, we
have dim g,(X,, Y,.,) = dim ¢(X,, Y,,,) = m(2m — 1) — 1. This implies that
4, is a good holonomic variety by Proposition 1-5.

(o 0 o o
o=Ff _,, o 0
Put Aﬁ = Zimop-1 for peC.
o 0 o 0
— B
0 0 0 L

Then we have dp(AH)X, = 0, dp*(A))Y,,, = Y,,, and tr Af = 23 where
tr denotes the trace of A? on V¥ modulo dp(gy,)Y,.;, and hence by
Proposition 1-4, 4, and 4,,, intersect regularly, i.e., the intersection ex-
ponent of /4, and 4,,, equals (1:0). We shall calculate the order ord,,f’.

Put A, = | —|— | ] Then we have dp(4,)X, = 0 and

- - %Im-/l J
dp*(A)Y, =Y, Since oy(A) = — (m — p), tryy, A= dimVF, = m — p)
(2m — 2p — 1), we have ord,,f* = sdy(A,) — tryy, Ay + 5dimVE, = — (m— s

— 4(m — p(@m — 2 — 1).

By Corollary 1-2, we have b,,(5)/b,,,(s) =s+2m — ) =1 (0 < p <
m — 1). Hence we obtain the holonomy diagram (Figure 2-3) and b-function
bs) = [Tid (s + 2(m — ) — 1) = [[ii (s -+ 2k — D).
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0

(s+1)

(s + 3)

—25s — 3

e : ..m
[
»
I
rol

(s+2m —2u—1)

—(m — 195 — ¥m — )@m — 2u — 1)

m(m — 1)
2
Figure 2-3. Holonomy diagram of (GL(2m), 45, V(m@2m—1))) (m>3).

Remark. These three P.V.s have many common properties: (1)
(GL(m), 24, V((’;’)z + m)) with £=1 (2) (SL(m) % GL(m), 4,® A,

V((";)é ¥ m)) with £=2 (3) (GL(zm), 4, V((’g)z + m)) with ¢ = 4.
They have (m + 1)-orbits and their relative invariants are of degree m of
(’g)z + m variables. We denote @ by @ if 4 is the conormal bundle

of a p-codimensional orbit. Then their holonomy diagrams are as in Figure
2-4,

§3. (Sp(n) X GL(2m), 4, ® A,, V(2n) ® V(2m)) with n > 2m

The representation space V can be identified with the totality of
2n X 2m matrices. Then the action p = 4, ® 4, is given by p(g)X = g,X’g,
for g = (g, &) € G= Sp(n) X GL(2m), X ¢ V. Let X be an element of V
such that rank X = v and rank ‘XJX = 24(2m = v > 24 = 0) where J =

(? - OI"). Then by the action of GL(2m), we may assume that X = (X’, 0)

0 0 I
with X’ € M(2n,v) satisfying ‘X'JX’ = ( 0 0 0#). Put X, ,, as follows.
—I, 0 0
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O OB
(s+1) (s+%
D (D -
(s + _g_ + 1) G+
@ —2s — Z—;lz ° —2s— %
(s+ 2 +1) (s +4)
@ gy BxE ° 85— g
<s+§£+1> s+3%
2 @ —4s 60+4 @ —4s — 12
2
40
<s+7 1) I +9 .
—1)¢ : m41\*
<+(m2 Jﬁl) (s+72 )
1 my +m
—ms — :ﬁz(mg +1) —ms — ,(Z)Z*ﬁ
(m-+1)-orbits degf=m dim V:(’;’)Hm @ ¢=1
O OBk
s+ 1 s+ 1
O O
(s +2) (s +3)
O = @
(s +3) (s + 5)
O =@ e
(s+4) (s+7)
@ v @ e
(s + 5) | (s+9) !
s + m) I (s +2m —1)
s T ms — @m —1)
2 2
@ =2 ©® =4

Figure 2-4
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(3'1) Xy,2;z = I r: }

Then X,,, satisfies the same condition as X and hence there exists an
element g, of Sp(n) satisfying g, X = X, ,,. This implies that S,;, = {Xe V;
rank X = v, rank ‘XJX = 24} (2m = v = 2 = 0) consists of a single G-orbit,
and we complete the orbital decomposition of this space. Put A e 3p(n)

and D e gl(2m) as follows:

( A1 Am A13 Bl Bm Bls
Azl Az Aza EB12 Bz Bza
A — A31 A_:gz As tB”f,_ st o Bs s
Cl Clz Cla - tAx - tAﬂ - tA:n
tcm Cz Cza '_tAn "tAz _tA32 J
th tCz3 Cs - AIS —tA23 - A3
(3.2) PO S e PR g
D, D, D, D“}
D= Dm Dz Dzs D24 l
D31 Dsz Da D34
b, D, D, D)
] v=2p ” oam—v

where ‘B, = B,, ‘C, = C, (i = 1, 2, 3).
Then, for A = A@® Deg, we have

d‘o(A)X:,zp == AX:,?;; + Xz,a/‘tD

(A, +'D, A, + lDZl] B, 4 'D,, ‘D }
Ay + Dy A, +'D, | ‘By+ ‘D, ‘D,
(83) o A31 Ay o »VWLBJS o 70%;
=l oS, oD, —4, 4D, D,
‘Cyy C, i —'A, 0 J
lClS tCza | _"tAm 0

and hence the isotropy subalgebra gy, ., is given as follows:
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[ A, 0 0 B, B, 0
A21 Az A23 LB12 Bz Bza
T 0 0 A 0 ‘B B
— A = 3 Y 23 ) 3
8 C. 0 0 |—A —A, 0
o 0 O 0 —'A, 0
0 0 03 0 - A23 —lAs
- tAl - EAzl - CI Du
ol 0 —4 | 0 Dy
_Bx _Blz A1 D34
0 0 0 D,
(3'4) [ Az AZI th !7J3 Bza l Bz .
A, B, B,
| Y B e ¥y
a A, B,| ‘B
i 0 I Cs _iAa - A23
0 | 0 1 0 —tA,
Al B] —Bm D34
Cc, —‘A ‘A, | —D
) 1 1 21 | 14
0 l ,_ﬂ?,,_‘ QZL
0 | D,

= (glv — 2p) D gl2m — v) D 3p(1) @ 3p(n — v + p)) © ulk)

where (k) denotes the Lie algebra of a k-dimensional unipotent group
with 2 =3@n + 1) — 20) — 3(v — 2p)* + v(2m — v). In this paper, we
make a convention that the first (resp. second) @ implies the direct sum
as Lie algebras (resp. vector spaces) for (g, @ g.) D g..

We identify the dual space V* of V with V by (X, ¥> = tr X*Y for
X, Ye V = M(2n, 2m), and hence we have p*(g)Y = ‘g/'Yg,* for g = (g, )
€G, YeV and do*(A)Y = —‘AY — YD for A =(A,D)ecg. From (3.3),
the conormal vector space Vi, is given by

10
000 0 ?
¥ _ ]y _ | 1 Y D '
(3.5) Vi, =1Y o o X XS
OX}O\Z }u—z,u
L0 Wl
T:/!T"x»
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= e -

Y3 }2(n—v+,u) ’
——

y=2p2m—y

n

Here the isomorphism is obtained by putting Y, = X, Y, = Z and Y,
= [%/,] Then the action dpy,,,, of gx,,, on Vi is given as follows.

X)),

Y, O}Y3

o (A =By Aw\( Y,
dox, DY = | A —C ||,
-B, A

Thus the action on Y,-space is isomorphic to (GL(v — 2p), 4,, V(3(v — 2p) X
(v — 24 — 1))) and the action on Y;-space is isomorphic to (Sp(n — v + p)
X GL2m — v), 4, ® 4, V2n — 2 + 21) ® V(2m — v)). First we shall con-
sider the case when v is even, ie., v = 2. Let ¥, be an element of Vi

: I 1. .
with X = (_1‘.’ o) Y= ( "% 0), W= ( ({m) and Z = 0 in (3.5).

~ v
Then Y, is a generic point and Y, e S} o, sn-9 1€, Aoy o, = A sy omoaw

where /,,, (resp. AF,) denotes the conormal bundle of S,,, (resp. S¥,).
We shall calculate the order ord,,. ., f° where f(X) = Pf'XJX. Let A, be

the element of gy,,, with A, = L, _,, D, = — L, _,,, all remaining parts
zero in (3.4). Then we have dp(4)X,,, = 0 and dp*(ﬁo)?o =Y, Since
Sy(A) = — @2m — v — p), tr,,ij”ANO =0 — W@ — 20— 1)+ 4m — V) (n—

2 + p) + 6(m — V)V — ) and dimVE | = — (2 — 2¢ — 1) + 4(m—
VY(n — 20 + p) + 4(m — V) (Y — p), we have
(3.6 ord,f = —O@m—v — @5 — 30 — )@ — 2 — 1)
—2m —v)(n — 2 + p) — 4m — V) — p).
Let ¥, be the element of Vi, with X = (_2 L(,)_,,>, Y= (Im-»'(;l 0),
v—p
W= (0 176‘”"‘) and Z = 0. Since Y, is a point of a one-codimensional

orbit and Y, € Si s, 2m-r—1, We have Ay, N Ayroyy o, = dim V — 1. They
intersect regularly. By Corollary 1-2, we have

3.7 b4 10, () Bty 1y 2(8) = 8 + 2n — 2 m—1=v=0).

o O Iv'«—p—l O
Now let Y, be the element of Vi ,6 with X=|—-I,_,.., 0 |" |
0 | 0

Y = (I’"‘”' 0), W= (O g’”‘“') and Z=0. Since Y, is a point of the
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other one-codimensional orbit and Y, e S5t u-1) 20—y, We have dim 4,,, ,, N
Ay 5¢uery = dimV — 1. They intersect regularly. By Corollary 1-2, we have

(3.8) B.to 0Oty 2sry = 8 + 2m — 21 — 1 (m—1>pu>0).

Now we shall show that 4,,, is not a good holonomic variety when
v is odd, i.e, v=2+ 1. Let Y, be the element of Vi, with X =

0 I, 10

-1, _) y= ("5 O w= (" §) and 2= 0 in @5,
0 | 0 _

Then it is a generic point of the conormal vector space. Let A, be the

element of g,,,, with 4, = <%IZ<6”"’ g), D, = — I, _,, all remaining parts

zero. Then we have dp(4,)X, ,, = 0 and dp*(Ao)f/O =Y, Therefore, if A, s,

is a good holonomic variety, m

= —(A)=2m—v —p—1+pisa
non-negative integer which is a contradiction. Thus we obtain the

Ayyop

following proposition.

ProrositioN 3-1. The irreducible regular P.V. (Sp(n) X GL(2m), 4, ®
Ay, V(2n) @ V(2m)) (n = 2m) has finitely many orbits S, ,, = {X € M(2n, 2m);
rank X =y, rank ‘XJX = 24} 2m =v = 24 = 0). When v is odd, the co-
normal bundle A,,, of S,,, is outside W, i.e., A,,, is not a good holonomic
variety. When v is even (v = 2), A,,, is a good holonomic variety and
ord,,, f'= —@Cm —v — s — 50 — )@/ — 21 — 1) — 2(m —V)(n — 2/
+ ) —4m — V) — ). We have dim /4,5, N A, 50 = dim 4, 5, N 4,105, =
dimV — 1. The b-function b(s) is given by b(s) = [[r.(s + 2k — 1)- [[ 7
(s + 2n — 2¢).

(s +2m —2u — 1) (s +2n — )

Figure 3-1. (v: even)
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N

eeo o000

escecce

@m — 3)

@m —2)

@m — 1)

2m

Figure 3-2. Holonomy diagram of (Sp(n) X GL(2m), 41 ® 41, V(2r) Q V(2m)) with n = 2m.
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§4. (Spin(10) X GL(2), half-spin rep. ® 4,, V(16) ® V(2))

The representation space V(16) ® V(2) is identified with V = V(16) ®
V(16) where V(16) is spanned by 1, ee;, eeene, A1 <i<j<5, 1< k<4
< m < n<5)(See p. 110-112 in [1]). The action p = p; ® 4, is given by
o(@)x = (0:(8)X, 0:(g)Y)'g, for g = (g,, ) € Spin(10) X GL(2), x = (X, Y)e V
= V(16) ®V(16) where p, denotes the even half-spin representation of
Spin(10) on V(16). First of all, we shall complete the orbital decomposition
of this space. dJ-I. Igusa completed the orbital decomposition of (Spin(10),
01, V(186)) (See [3]). There exist three orbits S, = p,(Spin(10))-x,, (m = 0, 5,
16) where S, denotes the m-codimensional Spin(10)-orbit and x; = 1 +
eeee, x;=1 x;,=0. If 2¢C%, for any index i satisfying 1 < i < 5, we
put S;() = 27! + (A — 2Ye;f;. Then S,(2) is an element of Spin(10). For
any two distinct indices i, j satisfying 1 <1, j <10, j#i+5, i #j -+ 5,
we put S;;(2) = 1 + Zee; = exp(le,e;) where e, = f,_; for 6 < k< 10 (See
[1], [3]). Then S,(2) is an element of Spin(10) satisfying S,;,(2)S;(2) = 1.

PropositioN 4-1. The triplet (Spin(10) X GL(2), half-spin rep. ® 4,
V(16) ® V(2)) has nine orbits S, = p(Gx, (m=0,1,4,8,9,13, 15, 20, 32)
where S,, denotes the m-codimensional orbit.

(1) x,= (1 + eeee, ee, + eee.e;)
(2) 2=+ eeee, ee, + eeee,)
(3) x, = (1, ees + eeee,)

(4) x, = (1, eeese)

(5) x,=(1,ee, + ee,)

(6) x3=(1,ee)

(7) x5 = (1 + eeee,0)

(8) x=1(1,0)

(9) x=(0,0)

Proof. Let ¥ = (x,y) be a representative of one of the orbits of V =
V(16) ® V(16). Then we may assume that x = 0, 1, or 1 + eeee, by the
action of Spin(10). If x = 0, then we have also y = 1 + eeee, 1, 0, ie.,
(7), (8), (9) respectively. Note that we can exchange x and y in X = (x, y)
by the action of GL(2). Assume that x =1. Wemay puty =y, + 5, + ¥,
# 0 where y, = y,-1, ¥, = X yieie; and y, = 2, ¥, 8,80,. We may assume
that y, = 0 by the action of ( —1y (1))
. = 1 by the action of some SH(Z)O (i=1,2;j>6)and <(1) 2) if necessary.

If y = y,#0, we may assume that



20 TATSUO KIMURA

In this case, we have y = e, + yuee, + ysseses + yisees by S;u( — y,;) and
S;y.;) for j =38, 4, 5. If y,, = ys = y5 = 0, we have (6), and otherwise we
may assume that y,, = 1, y,;, = y,s = 0 by the action of suitable elements
of {8;,1(2), Si.16(2), Sis(2), Sss(2); 1€ C}, ie., (6). If y,#0, we may assume that

¥y, = eeee,. By the action of Sg(y,) and <y ]& (1)>, we have y, = 0.
1234

Similarly y,, = 0 for 1 < i< j <4, and hence y = > 4., y;se,es + eeee,. If

¥ =0 for all j =1, --, 4, we have (4). In the other case, we may assume

that y; =1 and y; =0 (2<j<4). By the action of S,(—1) and
S, ,1(1), we have (3).

Finally assume that x = 1 + eee,e,, We may put y =y, +y,. If y,
#+ 0, we may assume that y, = e,e,eie; or y, = eeee,. In the former case,
if y;; #+ 0, we may assume that y,; = 1 by the action of S,(2)S;(1)S,(2!) and
21, where 2'-y,; = 1. Then by the action of S;i( — ¥:5), Si{ — ¥;5) (G = 2,
3,4), Sii(¥es), Se( — ) and S;1(ys), we have (1). If y,;, = 0, we may
assume that y; =y, =0 by {Sx(2), Si(2), Si(2), Si(d); A€ C}. Then by
S0 — ¥20) and S, 1(¥25), we may assume that y,, = y,;, = 0. By some S;(2)

and S,(1), we may also assume that y,, = 0, i.e., ¥y = ype.e, + ye.e; + yuee,

1 0
Vo5 Ys4 1) and Sl,xo(y25y34), we

have y, = 0. By Si(y.5) and S,(y.5), we also have y,;, = 0, ie., y = ypee,
+ yue.e, + eeee,, where we may assume that y,, = 0. If y,, +# 0, we have
(2). If y, =0, it is transferred to x, by S.(—1), Si(—1), S;(—1), Se:(—1),

Si(1), Si(—1), Si(—1), Si,1(1), (} (1)>, S,.16(1), Si(1) and (1 ——1>.

V€8s + eeees. By the action of 5'7,10(}’34), <

Now consider the latter case, i.e., y, = ee,e.e,. If some (())f yﬁl(l <j<4)
is not zero, we may assume that y = e, + yue.e, + eeee,. If y,, =0, it
is transferred to x, by S(1), ((1) _%), Si(—1) and S, ,(1). If y,, = 0, we
may assume that y,, = 1. In this case, it is transferred to x;, by S,(1),
Sus(1), Sy 10(—1), Sr(l), Su(1), Sis(1), Sie(—1), See(—1), Six(1). When all y,, = 0
for 1 <j<4, y=2licic;cayiee; + eeee,, Ifally, =0for1<i<j<4,
it is transferred to x,; by ((1) _D In the other case, we may assume

that y = ee, + y.ee, + eeeie,. By the action of Si(2), S,(2) and G (1)>

with * — 21—y, = 0, we have y = eee, + (1 + 2Q)eeeie,. If (1 4+ 22) # 0,
it is transferred to x; by Si(z), S.(z) and <(1) —/‘Lj ) with g =

1 .
14 22
(1 + 22) = 0, it is equivalent to x, by Su(—1), Su(—1), (2 _}) S(v=T),
and v—1 I,
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Finally consider the case y = y,, i.e. y,= 0. Since y+0, we may
assume that y = ee, + yuee, + 25 1 ypee. If yiy =35 =0 for 1 <j < 4,
it is equivalent to x, as we have already seen. If y,, + 0 and y;, = 0 for

1<j<4 it is transferred to x, by S.(), (} —3/2), Su(1/2), ((1) . /%z>’
10

S,(2/2), S.(1/22), (1/4 1) with 2 = y,,. If some of y,, (1 <j< 4) is not
zero, y is equivalent to an element of the form ee; 4+ y,e.e; + yoeo, + yoiese.
If vy, =02 <i<j<4), it is equivalent to x, as we have already seen.
In the other case, we have y = ee, + e;e,. By the action of S,(—1), S,,(1),
Sul—1), Se(—1), Sy (D), ( 1 1) Su(=D, Sul=D, S~ 1) it s equivalent
to x,.. About the codimension of these orbits, we will see later. Q.E.D.

By the degree formula (See Proposition 15, § 4 in [1]), we know that
there exists a relatively invariant irreducible polynomial f(x, ¥) of degree
four which is unique up to a constant multiple. We shall give an explicit
form of f(x,y) after H. Kawahara’s work (Master Thesis in Japanese,
University of Tokyo, 1974).

For an element x = x, + > ,.; x;e.e; + > xfef of V(16) where e.ef
= eeeee for 1 < k<5, let X=(x;;) be the skew-symmetric matrix of
degree five determined by x,;, and X, the skew-symmetric matrix of degree
four obtained from (—1)°X by crossing out its i-th line and column (1 <
1< 5). We denote by Pf(Y) the Pfaffian of the skew-symmetric matrix
Y = (v,;) of degree four, i.e., Pf(Y) = ¥,¥5% — YV + Y. We define ten
quadratic forms Q,(x) on V(16) by Q.(x) = >%., x,;xF and Q. (x) = xxf +
Pf(X,) for 1 <i<5.

ProrosiTioN 4-2 (H. Kawahara).

(1) 0(Spin(10))-1 = {x e V(16); Q(x) = 0 (1 < i < 10)} — {0}, where p,
denotes the even half-spin representation. Moreover, this is the totality of
pure spinors.

(2) The relative invariant f(x,y) of (Spin(10) X GL(2), p, ® 4,, V(16) ®
V(16)) is given by f(x,y) = 2331 Bix, y)B;.«(x,y) for (x,y)e V(16) ®V(16)
where B(x,y) = Q(x + y) — Q,(x) — Q.y) is the associated bilinear form
of Qx) for 1 < i< 10.

Proof. We shall use the same notation as in [4]. By simple calcu-
lation, we have B(x, x) = (1/8) 2%, Q(x)e;,. Since B,(p,(s)x, pi(s)x) = A(s)-
&i(x(s))- Bi(x, x) for s e Spin(10) where {, is the representation 4, of SO(10)
= »(Spin(10)) (See p. 90 in [4]), we have
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CRY 3 QUeR)e, = X)-L06)- 2 Qe

This implies that W = {x e V(16); Q:(x) = 0,1 < i < 10} is a Spin(10)-invari-
ant subspace. From the orbital decomposition, it is clear that W= S/ U
S, i.e.,, S{ = W — {0}. Since the totality of pure spinors in V(16) is a
single I'*-orbit where /'* denotes the even Clifford group, and g(x, x) = 0
for a pure spinor x (See [4]), we have (1). From (4.1), F(x) = >%., Q.(x)
Q..(x) is invariant under the action p, of Spin(10) since f(y) = > °_, ¥:¥i.s
for y = >, y,e, is invariant under the action £, of SO(10) = x(Spin(10)).
The triplet (Spin(10), p;, V(10)) has no relative invariant (See [1]) and
hence we have F(x) = 0. By using (4.1), it is clear that f(x, y) is invariant
under the action of Spin(10). We shall show that f(x,y) is relatively
invariant under GL(2). Assume that Q,(x) (resp. @;.s(x)) has a term x,x,,
(resp. x,x,) 1 < i< 5). Since F(x) =0, we may assume that Q,(x) (resp.
Q;.5(x)) has a term x,x,, (resp. x,x,,) for some j satisfying 1 < j < 5. This
implies that f(x,y) = >3., Bi(x, ¥)B;.:(x, ¥) is a linear combination of terms
of the following form:

(xnyig + yi1xi2)(xiayi4 + VX)) — (xilyig + yilxis)(xizyi,; + Yy,

4.2
(4.2) = det (x” Y le>~de’c <x“ Y “) .
Xig  Yig X Yu

Hence it is clear that f(x,y) is relatively invariant under GL(2). Since
fQ -+ eeee, ee + eeee) = 1, it is not identically zero. Q.E.D.

Now we shall consider the micro-differential equation MM = &f(x, y)°
and by constructing its holonomy diagram, we shall calculate the b-function
of this space.

Since G = Spin(10) X GL(2) is reductive, we have (G, p*, V*) = (G, p, V)
and hence the dual space V* has also nine G-orbits S¥(m =0, 1, 4, 8, 9, 13,
15, 20, 32). We identify V and V* by taking (e,---e,, €, ---¢;)(k £ =0,
2, 4) as a dual basis, where e;,---e;,, = 1 for £ = 0. We denocte by 4,, (resp.
A%) the conormal bundle of S, (resp. S¥).

(1) The isotropy subalgebra g,, at x, = (1 + ee.eie, ee; + eeee) is
isomorphic to (g,) @ 3((2) (See (5.40) and (5.42) in [1]). Since 4, = V X {0}
= A, A, 1s a good holonomic variety and we have ord,f* = 0.

(2) The isotropy subalgebra g,, at x, = (1 -+ eeese, ee, + eeee) is
isomorphic to (gl(1) @ 3((2) D 3((2)) ® u(11) (See (5.43) in [1]). The conormal
vector space V3 is spanned by (eeee;, — ee) =y, €Sk Hence 4, =
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G(x,, y,) = A% and A, = 4¥. Let A, be an element of g,, with d,, = dj, =
— 1/4, all remaining parts zero in (5.43) of [1]. Then we have dp(4,)x, = 0
and dp*(Ay)y, = y.. Since oy(Ay) = 2(dy + dw) = — 1, tryy A, = dimV} =1,
we have ord,f* = — s — 1/2. It is clear that 4, and 4, intersect regularly
and G,-prehomogeneously with codimension one. Hence we have b,,(s)/b,,(s)
= (s + 1). Note that G, = {ge G; y(g) = 1}.
(3) The isotropy subalgebra g,, at x, = (1, ee; + e.ese.e;) is, by simple

calculation using (5.38) in [1], given as follows:

0

0 )

—2n

3e |
_)a 0 3e — g 0\, -
4.3 *h—lA*<U‘tA>@< ) 4 = (:F1+X
Put o, = (eeeie;, 0), 0, = ( — eeee;, 0), v, = (e.e.e48;, 0), and w, = (e,e.e,e,, 0).

c 7 .
Then the conormal vector space V; is spanned by w,, ---,w,, The action

K)

Xesdl(3),'C= —C with Ciszo,izl,...’zl}.

dp,, of g,, on Vi is given as follows:

G =L+ X| 0,

* * ’——65

(4.4) mmewm=mwum(

Since w, is a generic point, we have A, = A5 and A, = A¥. Let A,
be an element of g,, with 27 — 5¢ = 1, all remaining parts zero except ¢
and 7 in (4.3). Then dp(Ay)x, = 0 and dp*(4,)0w, = w,, However we have
oy(A,) = 6 which is not definite. If 4, is a good holonomic variety, this
must be definite by Proposition 1-3, and hence /, is not a good holonomic
variety, i.e., 4, & W. Note that the P.V.(G,, p.,, V) has no relative
invariant.

(4) The isotropy subalgebra g,, at x; = (1, e,e,ese,) is given as follows:

L+ Xy 0 } 0 ]
5 0 2y 0 0 <77+26 0 )
45) g, ={X= A , :
@5 I —514—5X40_i@ 0 p—2
R T

Xesld),r,0eC) = (gl(1) @ gl(1) D 3((4)) D u(®) .
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Put o, = (e,eese;, 0), w, = — (eeeie5, 0), 0, = (eeeie;, 0), 0, = — (e85,
0), w; = (0, ee;), ws = (0, ee;), w;, = (0, ese,), wy, = (0, e,e;). Then the conormal
vector space V7 is spanned by o, ---,®, and the action dp,, of g,, on V}

is given as follows.

@) dpfB)lo, - 0) = 0, o) (BIIEX] S )

where X €g,, in (4.5).

Any relative invariant of (G,,, p.,, V) is of the form c¢-g(x)" (ceC,
me Z) where g(x) = > 5., %%, for x = 3% x0, Clearly y, = 0, + w; =
(e.esee5, €,5) 1s a generic point, and y; = o, + o, = (e,e,e.8;, €,6;) is a point
of the one-codimensional orbit. Hence we have 4, = 4F and dim /4, N 4,
= dimV — 1. Since 4,, = 4¥, we have also dim 4,N 4, = dimV — 1. Note
that (G.,, 0., Vi) is a regular P.V. since p,(G,,) and its generic isotropy
subgroup are reductive (See [1]). By Corollary 1-7, 4, is a good holonomic

variety. Let X, be an element of 8., with » = — }, all remaining parts
zero in (4.5). Then dp(X)x, = 0 and dp*(X)y, = v.. Since oy(X,) = 49 =
— 2, tr,,;s)?o = — 16y =8 and dimV} =8, we have ord,f’ = — 2s — §.

Since m,, — m,, = 1, they intersect regularly. By Corollary 1-2, we have
b4,(8)/b(s) = (s + 4).

(5) We shall calculate the isotropy subalgebra at x; = (1, e;e; + ee,)
instead of x, = (1, eje, + ee,). It is given as follows.

(L, +4|B
@7 g, =44 = 0 12 | |+<2e+773*_0_a);
C

Aedp@), BeC', C= —"'C = (c) = @UHDgUD) D 3p(2) Du(4).

Put o, = (eeeie;, 0), 0, = — (eeese;, 0), 0, = (e0e,85, 0), 0, = — (ee.e4e;, 0),
o; = (eee:e,, 0), 0, = — (e€;, e:e00,8;), 0; = (— e,e;, eee.e;), w, = (e.e;, — eeee;),
w, = (e€;, €,e,6,6). Then the conormal vector space V. is spanned by these
o, -+ -, 0, and the action dp,, of g,, on V} is given as follows:
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A—@Be+2p)1, | B | (04
4.8)  do. (Ao, -, 0) = (@, -, wg)( 0 —4e | 0 )
0 0 ‘ A"(5+27])I4
Ciyt+2C, | —Cy 0 l Cay
with € = [——Cu | 20atCu| —Cu | 0
i 0 —Cyy Cis 20y | —cy
L Ciz 0 —Cy3 ‘ 2¢;54Csy J

Clearly, y, = o, + w, is its generic point and y;, = o, + w, is a point of the
one-codimensional orbit. Note that (G.,, p.,, V%) has only one orbit of
codimension one. Since ¥, y,€ SF¥, we have 4, = A¥, and 4, has no one-
codimensional intersection with other conormal bundles. Let A, be an
element of g,, with e = — %, y = — 3, all remaining parts zero in (4.7).
Then dp(Ay)x; = 0 and dp*(4,)y, = y,. We have 6y(A) = 2{(2 + 7) + 7} =
— 5, we have m,, = §. This implies that the conormal bundle 4, is not
a good holonomic variety, i.e., 4, & W since otherwise m,, must be a non-
negative integer (See §1 or [1]).
(6) The isotropy subalgebra g,,, at x,; = (1, e,e;) is given as follows.

! —
{5,12+Xi Z : g g 0 1
49 g,—%=| 0 2y o | 0 |
( P Y A
[ —iZ | T2l —'Y |

|

@<,,.3?_+ii L) Xesl(®), Yesl(d), ‘C= — cJ

Cp |3e—¢

= (gl(1) D 3((2) D 3[(2) D 3((3)) D u(15).

Since A, = AF, A, = A¥, and dim A*N A¥ = dimV — 1, the conormal
bundle 4,, is a good holonomic variety and dim 4,N 4;; = dimV — 1. They
intersect regularly. Put o, = (0, e;eiee,), o, = (eeee;, 0), w, = (0, ejeseses),
o, = (eeee;, 0), v, = (e, —eeee), o, = (e, —eeee,), o, = (ee, —eeee,),
o, = (0, e), w, = (0, ee,), 0,=1I0,ee), o, =(eeee;0), w,= (eeee,0),
w;; = (eeee,, 0). Then the conormal vector space V¥, is spanned by these
o, -+, o, and the action dp,,, of g,, on V} is given as follows:
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dpzlg(}z) (wls ) (013)
(4.10) — (o, - (013)( —6el,+do(XDW)! * )
7 0 | —4el,+dp(WADY)

where p, = A4, ® 4, for SL(2) X SL(2), p» = (24) ® 4, for SL(2) X SL(3) and
W= (51 b ) e 51(2).

cp, —¢

Aslza genleric point, we may take y, = o, + @, + o, = (e,e; + eeee,,
ee, — eeee,). Let X, be an element of 0z, With ¢ = — 1, all remaining
parts zero. Then dp(f(o)x13 =0 and d,o*(}?o)y13 = ¥y, Since ax()?o) = 12 =
- 3, trV;mX'o = — 60c = 15 and dimV}, = 13, we have ord,,,f* = — 3s — 1L
By Corollary 1-2, we have b,,,(s)/b4(s) = (s + 5). By (4.10), we can see
that (G,,,, ., Vi, has the unique relative invariant (See Lemma 4 and
Proposition 5 in § 4 in [1]), i.e., it has the unique one-codimensional orbit.

(7) The isotropy subalgebra g,, at x; = (1 + eeee, 0) is given as
follows.

{ X Y C// 0
(4.11) G, =X = _g-_%_, 010 ®(e b>;

¢ 0 [~y =% )

Xesl(4),CC"= —PfC-1,'C = — Ce M(4)

= (gl(1) @ gl(1) D o(7)) D u(9) .

Note that, in (4.11), X, = (%‘—2%{) is the spin representation of X

in o(7). Put o, = (0, ee;), w, = (0, e:;), w, = (0, ees), o, = (0, ee;), v, = (O,
eeee;), w, = (0, — eeee), o, =(0,eeee), o=, —eeee), o,=I(0,

%(1 — eeee)), o, = (0,ee), o,=(0,—ee), o,=(0ee), o ,=1(©, ele4)’
o, = (0, ee;), w5 = (0, e6;). The conormal vector space V% is spanned by
o, -+, w5 Then y,; = w, is its generic point and y; = 0,, + o, 1s a point

of the unique one-codimensional orbit. Since y;, yis € S, we have A, =
A%, and 4; has no one-codimensional intersection with any other conormal
bundle. Let X, be an element of g,,, with e = p + 1, 7 = p, all remaining
parts zero in (4.11). Then dp(}?l)x,f, =0 and dp*(f(l)y15 = ¥y Since 5;(()?1)
= 2(c + ) = 2(28 + 1) is not definite, the conormal bundle 4 is not a
good holonomic variety, i.e., 4, & W.
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(8) Since A, = Af and 4, ¢ W, the conormal bundle 4,, is not a good
holonomic variety. Note that W C V X V* is symmetric with respect to
V and V*.

(9) Since 4,, = {0} X V*, the conormal bundle 4, is a good holonomic
variety. Put A, = (0) @ (—IL,). Then do(A,)x,, = 0 and dp*(A.)ys, = ¥: Where
¥, is a generic point of (G, p*, V*). Since 0y(4,) = — 4, tr,,;on = 32 and
dimV}, = 32, we have ord,,f’ = — 4s — 32 and hence by Corollary 1-2,
we have b,,(s)/b,,(s) = s+ 8 Note that 4, = A4Ff and 4,, = A¥. Since
bi(s) =1 and b,,(s) = b(s), we have the b-function b(s) = (s + 1)(s + 4)
(s + 5)(s + 8), and the holonomy diagram (Figure 4-1). We denote 4, by

@.

(s+4) @
(&) —2-3
©o @
-~ -7
(1) -3 -

s+ 9) The conormal bundles

outside W.
(32) —ts -3

Figure 4-1. Holonomy diagram of (Spin(10) X GL(2), half-spin rep. R 41, V(16) ® V(2))

§5. (GL() x Spin(12), [J ® half-spin rep., V(1) ® V' (32))

The representation space V = V(1) ® V(32) is spanned by 1, e;e;, e,e.e.e,,
eeeeee, 1<i<j<6,1<r<s<t<u<6) (See [1], [4]). J-I. Igusa
has completed the orbital decomposition of this space (See [3]). There
exist five G-orbits S,, = p(G)x,, (m = 0,1,7, 16, 32) where S, denotes the
m-codimensional orbit and x, = 1 + eeeeee;, x, = 1 + eeee, + eeee, x,
=1+ eeee;, %, =1, %, = 0. We identify V* with V by taking {1, e.e;,
e.eee,, eeeeee) as a dual basis. Since (G, p, V) = (G, p*, V*), there exist
also five orbits S¥(m = 0,1,7,16,32) in V*. We denote by 4, (resp. 4F
the conormal bundle of S, (resp. Sf). Clearly, we have 4, = V X {0} =
A% and A, = {0} X V* = Af. The Lie algebra g of GL(1) X Spin(12) is
given as follows:
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G1)  g=— {(d)@(%—:%); A,B,CeM®),'B= — B, 'C= — c} .

(1) The isotropy subalgebra g, at x, is given as follows (See [1]).

.2) 6o = {(0) @ (-‘—(‘)‘—}t%); Ae gr(e)} = 3(6).

Since 4, = V X {0}, we have ord,f* =0, where f denotes the relative
invariant of degree four (See [1], [3]).
(2) By using (5.29) in [1], we can calculate the isotropy subalgebra g,,.

Qs = {A = (d)@{%itl?z}; ata,=a+a=—a —a = 2d,c, = 0}

= (@@ (Ml B )4 cad), B = — B, trBI =0
(5.3) 0 l —dI,—*A,
with oJ = ( 0 !_13_) ,
—-I, |0

= (@l(1)®3p (8) ® V(14) where
a, a, 0 a, a; 0 0 0 cs O 0 Cas )
a, a, 0 Ay Ay 0 0 0 ¢ O 0 Css
A= Ay gy Qg Qg Qg5 Qe B —Cs —Cps O Cis  Cyx by
T ey 0, 0 a, —a, 0 | 0 0 —¢, O 0 Cis
a42 a52 O _alg (15 0 } O 0 _026 0 0 023
Agr Aoz Agz Aoy Qs Ag —Cy —Cy —by —Ciy —cy 0

with by + ¢y + s = 0.

The conormal vector space V} is spanned by e,e,e,e; on which g,, acts as
dp, (A)eeee; = — 4deeee, for A eg,,. Thisimplies that 4, = G(x,, ee.e.e;)
= A% Since 0 is the point of the one-codimensional orbit, we have
dim 4,N 4, = dimV — 1 and 4,N 4, is G,-prehomogeneous, i.e., 4, is a good
holonomic variety by Proposition 1-5. Let A, be an element of g,, with
— 4d = 1. Then dp(Ay)x, = 0 and dp*(A,)y, = y, where y, = eeee,. Since
oy(Ay) = 4d = — 1, tryr A, = dimV[ = 1, we have ord,f*= —s— 4. By
Proposition 1-4, /4, and /4, intersect regularly and hence b,/(s)/b,(s) =
(s + 1) by Corollary 1-2.

(3) By using (5.29) in [1], we can calculate the isotropy subalgebra g.,.

, 0+ a3 + a; + a; = 0,

gx,z{ﬁ—_-(d)@(_Ai c >;d=gL+a4

Cl—A 2
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t{C=C, A and C’ are given as follows}

(5.4) {(d) o (dé i%]r,illl , a,,‘(),v)_{ , \gﬁ_,_) A e &((2), We o), }
= U1 ap o 5
= (gl(1) @ o(7) @ 30(2)) ® u(l7)
where p, is the spin-representation of Spin(7), S = <(I) é‘), and
4
[ a, O 0 a, 0 0 ) 0 0 0 0 0 0 )
Ay Ay Qyy Ay Qs Qg 0 0 Css 0 —cy Css
A — Q31 Ay QA3 A3y Az Ay ¢ = 0 —c 0 0 Cos —Cys
T ja, O 0 a, O 0o | 0 0 0 0 0 0
l Ay Qyp Gs3 Qs Gy Qs I 0 Cye —Cyg 0 0 Cos
Qg Qgp Qgy Qg Qgz Qg ) LO —Css Cos 0 —cy 0

Put o, = ee, — eeeeee, v, = €68, 0, = €e,ee, v, = €6,,6, V; = 8,8,
Wy = ee,ee, o = eeee,. The conormal vector space V} is spanned by
these o, -+, w, and (G.,, p.,, V) = (GL(1) X SO(), O @ 4,, V(1) ® V(7).
Then w, is its generic point and o, = eeee, is a point of the one-codi-
mensional orbit. Since 4, = G(x,, ), we have codim 4, N 4, = 1. Since
A,N 4, is Gyprehomogeneous, /A, is a good holonomic variety. We have
A, = A¥.

Let A) be an element of g,, with 4d = 2(a, + a,) = —8 — 1, 2(a; + ay)
= — 2(a, + @;) = 1 — B, all remaining parts zero in (5.4). Then we have
do(ADx, = 0, do*(A}) w, = w, and tryA; = 8 where V = V mod dp,,(g.,)®..
This implies that 4, and 4, intersect regularly by Proposition 1-4. Let A4,

be an element of g,, with d = — J, all remaining parts zero in (5.4). Then
dp(Apx, = 0, dp*(Apw, = o, Since dy(4,) = 4d = — 2, trys Ay = — 14d =
7, dimV} =17, we have ord, [’ = — 2s — Z. By Corollary 1-2, we have

b.1,(8)[b4(s) = (s + %)

(4) Since (G, p, V) = (G, p*, V¥), 4f = 4, and A} = A, we have dim 4,
N A4 = dimV — 1 and they intersect regularly. Since A,N A, = AF N A¥ is
G,-prehomogeneous, /,; is a good holonomic variety. Since dp(4)-1=d
— (tr A/2) + >, b,;e.e;, the isotropy subalgebra g,,, at x, =1 is

65 .= {A=("Ne(f _)ic=-caceno)

= gl(6) ®V(15).
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Jk is spanned by eeeeee; and eesee, (1 <
i <j<k<¢<6). Then the action dp,, of g,, on Vj is given by

5.6) Qoo @0, 0 = @ o) (TEA )

The conormal vector space V.jF*

where o, = ee.ee,ees, {0, -+ -, 04 = {eejee, 1 < i <j< kB< £ <6}, eCh,
o0, = A, for GL(6).

Then y,, = ee.ee, + eee.e, + eeee, is its generic point. Let A, be
an element of g,, with A= — LI, C=0 in (5.5). Then dp(A)x; =0
and dp*(Ay)y,s = ¥i.. Since dy(A,) = 4d = 2tr(— L1I) = — 3, tr5, A0 =
—11tr (—11) =22 and dim Vs, = 16, we have ord,,f* = soy(4,) — trV;on +
$dim V,; = — 3s — LZ. By Corollary 1-2, we have b,,(s)/bs(s) = (s + LY.
By (5.6), the character group of p,,(G.,
(G.1ps P21e V) has (at most) the unique one-codimensional orbit.

(5) Since A, = A¥ and 4,, = AF, they intersect regularly with codi-
mension one. We shall calculate the order ord,,f. Since (G.,; Prs Viss)

) is one-dimensional and hence

= (G, p*, V*), 3y, =1+ eeeeee, is its generic point. Let A, be an

element of g with d = — 1, all remaining parts zero in (5.1). Then dp(A)xs,
=0, dp*(Ap) Y = Y- Since 6x(4,) = — 4, tryy, 4, = — 32d = 32, dim V3, =
32, we have ord,,f* = — 4s — 32, By Corollary 1-2, we have b,,,(s)/b(s)

= s+ 8. Since b,(s) = 1 and b,,(s) = b(s), we obtain the b-function b(s)
=(s+ (s + H(s+ L)(s + 8) and the holonomy diagram (Figure 5-1).

We denote @ by @

(s+1)

0 0

s+9
(s +4Y
(s + 8)

Figure 5-1. Holonomy diagram of (GL(1) X Spin(12),
O ® half-spin rep., V(1) ® V(32)).
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Remark. (1) (GL(1) x Spin(7), [ ® spin rep., V(1) ® V(8))

(2) (Spin(7) X GL(2), spin rep. ® 4,, V(8) QV(2))

(3) (Spin(7) X GL(3), spin rep. ® 4,, V(8) ®V(3))

4 (GL@Q) x Spin(9), O ® spin rep., V(1) ® V(16))

B) (GLQ) X (Gy), O & 4, V(1) ®V(7))

6) (G X GL©2), 4, 4, V(T) ®V(2))

(7 (GL(1) x Spin(11), I ® spin rep., V(1) ® V(32))

Since Spin (7) = SO(8) by the spin representation, the first three triplets
(1), (2), (3) are reduced to the triplet (SO(8) X GL(n), 4, ® 4,, V(8) @ V(n))
(n =1,2,3) (See [1]). Since Spin(9) = SO(16) by the spin representation,
(4) is reduced to (SO®16) X GL(1), 4, ® 4,, V(16) ® V(1)) (See [1]). Since
(G,) =— SO(7) by 4,, () and (6) are reduced to (SO(7) X GL(n), 4,® 4,,
V(1) @V(n) (n =1, 2) (See [1]).

Since the spin representation of Spin(11) is obtained by the restriction
of the half-spin representation of Spin(12) to Spin(11), (7) is reduced to
Spin (12) in § 5. Note that the b-function depends essentially on the relative
invariant itself, not on the group.

§6. (GL(1) X E,, O ® 4,, V(1) @ V(27))

The Lie algebra g of G = GL(1) X E; can be written as g = 2,® 7,
DI, DT, D{R,},., (See Proposition 37 and Example 39 of § 1 in [1]). The
representation space is identified with the simple Jordan algebra ¢#.

&1 ox X,
(6.1) F = [X = (3?3 & x,);&‘,, £, &6 €eCx, Xy x,€ %
X, X &
where # denotes the complex Cayley algebra.
DEFINITION 6-1. For ae %, we define elements T(a) and T/(a) (i = 1,
2, 8) of g as follows:

0 0
T(a)- X = [Ry,) + T .(20)]X = g _0_ aé;

0 ax, 0
T/(a)- X = R0y — T:20)]X = | ax, tr(ex,) a&,

0 ag, 0

0 0 a&;

T{a)- X = [R5 + T.20)]X=| 0 0 Xsa
af, ax, tr(xa)
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tr(ax,) aX, aé&,
T/(a)- X = [Ry,0 — T(20)]X = x,a 0 0

at, 0 0
0 a&, 0
Tya)- X = [RAg(a) + T2a))X = | aé, tr(@x,) x.a
0 X,0
tr(ax,) a&, ax,
T/ (a)- X = [Ryy — 7:20)]X = | aé; 0 0
ax, 0 0

where A,(a) denotes the element of # with x;, = a, all remaining terms
zero in (6.1) for i =1, 2,3, and trb = b + b for be ¥. Thus we have g
=9 TOT,OT.®T. T, DT C—B{RC, N >}. For a € &, we put ¢,(a)=

0
0 72 0
0 0 73

exp T(a) and t(a) = exp T/(a) for i = 1, 2, 3. They are elements of G. For
£eC, let B,(&) be the element of ¢ with &, = &, all remaining terms zero
in (6.1) for i =1, 2, 3 and put ¢ = exp&. We define an element S(c) of
G by Sic) = exp Ry, for i =1, 2, 3. The following proposition is well-
known.

ProposriTioN 6-2. There exist four orbits S,, = p(G)x,, (m = 0, 1, 10, 27)
where S,, denotes the m-codimensional orbit, and x, is given as follows:

1 1 1
xoz( 1 )z( 1 ) =( : ),xﬂ:@.
1 0 0

Proof. Let X be a non-zero element of #. Then we may assume
that &, =1 by ¢, ¢ and S,. By #(—%, and t(—x,), we have x, = x, = 0.
Unless & =&, =x, =0, we have §, =1 by ¢ and S,. Then by t(—x,),
we have x, = 0. If &0, we have & =1 by S,. Thus we obtain four
orbits. We shall calculate their codimension later. Q.E.D.

DeriniTiION 6-3. We identify the dual vector space V* of V = ¢ with
Vby (X, Y) =trXoY. Then the dual actions are given as follows: (i)
D*Y = DY for De 2, (i) T¥¢a)Y = — T/(@)Y for ac ¥ and i =1, 2, 3.
(i) TH@)Y = — T{(a)Y fori=1, 2, 3 andae¥. (iv) R*Y = — R,Y for
ze 7.

DEerFINITION 6-4. Since (G, p, V) = (G, p*, V*), the dual space has also
four orbits S (m = 0, 1, 10,27). We denote by 4, (resp. 4*) the conormal
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bundle of S, (resp. SZ). Clearly we have 4, = V X {0} = 4} and 4,, = {0}
X V* = A%,
(1) The isotropy subalgebra g, at x, is 9, which is the Lie algebra
of F, (See [1]). Since 4, = V X {0}, we have ord, f* = 0.
(2 For A=D®>E.,(T(a)® T!(a) D R< 0), we have dp(A)x, =
@ ata; a
a,+a, @  a|, and hence A is an element of the isotropy subalgebra
a, a, 0
g., at x, if and only if A =D® TY(a;) @ T5(a;) @ [Ti(a,) D T5(—a)] © R(O . >

a1
ag
0 ag

{70 0 ’
The conormal vector space V} is given by V} = 1(0 0 ); 7€ C} = {y}

and dem(A)r] = —ay. For A, = R(o . ), we have dp(ﬁo)xI = 0 and dp"‘(fio)yl

~1
0
=y, where y, = ( 0 ) Since dy(4,) = — 1, trys A, = dimV# = 1, we
1 1

have ord,f* = — s — 1. By Corollary 1-2, we have b,,(s)/b,(s) = (s + 1).
(8) For A=D®33 (T(a)® Ti(a)) ® R(lea2 ), we have dp(A)x, =

o« 0, a _ -
(6: 0 Oz) and hence A eg,,, if and only if A = D ® T(a,) ® T{(a) D T, (as)
® Ti(ay) ® R(o " ) In this case, A acts on the conormal vector space as

follows:
0] _
_ 0 0 O — N, Uy1 — Q) — ai’?z
dpxlo(A) 10 7. w]= . —jr(y@ o — (e, +a) .
0 s l Uyl“aﬁ?s“aiﬁz — J
— g, —tr(F,
U “datayy, | T OW

Let y,. (resp. y;,) be the element of ¢ with x, =1 (resp. & = 1), all re-
maining parts zero in (6.1). Then y,, is a generic point of (G, Pz Vi)
and ¥/, is a point of the one-codimensional orbit. Thus we have 4, = Af,
A, = A% and dim 4, N Ay = dimV — 1. Put 4, = R(a . 1). Then we have

dp(A)x, = 0 and dp*(4y)y, = yi. Since dy(4dy) = — 2, r,,z,mﬁp =10 = dim
V., we have ord,, f* = — 2s — L2. By Corollary 1-2, we have b, (s)/b(s)
= (s + 5).

(4) The isotropy subalgebra g,,, is g. Put y, = x, and 35, = x. Then
d‘o(ﬁo)x27 = 0 and d‘o*(ﬁo)y27 =y, for A, = R_,,. Since §y(4,)) = — 3, tr,,»;mﬁo
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= dimV} = 27, we have ord,, f* = — 3s — &L. Since 4,, = A¥, 4,; = A¥, we
have codim 4,,N 4y, = 1 and b4,,(s)/b,,,(s) = (s + 9). Thus we obtain the b-
function b(s) = (s + 1)(s + 5)(s + 9) and the holonomy diagram (Figure 6-1).

Note that the relative invariant f(X) is given by the determinant det X
of X in ¢.

(s+1)
oFs
(s +5)
()
(s+9)

Figure 6-1. Holonomy diagram of (GL(1) X Ej,
O0®4, VO®VED)
§7. (GLQ) X E,, O ® 4,, V(1) Q V(56))
The representation space V(1) ® V(56) is identified with
(7.1) V={X=(@xx);x,xecM®8),'x=—x,'0 = —x}.

Then the infinitesimal action dp of g = gl(1) @ E, is given by

1) (x #) > (px + x'p, —'py — yp) for peSLE,C)
(7.2) @) (x, ) > (cx, cx’) for cegl(l)

@ @ @D (35, 975), (= 3 Sumitan))

m, n=1

where 9 denotes a tensor, antisymmetric in its indices, and upper, lower
indices satisfy the relation

1 1,004,8 s
"9111 ,,,, i — Ty Z I“’ o . Qineads

v, X FEEERY 7PN F PRI Y
4. J1s=*s 74
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Here I}, ;......;. denotes the signature of the permutation (i’ i J
1 " Ty by J
-, 8

. ) when {iy, -+, i j5, -+, Jip = {1, - - -, 8}, and 0 otherwise. The product
1J4
as a Lie algebra is given as follows:

1) [p,p] = pp’ — p’p where pp’ denotes the matrix multiplication

(13 @ [p,91=9 where (9)" = 5 (3" po + 9™ pyu + 9y +
D)

@ 9,97 = pwhere py = (3 (9@ unns — (T @ Vunar 01)

ProposiTion 7-1 (Stephen J. Haris). There exist five orbits S,, = p(Q)x,,
(m = 0,1, 11, 28, 56) where S,, denotes the m-codimensional G-orbit and x,
is given as follows.

1 ) (1
-1 -1

Xo = A ’O,xlz'ﬁ

Xy = A , 0, Xpg = A

and x, = (0, 0).

Proof. See [5]. Q.E.D.

We identify the dual vector space V* with V by (X, Y) = trxx’ +
tryy for X = (x,%), Y= (y,5)e V.

Then the dual action dp* is given as follows:

p*
@ )~ (='py — yp, 0y’ + ¥"D)

74 @ 0Y)=>(—cy,—cy)

@ ) O (2 umadin). (= 33 97775.,))
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Since G = GL(1) X E, is reductive, the dual triplet (G, p*, V*) has also
five orbits S (m = 0, 1, 11, 28, 56). We denote by 4, (resp. 4¥) the conormal
bundle of S,, (resp. S¥).

(1) The isotropy subalgebra g,, at x, is the Lie algebra of E; (See [5],
[1]). Since 4, = V x {0} = 4, we have ord, f* = 0 where f(X) = Pf(x) -+
Pi(x") — Ltr(xa’xx’) + Ftr(xx’)’ for X = (x, %) e V.

(2) The isotropy subalgebra g,, at x, is the set {c D p @ 6} satisfying
the following conditions:

"—C—Is ] D1 Py Pz DPu ]l
piz Dz Doz Do
74 = + |7 , where trp, =0
@4 »p _?ch Pis P Ps  Pu P
2 " 0 0 0 p,
for i=1,---,4, and p,p;; = —detp,;-L, for 1<i<j<3 9= )

satisfies 9y, + Fays; + Fses; = O.

In fact, the isotropy subgroup is connected, and is isomorphic to
(GL(1) X F,)-U where U is unipotent of dimension 26 (See [5]). The co-
normal vector space V} is given by

0l 0
(7.5) V;‘j:{x:(( 0 x),O);xeC].
0
—x 0

Let y, be the element of V} with x =1 in (7.5). Then it is a generic
point, and y; = 0 is the point of the one-codimensional orbit. Let A, be
an element of g,, with ¢ = — %, all remaining parts zero in (7.4). Then
dp(Ayx, = 0 and dp*(Ay)y, = y,. Since dy(4,) = —1, trys Ay = dimV} =1,
we have ord,f* = — s — L and b,(s)/b,(s) = (s + 1).

(3) The isotropy subalgebra g,,, at x,, is the set {c @ p @ 6} satisfying
the following conditions

~

C

- E I +p, D:

p=|— where K 'p,K ¢ 3p(2) with
0 %L+M
(7.6) :

1

K— 2 3 , trp, = 0, (9) with 9,y 4 94, = O for all i, j.
1

The conormal vector space V7 is given by
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S 0 0 Y, 0
(1.7) 1 0 v, 0 0 Yo+ ¥ =10
B : wr e ({0 0\ (Z.0
Then, for A =c®p Db in g,,, we have dp*(A)Y = 02z) 0o where

4
Z4 = — 20)’4 — LP4Y4 — Y;P4 + < Zlgijmny:nn)

and

Zl — — 2Y, + P,Y] + Y/'P, — ( > sﬂf“ym) .

0 o 0 ]
1
Put y,, = 0 '_1 ,0r and y;, = },O .
1 1
’ -1 J L -1

Then y,, is a generic point and y;; is a point of the unique one-
codimensional orbit. Thus we have 4,, = 4 and dim 4, N 4,, = dimV — 1.

m,n=>5

0

Let A, be an element of g,,, with ¢ = — 1, all remaining parts zero in (7.7).
Then dp(Ay)x;, = 0 and dp*(Ay)y:; = yu. Since dx(4,) = 4c = — 2, trys A,
= — 22¢ = 11 and dimV} = 11, we have ord,, f’ = —2s — 4> and hence

b4, (8)[b4(s) = (s + %M.

(4) The isotropy subalgebra g, at x, is the set {c ® p ® 6} satisfying
the following conditions:

(1.8) p=|— with trp, = trp, =0

9= (99%) with 9, =0 for all i, j.

The conormal vector space Vj is given by

1.9 Ve {~ _ ((0 0 > ( Y{, Y, )) . V*}
0 Y, -y, 0
Qg 5

Then for A =c@Dp D0 in (7.8), we have

= ((5 2 ) (% %)
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where
Z, = — %CY; - 'p.Y, — Y,p, + (Z 'gifm"y;"")

8
Z = — 2Y + pY, + Yp - p/Y + ¥ipi— (23 9975

m,m=3

8 .
Z = — 3% + DY + Yip, — (35 99 yma) .
Therefore, one can see that the colocalization at x,, has at most unique

one-codimensional orbit.
Since A, = AFf and 4,, = A%, A, is a good holonomic variety and

dim 4,;N 4;; = dimV — 1.

s+ 1)

(1) =51
(s + 4

() s
(s + 49

@ —8s — 22
(s + 14)

o

Figure 7-1. Holonomy diagram of (GL(1).X E-,
O0® 4, VR V(56))
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0
1
-1
Put y,, = 1 , 0. Then y, is a generic point.
—1
1
—1
Let A, be an element of g,,, with ¢ = —2, all remaining parts zero in
(7.8). Then we have dp(Ay)x,;; = 0 and dp*(A,) ¥, = ¥ Since dy(4,) = 4c
= —3,try, A, = —38c = 4 and dimV;{, = 28, we have ord,,[* = —3s — &2

and hence b,,,(8)/b,,.(s) = (s + 42) by Corollary 1-2.

(5) Since x; = 0, we have (G.,,; Pz Vai) = (G, p*, V*). Since 4;; =
{0} X V¥ = AF and A,y = AF, we have dim 4;; N 4y = dimV — 1 and they
intersect regularly. Let A, be an element of g,,, with ¢ = — 1, all re-
maining parts zero in (7.2). Then dp(A,)x;; = 0 and dp*(A)yss = Y5 Where
Yss = X,. OSince dy(Ay) = — 4, tr, A, = dimV>™ = 56, we have ord, f* =
—4s — 28 and hence b4, (5)/b4,,(s) = s + 14. Thus we obtain the b-function
b(s) = (s + 1)(s + L) (s + 1¥)(s + 14) and the holonomy diagram (Figure
7-1).

§8. (GL(6), 4, V(20))

Let V, be a 6-dimensional vector space spanned by u,, ---,u,. Then
G = GL(6) acts on V|, by p,(g)(uy, -, us) = (uy, - -+, uy)g for ge G. The
representation space V = V(20) is spanned by skew-tensors u; A u; A u,
1<i<j<k<6), and p = 4, is given by p(g)(u; N\ u; A u) = p(g)u; N\
pi(8)u; N\ p(®u, for 1 <i<j< k<6, and geG. Then it is well-known
(and also one can easily check) that there exist five G-orbits S,, = p(G)x,,
(m =0,1,5,10, 20) where S,, denotes the m-codimensional orbit, and x, =
U AN Uy N\ U+ U A\ Us AN\ Uy Xp0= Uy N\ Uy A\ U+ Uy A\ U N\ Us + Uy N Uy /N U,
Xs = Uy N\ Uy N\ Uy + Uy N\ Uy N\ Usy Xy = U A\ U A\ U, and X, = 0. We identify
the dual space V* with V by Q] a,u: A u; A uy, 2, bty A\ Uy, A\ u) =
Dicicierzs Guinbigr.  Since (G, p, V) = (G, p*, V*), there exist also five orbits
S* (m=0,1,5,10,20) in V*. We denote by 4, the conormal bundle of
S,. The isotropy subalgebra g, at x € V(20) is, by definition, g, = {A € gl(6);
do(A)x = 0} where dp(A)(u; A\ u; A\ w) = dp(A)u; N\ u; A\ we + u; A\ dp(A)u,
A u, + u; N uy A\ do(A)uy.

(1) The isotropy subalgebra g,, is, by simple calculation, given as
follows:
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®.1) q., = {(‘g g) ¢ gl6); A, B ¢ gr(3)} .

We have 4, = V X {0}, and hence ord, f* = 0 where f denotes the relatively
invariant irreducible polynomial of degree four (See [1], [14]).

2 Putxl=u Au Aug+u, ANus A, — u; A ts A ;. Then x7¢ S,
By simple calculation, the isotropy subalgebra g,; at x; is given by

82 guy= {A — (‘S{A — (ﬁA)‘IB) ¢ gl(6); A, B € M(3),tr B — 0} .
Therefore we have G,; ~ GL(3)-(G,)* where - denotes a semi-direct product
and G, = C. The conormal vector space V7F is of one-dimension with a
basis u, A u; A\ u,. The action dp,; of g,; on VJ} is d‘oM(A)u4 A Us /\ Ug
= —2trA-u, A\ u, A\ u. Take A,eg,; with tr A, = — 1. Then we have
dp(A)x; = 0 and dp*(A,)y, =y, where y, = u, A\ u; A\ u,. Since (A4, =
(degfldimV)tr dp(A,) = +% X (10tr A;) = — 1 and tr,3,. A, = dimV} = 1, we
have ord,f* = — s — 3 by Proposition 1-3. Since 0 is the point of the
one-codimensional orbit, we have dim4, N 4, = dimV — 1 and 4, N 4, is
G-prehomogeneous, i.e., 4, is a good holonomic variety by Proposition
1-5. Also we have g =1 and v = 0 by Proposition 1-4, ie., 4, and 4,
intersect regularly. By Corollary 1-2, we have b,(s)/b,(s) = (s + 1).

(3) Put x; = u; A\ (U, A\ u, + u, A\ uy) € S;. Then the isotropy subalgebra
g.; is given as follows:

—2| B _|C
83 g, = [( 0 |A+e, D ) e gl(6); A e 3p(2),'B,DeC, Ce c}

0 0 i 7
= (3p(2) @ gl(1) D gl(1)) ® u(9)

where u(9) denotes the Lie algebra of 9-dimensional unipotent group.
Put o, = (s A wy — Us N\ Us) N\ Us, @y = Uy N\ Us N\ Us, @3 = Uy /\ U, /\ Us, O,
= u,\Nu;A\u; and o; = u, A\ u; A\ u,. Then the conormal vector space Vi
is spanned by o, ---, o, and (G, p., Vi) = (GL(1) X Sp(2), 4, ® 4, V(1)
® V(5)) = (GL(1) X SOB), 4, 4,, V(1) ® V(5)), where o, is a generic point
and o, = u, A\ u; /\ U is a point of the one-codimensional orbit. Therefore
we have dim 4, N 4; = dimV — 1. Since the (G,; N G,)-orbit of w, is one-
codimensional in V}, ie., 4, N 4, is Gyprehomogeneous, /; is a good
holonomic variety by (2) and Proposition 1-5. Let A, be an element of
g;; with » = — 1 and all remaining parts zero in (8.3). Then we have
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do(A)x; =0 and dp*(A)o, = o, Since dy(4) = 2tr A, = — 2, tr, A4, =
—5(2 + ) =5, and dimV} = 5, we have ord,f*= —2s — 5. Put 4, =
BE;,— E,) + (8 + 1)E, for g e C where E;; denotes the matrix unit. Then
do(Ay)x; = 0 and dp*(4;)w, = w,. Since V= V. moddp,; (g.)w. is spanned
by u, A\ u; /\ u,, we have tr;A, = 28 + 1. Hence we have ¢ = 1 and v = 0
by Proposition 1-4, i.e.,, 4, and 4; intersect regularly. One can also get
this from the fact m, — m, = 1. By Corollary 1-2, we have b,(s)/b,(s)
=5+ 3.

4) Put xp=u, A u, \u, € S,. Then the isotropy subalgebra g,,, is
given as follows:

~ |
@4 g, = {A ~ ( fg_‘.gw) € gl(6); A, B, C € M(3),tr A = o}
= (3((3) D gl(3)) ® V(9), ie., G, ~ (SL(3) X GL(3))-(G.).
In general, we write G, ~ G, when two groups G, and G, are locally
isomorphic to each other. Put w, = u; A u, A u;, 0, = u; A\ u, /\ g, 0, =
U N\ Us N\ Ugy O = Uy N\ U N\ Us, 05 = Uy N\ Uy N\ Uy, 05 = Uy /\ Uy N\ Uy, @O =
Uy N\ Uy N\ U, W5 = Uy /\ Uy N\ Uy, 03 = U; N\ U; \ U; and oy, = u, /\ U; /\ Us.
Then the conormal vector space Vj is spanned by o, - -+, ®,. The action
dp,,, of g,,, on V¥ is given by

65 dp D, 00 =@, 0)(PAZD D (B ecy
B | —tr A

where g = 4, ® Af, i.e., the action of G,, induced on the subspace spanned
by w,, - -, w, is isomorphic to a triplet (SL(3) X GL(3), 4, ® 4,, V(3) ®V(3))
as a triplet (See [1]). Then w, + o, + w, € S¥ is a generic point and o,
+ 0, e S¥ is a point of the one-codimensional orbit. This implies that
dim 4, N 4, = dimV — 1. Since 4, N 4,, is G,-prehomogeneous, 4, is a
good holonomic variety by Proposition 1-5. Let A be an element of g,,,
with A =B =0 and C= — LI, in (84). Then dp(A)x, = 0 and dp*(A)
(0, + 0, + o)) = (0, + o, + o). Since oy(4d) =2-trA = — 3, tr, j,mA =
— Ttr C = 2! and dim V%, = 10, we have ord,,f’ = — 3s — 4} by Proposition
1-3. Let A, be an element of g,,, with A = B=0and C = (1_83/2) (‘3/(2))[)
in (8.4). Then do(A,)x, =0 and do(A,)(0, + @) = (0, + @;). Since V =
V. mod do,,(.,,) (0 + ;) is spanned by u, A\ u; /\ u,, we have tr; A, = 3.
This implies that # =1 and v = 0, i.e.,, 4, and 4,, intersect regularly by
Proposition 1-4. One can also get this from the fact m,, — m,, = 1. By
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Corollary 1-2, we have b,,(s)/b,(s) = s + L.
(5) Put xy = 0€S,. In this case, (G.,,, Pz0 Vi) = (GL(6), 45, V(20)).
A, = {0} X V*is a good holonomic variety. Put A = —}I,. Then dp(A)xy
=0 and do*(A)x} = xf where xF =1u, Au, Aus+u, A us A\ u € S¥.
Since dy(4) = 2tr A = — 4, tr,» A = 20 and dim V%, = 20, we have ord,,f"
a, 0
= — 4s — 20 by Proposition 1-3. Put A4, = ( ) ) ) with a, =a, = a,
0 a
=1/2 — B/6, a; = a; = a; = /3. Then dp(A,)x, =0 6and do*(Apx¥ = xf
where xf=u, ANu, ANuy +u, A u, A\ u,+ u, A\ u, A u,. Since V= V,
mod dp,,,(3.,,)xF is spanned by u; A u; A u,, we have tryA, = . This
implies that # = 1 and v = 0, i.e., 4, and 4,, intersect regularly. One can
also get this from m,, — m,, = 1. By Corollary 1-2, we have b,,,(5)/b,(s)

= s 4+ 5. Thus we obtain the b-function b(s) = (s + 1)(s + $)(s + Z)(s + 5)
and the holonomy diagram (Figure 8-1). We denote @ by @ .

s+

OR
s+

° —25s — %
(s+3%)

@ —~3s — L
(s + 5)

20) —4s— 20

Figure 8-1. Holonomy diagram of (GL(6), 45, V(20)).

§9. (GLQ) X $p(3), O ® 4, V(1) ® ¥V (14))

Put o, =u, AN us N\ Uy, 0, =u, N\ ts N\ Uy 0= Uy \ Uy \ Uy, 0, = U N\
Us /N Ugy 05 = Uy N\ Uy /\ Us, 0 = Uy N\ Uy /\ U, @7 = Uy /\ Uy N\ Us, 0= Uy N
Uy N Usy @y = Uy N\ Uy N\ Us — Uy N\ Uy A\ Ugy @Oyp = Uy N\ Uy N\ Us — Uy N\ Uy N\ U,
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O = U N\ Uy N\ U+ Uy N\ Uy N\ Uy 0 = Uy AN U N\ Us + Uy N\ Us N\ Uy, @ =
Uy AUy ANy — Uy A\ Uy A\, 0 = Uy A\ Uy A\ ug — u, N\ s /\ ug. Then the
representation space V is identified with the subspace of V(20) in §8
generated by o, ---,w, Then the representation p = 1® 4, is the
restriction of 4, for GL(6) to G = GL(1) X Sp(3). The orbital decomposi-
tion of this space has been completed by J-I. Igusa (See [3]). There exist
five G-orbits S, = p(@)x, (m = 0,1, 4,7, 14) where S,, denotes the m-codi-
mensional orbit, and x, = o, + w,, X, = w; + Wy, X, = 04, X, = 0, X, = 0.
We identify the dual space V* with V by (3014, a0, 2054 byw) = 20k, a,by.
Since (G, p, V) = (G, p*, V*), there exist also five G-orbits Sk (m =0, 1, 4,
7,14) in V*. We denote by 4, the conormal bundle of S,. The Lie
algebra g of G = GL(1) X Sp(3) is given as follows:
(M)gzgzmeé_ﬁ%ARCema%zafzc}

(1) Since dp(A)x, = (d + tr A)w, + (d — tr A)w, + c,0, + b, — c,0; —
byws + 0, + by + Cpwy + bowyy + Cwy + by, — Cpw; — by, where ¢, =
¢, and b, = b,; for i =1, 2, 3, we have

9.2) %=F=@®@_i$Aem%;mw

We have 4, = V X {0}, and hence ord, f* = 0 where f denotes the relatively
invariant irreducible polynomial of degree four (See [1], [3]).
(2) Since d‘o(A)x1 = (b, — 2by)o, + 20,0, + c0, — 2a,0, — cw; + (d +

a; + @, — a)o; + 20,05 + (@ — )0y — Ciu0y + (A — Ag) 0y — Cyuoy, + (d +
a)o,; + (¢, — ¢)o, where a;, = a,; for i = 1, 2, 3, we have

(—dta 0 Bl b by by
0 —d—a 7 | by b, by
o I8 ﬁ —d bw bza 2b12
(9'3) gl‘l - (d) @ d_O( 0 __7
0 0 d+ta —p
- —-r d

= (gl(1) @ 0(3)) @ V(5)

where V(5) denotes the Lie algebra of (G,).

The conormal vector space V¥ is one-dimensional with a basis w,.
The action dp,, of g,, on V is given by dp,(A)w, = ( — d + a, + @, + a)w,
= — 4dw,. Therefore we have 4, = G(x,y,) where y, = w,. Let A, be an
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element of g,, with d = — 1, all remaining parts zero in (9.3). Then we
have dp(4))x, = 0 and dp*(A,)y: = y,- Since 6y(4,) = 4d = — 1, tryzlﬁ =
dimV} = 1, we have ord,,f* = — s — 4 by Proposition 1-3. Since 0 is the

point of the one-codimensional orbit, we have dim 4, N 4, = dimV — 1
and 4, N 4, is G,-prehomogeneous, i.e., 4; is a good holonomic variety by
Proposition 1-5. Also we have p =1 and v = 0 by Proposition 1-4, i.e.,
4, and 4, intersect regularly. By Corollary 1-2, we have b,(s)/b,(s) =
(s + D).

(8) Since dP(A)xt = — 2b,0, + 20,0, — 20,0, 4- 20,05 + 1@, — C13W5
+ Ay — Cuwy, + (d + a)o, — c0,, we have
(@, 0 O b, 0 8
g 0 a O 0 b, 0
_ @ ¢y —d B é e
G =1 DOV =0 T 0 —a
0 ¢ 0 0 —a -—7
L0 0 0 0 0 d )
(9.4) (—d|a Blr ) e )
0o @ bl
= 1(d) ® 6 —e . —«
0 0 Q. 2 0
C; —a| —7
Lo o 0 d

~ (gl(1) @ 342) @ 5[(2)) BV(G) .

The conormal vector space V3 is spanned by ,, o, w, w, on which
a., acts as follows:

Al - bl b2 0
—c A, 0 -—b,
c, 0 A, b,

0 —e ¢ A,

(0)2, W,y We,y C‘)7) = (a)z, W,, W, @;)

where A, =a,+a, —2d, A, = —a,+a,—2d, A, =a, —a,—2d, A, =
—a, — a, — 2d.

Hence we have (G,,, p.,, Vi) = (SL(2) X GL(2), 4,® 4,, V(2) ® V(2)) =
(GL(1) X SO4), O® 4,, V(1) ® V(4)).

Clearly, vy, = w, + o, is its generic point, and o, is a point of the
one-codimensional orbit. Since 4, = G(x,, w,), we have dim 4, N 4, = dim
V — 1. Since 4, N 4, is G,iprehomogeneous, 4, is a good holonomic
variety by (2) and Proposition 1-5. Let A, be an element of g,, with d
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= — 1 and all remaining parts zero in (9.4). Then dp(4)x, =0 and
dp*(A)y, = y,.. Since 6y(4,) = 4d = — 2, trys Ay = — 8d =4 and dimV}
= 4, we have ord,f’ = — 2s — 4. Let A, be an element of g,, with ¢, =
31 —p), d= — L(5 + 1), all remaining parts zero in (9.4). Then we have
do(Agx, = 0, dp*(A,)w, = o, and tryA, =  where V= Vi mod dp. (a.,)®-
This implies that 4, and /4, intersect regularly by Proposition 1-4. By
Corollary 1-2, we have b,,(s)/b(s) = (s + 2).

(4) Since dp(A)x, = (d + a, + a, + a)o, + co, — o, + Co; + Cuo, +
Ci0,, — Cp®,;, We have

©95) g — {A —(—tr A)® (g‘ ’_J? ) ‘B — B} ~ 4l(3) ® VI6).

The conormal vector space Vj is spanned by w,, w,, s, @i, 0y, 0, 0, and
g., acts on V¥ as follows:

% 2trA| B >
9.6 d, A oy Wyy * ° °y Wyy) = 2y Wyy 7 7y 14(
©8)  dpe (D), 0+ vs o) = (@ 0+ 0 (ZG T G

where ‘B e C*® and p, = 24,.

Then y, = w, + w, is its generic point, and o, + o, is a point of the
one-codimensional orbit. Since 4, = G(x,, », + ), we have dim 4, N 4, =
dimV — 1. Since 4, N 4, is G,-prehomogeneous, 4, is a good holonomic
variety by (3) and Proposition 1-5. Let A, be an element of g,, with A
=4I, and B =0 in (9.5). Then dp(A)x, =0 and dp*(A,)y: = y.. Since
ox(Ay) = —4trA = — 3, tr,1, Ay = 10tr A = 1f and dimV} = 7, we have
ord,f = — 3s — §. Let A, be an element of g,, with ¢, = a, =%, a, = %
— £, all remaining parts zero in (9.5). Then dp(A,)x, = 0, dp(A;) (v, + wy)
= (0, + ) and tryA, = g where V = V¥ mod dp, (3.,) (0, + @) = Co,. This
implies that 4, and /4, intersect regularly by Proposition 1-4. By Corollary
1-2, we have b,,(5)/bs(s) = (s + 3).

(6) Since x, =0, we have (G,,, ..., Vat) = (GL(1) X Sp(3), I & 4,
V(1) ® V(14)) and 4,, = {0} X V* is a good holonomic variety. Take A =
(=)@ 0)eg = gl(1) @ 3p(3). Then dp(A)x,, = 0, dp*(A)(w, + @) = (0, + w,).
Since oy(4) = — 4, tr,s A = 14 and dimV}, = 14, we have ord,, [’ = — 4s
— Lt Since 4,, = A¥, 4, = AF where A% denotes the conormal bundle of
S}(C V*), they intersect regularly by (2). Note that (G, p, V) = (G, p*, V*)
since G = GL(1) X Sp(3) is reductive. By Corollary 1-2, we have b, (s)/
by(s) = s+ Z. Since by, (s) = b(s) and b,(s) = 1, we obtain the b-function
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(s+1)

(1) —s—3
(s+2)

e B
s+

(1) —8s—3
s+3

@ -

Figure 9-1. Holonomy diagram of (GL(1) X Sp(3),
O ® 43 VA Q@ V(14)).

b(s) = (s + (s + 2)(s + §)(s + I) and the holonomy diagram (Figure 9-1).
We denote 4, by

§10. (GL(7), 4., V(35))

The representation space V = V(35) is spanned by the skew-tensors
u, N\ u; A\, (1<i<j<k<T) of degree three, on which G = GL(7) acts
as in § 8. Then it is known (See [6], [7]) that there exist ten orbits S,
= p(@®x,, (m=0,1,4,7,9, 10, 14, 15, 22, 35), where S,, denotes the m-codi-
mensional orbit, and x, = u, A us Ay + us A ug A up + uy A\ (u, A us + ug
ANUg+ U AU, K= Uy N\ Uy A\ Us+ Uy A g AU + uy A (U A u, — u, A u),
K =U NUNU FUNUNUFUNUNU, G=UNU NU + u N\
(o N\ U 4 Uy N\ Ug + Uy N W), X = Uy N\ U A\ Uy + Uy A Us N\ Usy, Xyp = Uy A\
Uy N\ Ug — Uy N\ Uy N\ U - Uy N\ U N\ Uy Xy = Uy N (U A\ U + Uy A U + u, A
Uy, %15 = Uy N\ (U N\ Uy + Uy N\ Us), X0 = Uu; /\ U, N\ U and x5 = 0. Note that
we chose these representative points x, so that the isotropy subalgebra
8., at x, will be the standard form. The relative invariant f(x) of this
space is of degree seven (See [1], [14]). Since (G, p, V) = (G, p*, V*), there
exist also ten G-orbits S} (m =0,1,4,7,9,10, 14, 15,22, 35) in V*. We
denote by 4,, (resp. 4¥) the conormal bundle of S,, (resp. S¥). Clearly we
have 4, = V X {0} = 4} and 4, = {0} X V* = 4.
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(1) The isotropy subalgebra g,, at x, is given as follows (See [1]).

(10.1)  guo =

(10.2) g,

r 2d 2 2f] 20 2b 2¢
a 0 f —e
b X —f 0 d
c e —d 0; Xesl®}=qg,.
d| 0 —c b
e c 0 —a —'X
Lf|—0b a 0
Since 4, = V X {0}, we have ord,,f* = 0.
(2) The isotropy subalgebra g,, at x, is given as follows.
( '%+CY+,B (221) 71 72 7s
Aoy %_“‘JF,B meZ 74 7s Te 1
b,.I, %—}—a{—ﬁ . (4573 — 72 77 — T
= sy s—a—PB| —7s 7s 74
—d 2b,, 2b,,
0 b, —d+28 0
L b,, 0 —d—23)

The conormal vector space V} is spanned by u; N u; A u.

=~ (gl(1) D 31(2) @ 3L(2)) D V(8).

47

Then

do, (A)u, N\ us N\ u, = 3du; N\ us /\ u, for A eg,,. Since 0 is the point of the
one-codimensional G-orbit, 4, and 4, intersect regularly with codimension

one.

Let A, be an element of g,, with d = }, all remaining parts zero in

(10.2). Then dp(A,)x; = 0 and dp*(A,)y, = y, where y, = u; A\ u; A\ u,. Since
— 3d = — 1 (See Proposition 1-9),
trys Ay = dimV; = 1, we have ord,f' = — s — 3 and hence b (9)]b,(s) =

o0y(Ay) = (degf/dimV)-tr, A, = 3tr A4,

(s + D).

We have also 4, = A¥, and hence 4,, = A¥.

(3) The isotropy subalgebra g,, at x, is given as follows.

(10.3)

Q4 =

(—tr X
0

0
—trY

(241

By

44

Be

A3 @y

ﬂB ﬁti

Qs

Bs

W \

0

X

0

Be
—,BI

= (gl(2) @ gl(2)) - u(10).

0
0

0

Y

—a,
24}

tr(X+Y)

The conormal vector space V¥ is spanned by o, = u, A\ us A\ u;, 0, = U,
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AU N Uy 0y = U N\ Us N\ Uy @, = U, \ Us N\ u;. Then we have (G,,, p.,,
Vi) = (GL(2) X GL(2), 4,® 4;, V(2) ® V(2)), and y, = o, + o, is its generic
point, y; = w; is a point of the one-codimensional orbit. Since the colo-
calization (G,,, p.,, V) is an irreducible regular P.V., 4, is a good holonomic
variety by Corollary 1-8. Let A, be an element of g,, with¥X = — 11,
all remaining parts zero in (10.3). Then dp(4)x, = 0 and dp*(Ay)y, = Y.
Since 0y(A,) = 3tr 4, = — 2, trys A, = 4dim V%, we have ord,f = — 28 —
4 by Proposition 1-3. We have also dp*(A,)y: = y; and tr;A, = 1 where
V = V*mod dp,(g.,)y. = Co,. This implies that 4, and 4, intersect regu-
larly with codimension one by Proposition 1-4. By Corollary 1-2, we
have b,,(s)/b,(s) = (s + 2). We have also 4, = Af and hence 4,, = Af.
(4) The isotropy subalgebra g, at x, is given as follows.

€11 _Te T3 I s Ts
0, (73402 0;
(10.9) g., = 0 X 35 Js (r14+0) |; X € 381(3)
(Tz+52) 0, 0¢
0 0 | —el,—'X J

= (gl(1) ® 38((3)) D u(12).

Put o, = us N ug N\ gy, 0= Uy N\ Us N\ Usy 05 = U N\ Us N\ Uy, 0 = U N\ Uy N\
Uy W5 = Uy N\ Us N\ Us — Uy N\ Ug N\ Uy, @05 = Uy N\ Uy N\ Uy — Uy N\ Uy /\ Ugy, @
=u, /\ Us N\ Usg+ u, /\ ug /\ u;, Then the conormal vector space V} is
spanned by these @, ---,®,. The action dp,, of g,, on V}* is given by
38} L S S T T )

(10.5) DAy -2y 0) = (@5 -5 ) ("o | 2:1, © dpi(X)

where p, = 24, for SL(3).

Here y, = w, + w; + o, is its generic point, and y, = o, + o, is a point
of the one-codimensional orbit. This implies that 4, = A%, 4, = AFf and
dimA, N 4, =dimV — 1. Since A, N 4, is Gyprehomogeneous, 4, is a
good holonomic variety. Let A, be an element of g,, with ¢ =4, all
remaining parts zero in (10.4). Then dp(A)x, =0 and dp*(A)y; = ¥..
Since dy(4A,) = 3tr4, = — 6e = — 3, tI‘VLAO = 15 and dimV} = 7, we have
ord,f* = — 3s — % by Proposition 1-3. Let A, be an element of g,, with

Ui
e=244+L X= ( 7 ) ) with 7 = & — &, all remaining parts zero in
47

(10.4). Then we have dp(A)x, =0, do(A,)y: =y: and tryA, = 8 where
V= V; mod dp,(3..)y: = Co,. This implies that /4, and 4, intersect regularly
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by Proposition 1-4. By Corollary 1-2, we have b,/(s)/b,(s) = (s + %).
(5) The isotropy subalgebra g,, at x, is given as follows.

X 0 Z
(10.6) 8., =410 Y W); X, Ye 3,2 WeC*
0 0 ¢

= (gl(1) @ 3l(3) D 3((3)) ® V(6).

The conormal vector space V} is spanned by u, A u; A u,(1<i<3;4<
Jj < 6). By seeing the weights, we have (G,,, p.,, Vi) = (SL(3) X GL(3), 4,
® 4,, V(3) ®V(3)). Since this is an irreducible regular P.V., 4, is a good
holonomic variety by Corollary 1-8. As a generic point, we may take y,
=W AN+, AN s+ u, A\ ug) Ay, and yy = (U, A\ uy + w N\ us) A\ Uy is
a point of the one-codimensional orbit. This implies that 4, = 4§, 4,, = Af

and dim 4, N 4, = dimV — 1. Let A, be an element of g,, with e = — 1,
all remaining parts zero in (10.6). Then dp(A,)x, = 0, dp*(A,)y, = ¥,. Since
oy(A,) = 3tr A, = — 3, tryzvo =% = —9 dimV} =9, we have ord,f* =

7
— 3s — $. Let A, be an element of g,, with ¢ = ((8 + 2)/3), X = ( 7 )
—4n

with 7 = (1 — B)/3), all remaining parts zero in (10.6). Then we have
dp(A)x, = 0, do*(A)y; = ¥ and try4, = § where V = Vi mod dp.,(a,.)ys =
Cu, N\ u; A\ u,. This implies that 4, and 4, intersect regularly. By Corol-
lary 1-2, we have b,(s)/b,(s) = (s + 3).

(6) The isotropy subalgebra g,,, at x,, is given as follows.

e,+X| B | C
10.7) g,, = A = 0 |—2L+X F |;Xesl(3,trB=0,C,DeC?

o | o 7
= (gl(1) ® gl(3)) D u(14) .

Put o, = us N\ g N\ Uy, ;= U N\ Us N\ Uy @3 = U, /N Us N\ Uy 0 = Uy N\ U,
A U @ = Uy N\ Uy N\ Uy 5 = Uy N\ Us N\ Uy, 0 = (U A Us + Uy A W) N Uy,
Wy = (Uy N\ Us + U /\ U) N\ Uy 05 = (U N\ Us + Uy N\ U) N\ Usy @y = Uy N\ Us /\
u,. Then the conormal vector space V. is spanned by o, ---, o, and
the action dp,,, of g,,, on Vi

I10

is given as follows.

(46—72!9—1—){ B’ | B
(10.8) dpm(A) (@ -5 0) = (0, -+ -, @) 0 o (5_77)Ie+ d‘of(X):E 0 )
0 0 | 6e

where p, = 24, for SL(3).
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Then y,, = o, + w; + 0, is a generic point. There exist two one-codi-
mensional orbits. As a representative point, we may take yi, = w; + @
and ¥, = o, + o, + o, respectively. This implies that dim 4, N 4,, = dim 4,
N4, =dimV — 1. Since 4, = A¥, 4,, is a good holonomic variety. Let
A, be an element of g,,, with ¢ = {, y = — £, all remaining parts zero in
(10.7). Then dp(Ay)x, = 0 and dp*(4y)y, = Y. Since dy(A,) = — 9% + 3y
= —4, tryy A= 24e — 9 =2, and dim Vi, = 10, we have ord,, f* =
— 4s — 13 by Proposition 1-3.

Since dp*(Apy, = ¥ and trpA, = 1 where V= V2 mod dp,,(8:,0) Y10
= Co,, A, and /,, intersect regularly by Proposition 1-4. Let A; be an
element of g,, with e = £, » = £ — 1, all remaining parts zero in (10.7).
Then we have dp(Ap)x, = 0, dp*(4,)yi = ¥y, and trpA, = B where V=
V¥ mod dp,,(8.,,)y. = Cwy,. This implies that 4; and 4,, intersect regularly

by Proposition 1-4. By Corollary 1-2, we have b,,(s)/b,(s) = (s + 3) and

b/ilo(s)/b/is(s) = (s + %)-
(7) The isotropy subalgebra g,, at x,, is given as follows.

Y
e+ X

(10.9) g, = {( —2

x ); Xesp(d), Ye ce} ~ (gl(1) @ 3p(3)) ® V(6) .

Put o, = u, A Uy A Uy @0, = Us /\ Ug /\ Uy @3 = Uy /\ Uy /\ Us, @ = Uy N\ Uy N\
Uy W5 = Uy N\ Uy N\ U, @5 = Uy N\ Uy N\ Ugy @7 = Uy /\ Uy N\ Uqgy @3 = U, N\ Uy N\
Us, W= Uy N\ Uy N\ Uy — Uy NU/\ Uy, 0p = Us N\ Us N\ Uy — Uy N\ Us /\ Uy @y
=U A Us AN U+ U A UGN Uy @ = Uy N\ U N\ Ug + U N\ Ug /\ Uy @3 = Uy
A Uy N\ Us — Uy /\ Uy N\ U, @y = Uy N\ Us N\ Uy — Uy N\ Uy /\ U;. The conormal
vector space V3, is spanned by these w, ---, ®,. By seeing the weights,
we have (G,,,, s, Vat) = (GL(1) X Sp(3), [ ® 4, V(1) ® V(14)). Since this
is an irreducible regular P.V., 4,, is a good holonomic variety by Corollary
1-8. As we have seen in §9, y, = w, + w, is a generic point. Let A, be
an element of g,,, with e= — %, X = Y =0 in (10.9). Then dp(A)x, =0
and dp*(A)yu = Yu. Since (A, = 3tr A, = — 4, tr;z, Ay = 14 X 3 =
— 14 and dim V¥, = 14, we have ord,,,f*= —4s — Lt Since 4, = A, 4, =
A%, and 4, and 4,, intersect regularly with codimension one, so do 4,, and
A,. By Corollary 1-2, we have b,,,(s)/b,(s) = (s + %).
(8) The isotropy subalgebra g,,, at x;; is given as follows.

Z |
- ‘Wel* ' UeCHenel

—2¢ w
(10.10) g, = 0 el 4+X
0 0

u ) Xesp(2), Yesl@), Ze M4, 2)
2L+Y
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= (gl(1) D 8p(2) @ gl(2)) D u(14).

Put @, = Uy N\ Uy N\ Uy (1§L£4)’ @5 = U N\ Uy N\ Uy w6+j:(u2/\u4—u3
A u) N\ Us,jo W g = Uy /\ Uy N\ U, gy O, 5 = Uy N\ Us /\ U, jy Orpj; = Us /\ Uy /N\
Ug,jy Ouyy = U N\ Us A\ Ug,; (j=0,1). Then the conormal vector space V3,

is spanned by o, ---, ws. The action dp,,, of g,,, on V} is as follows.
dpxls(A)(‘Un o) = (@), -, o)
(10.11) _(5+277)I4+dP1(X) * *
X 0 2e — 27 *
0 0 — eI+ dpH(XDY)

where p, = 4, for Sp(2) and p, = 4,® 4, for Sp(2) X SL(2). Since 4, =
A¥ and 4, is a good holonomic variety, 4, is also a good holonomic
variety. ¥y = @; + w,; + o, is a generic point. Let A, be an element of

0 With e = — %, »= — £, all remaining parts zero in (10.10). Then
dp(Apx; = 0 and dp*(A)y;s = yis. Since dy(4,) = 3tr A, = 6(c + 3) = — 5,
‘mﬁ',,;;lsA0 = — 22 — 20p = 122, and dim V% = 15, we have ord, f* = — 5s —

12 Since A; = A¥, Ay = AF, Ay, = AF, we have dim 4,,N4,, = dim 4,,N
Ay = dimV — 1 and they intersect regularly. By Corollary 1-2, we have
b,1,.(8)/b1,(8) = (s + 3) and by, (8)/b,,(8) = (5 + ).

(9) The isotropy subalgebra g,,, at x,, is given as follows.

(10.12) ., = {X — (f ‘J%?) Xes((3), Yesl(d), Ze MG, 4)}

= (3((3) @ gl(4) D V(12).

The conormal vector space V¥, is spanned by u, A\ u; A\ u, (4 <i<j<
k<7 andu, Nu; ANu, 1<i<34<j<k<7). Theaction dp,,, of g,,,
is given by

do(X) (s A s N try -+ -)

(1013) = (ua N Us N\ Uy - - )(

Y—3el,| * )
0 | —2l+dpf(XDY)

where p, = 4, ® A, for SL(3) X SL(4). For example, v, = u; A (u, N\ u, +
Us A\ U) 4+ Uy A\ Uy, A Uy + uy A us /A u, is a generic point,  Since A, = AF,

Ay, is a good holonomic variety. Let A, be an element of g,,, with e = — L,
X=Y=272Z=0in(10.12). Then do(A)x,, = 0 and dp*(Ay)ys = y.. Since
ox(A) = 126 = — 6, tr,3,,A, = — 48¢ = 24 and dimV}%, = 22, we have ord,,

ff= —6s —28(= — 6s — 13). Since /A, = A and 4,, = .I¥, we have
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dim 4,,N4;s = dimV — 1 and they intersect regularly.

By Corollary 1-2, we have b,,,(s)/b,,(s) = (s + 4).

(10) The isotropy subalgebra g, at x,; = 0 is g itself and we have
(Gigys 02 Vi) = (G, p*, V*) = (GL(7), 4,, V(35)). Then y,; = xy = u, A\ u; A\
ANty + us A\ ug A u; + ug A (u, A\ us + us A\ ug + u, A\ u,)isits generic point.
Put A, = — $I,. Then dp(A)x; = 0 and dp*(Ay)ys = Y. Since dx(4A,) =
3tr4, = — 17, tr,,;MAo = — 35 and dimV} = 35, we have ord, f = — Ts
— 85 Since A, = Af and A, = A¥, they intersect regularly with codi-
mension one. By Corollary 1-2, we have b,,(s)/b4.(s) = (s + 5). Since
b,(s) =1 and b,,(s) = b(s), we obtain the b-function b(s) = (s + 1)(s + 2)
s+ D+ D+ 3(s+ 4)(s + 5), and the holonomy diagram (Figure 10-
1). We denote 4, by .

Note that the colocalization at x,, x, %, %, X., X, and x, has the
unique one-codimensional orbit respectively, and the colocalization at
x, and x,; has the two one-codimensional orbits respectively. Therefore

we have obtained all one-codimensional intersections among the conormal
bundles.

Figure 10-1. Holonomy diagram of (GL(7), 43, V(35)).
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§11. (SL() X GL(®3), 4, 4, V(10) ® V(3))

Let V(10) be a vector space spanned by 2-forms u, A u;, 1<i<j<
5). Then the representation space is identified with V = V(10) ® V(10) ®
V(10) (See [1]). Let A be the conormal bundle of an orbit Sin V and A*
that of an orbit S* in V*. When 4 = A*, we say that S and S* are the
dual orbits of each other. We denote by S{¥ the i-codimensional orbit
whose dual orbit is j-codimensional, where & denotes the dimension of the
central torus of the isotropy subgroup of this orbit. When there is no
confusion, denote this by S; or S,;. We denote by A} (resp. 4, ;, 4;) the
conormal bundle of S (resp. S;,;, S;). We identify V and its dual V* by
taking (u; A\ uy, uy A uy, u A\ wy) @< 1,j<j,k<Fk)as a dual basis.

ProposiTiON 11-1. This space has following twenty five orbits S).
(1) S (uy Aty + g N Uy Uy N\ Uy + Uy N Us, Uy N Uy + U, A\ Us) (= %)
(2) S (W A gy g A\ Us + Us N\ Uy Uy A Uy + Uy N\ 1) (= %)
(3) SOt (W A gy sy A\ Uy + Uy A\ Uy uy A\ Uy + U, A ;) (= %)
(4) S&r (W N gy Uy N\ Uy s N Us + uy N Us) (= %)

(5) SBs: (W A Upy g AN\ Uy + Uy N Uy Uy N\ Us + U, A\ Ug) (= X3)
(6) S (uy Aty uy N\ uy + Uy N\ ugyu, A\ ) (= x,)

(7)) SE (U N gy g N Uy + Uy N Uy g N\ Us + uy A\ wy) (= %)
(8) Sfat (W A Ugy uy N Uy Uy A\ Us + uy N\ Us) (= x5)

(9) S&: (u A gy uy N usy uy A\ ws) (= x7)

10) SH ot (W ANty AUy + Uy A Uy s A\ Uy + Uy A Us) (= x7)
(11) Sé?% D N\ gy ug N U uy N\ ug - oug A\ ug) (= x7)

(12) St (i Aty + uy A uyy uy A Uy + u, A U5, 0) (= x;)

(13) St (uy A Uy Uy N Uy Uy A\ Uy + U, A\ wy) (= x3)

14) S (U N gy ey N\ Uy uy N\ U + 1wy, A\ 1) (= x7)

(15) S 1 (uy A ugy uy N ugy Uy A\ ) (= X)

16) St (uy N ugy us N\ uy + uy A\ uy, 0) (= xy)

A7) Sy (wy N Usy Uy N Uy Uy N\ Uy + Uy N Us) (= xy)

(18) SBet (uy N Ug, us N\ Uy, 0) (= x1)

(19) S (s A Uy, Uy A Uy + Uy A g, 0) (= xy)

(20 81(28: (wy N gy Uy N Usy Uy N\ u) (= x)

21 SPs: (s N ug uy N Usy Uy N\ u) (= x5)

(22) ng)z (uy Aty uy A\ Uy, 0) (= Xy5)

(23) SP%: (s A Uy + us A\ 1y, 0,0) (= xy)

(24) SZ(1231 (u, N\ u, 0, O) (= Xy1)
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(25)  S{o: (0,0,0) (= x50)

Proof. 1t is easy to check that the non-regular P.V. (SL(5) X GL(2),
A, ® 4, V(10) ® V(2)) has eight orbits which are represented by the following
points; [1] (0, 0), [2] (u, A u,, 0), [3] (u, A uw, + u; A\ u,, 0), [4] (u, A\ u,, u, A
u), [B] Uy A gy g A Uy + Uy A wy), [6] (g N\ g, us A wy), [71 (ug A g, ug N\ 1,
4+ u, A ug), [8] (wy A wy, + uy A\ u,, u, N\ uy + u, A\ u;). Therefore, for a point
x = (x,, X, x;) of V, we may assume that (x,, x,) is one of these points.
In the first three cases, repeating the same argument, we obtain (12), (16),
(18), (19), (22), (23), (24) and (25). For 2eC, we define S,,(2) by S,;(Du, =
u, for k£ 1 and S;;(MDu; = u, + Au;. Then S,,(2) is an element of o(G).
Put x, = > .., a,;u; A\ u,. First we consider the case [4], i.e., (x;, x;) = (u; A
Uy, Uy /\ U;). Assume that a, = 0. Then we may assume that x, = a,u, A
u, + u, A\ u,. In fact, we have a;;, = 0 by Su( — ai/a,) and so on. If ay
= 0, then we have (9). If a, # 0, then we have (8). Next assume that
as = 0. If one of a;; (( = 2,3;j = 4,5) is not zero, we may assume that
Xy = Uy N\ Uy + Quslly /\ Us + Qg5 N\ Us. If @y = 0 (resp. a;; = 0 and a, = 0,
@y = a;; = 0), then we have (11) (resp. (14), (15)). If any a,;, =0 (i = 2, 3;
j = 4,5), then we may assume that x; = a,u, A u, + @yt N uy. If 0, #0
and ay = 0 (resp. a, #+0 and a,, =0, a, =0 and a,; # 0, a, = @, = 0),
then we have (17) (resp. (20), (21), (22)). Next we consider the case [5],
ie., (X, %)= (@ Atsyty ANty + u, Au) If a;,+0 or a;+0, we may
assume that x, = a,u, A u; + u, A u; and hence we have (5) (resp. (6))
for a,, # 0 (resp. @, = 0). If a;; = a,; = 0 and one of a,; (kR = 1,2) is not
zero, then we may assume that x, = a,u, N\ u, + a,u; A\ u, + u, A\ u; and
hence we have (7) (resp. (10), (14)) for a, #* 0 (resp. a;,, = 0 and a,, = O,
Gy = Gy = 0). If a5 =0 for 1 <k < 4, we may assume that x, = a,u, A
Us + Gl N\ Uy + Gty A Uy + @yl /\ u,. Then we have (13) (resp. we have
(19); it is reduced to the case [4]) for a, # 0 (resp. %, = 0; @, = 0 and «x,
+ 0). Now we consider the case [6], i.e., (x,, %) = (U A Uy, us A w,). (1)
If a, 0 or a; + 0, we may assume that x; = a,u, A\ u; + au, N us +
Oasly N\ U5 + uu;. Moreover if a,; # 0, then we have (3) (resp. (4)) for a,
# 0 (resp. a,; = 0). If a;; = 0, then we have (4) (resp. it is reduced to the
case [4] or [5]) for a;; = O (resp. a;; = 0). (1) If @y = a,;; = 0, it is reduced
to the previous cases. Next we shall consider the case [7], i.e., (x, x,) =
(g A Uy uy A\ uy + uy A\ ug). () If a5 # 0 or a; + 0, then we may assume
that a; = 1 and a;; = @y = a,, = @, = 0. By S,;(2), Su(p), S.(v) and GL(3),
we have x, = (@, + (@5 — @) + (Ao + o)y + Oy A uy + (g + Aas5)u, N U,
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d Qs N\ Uy 4 (@5 4 V805 + g4 Dty A Us 4 (@ + £ — DU A Uy + Uy A Us.
If a,, == 0, we may take 2, g, v so that a; + (@ — @) + v(ay + Aay) + 2
=qy + Y0y +p+A=0ay+ ¢ — 2=0 and hence we have x, = au, N\ u,
+ s N\ Us + uy, N\ us. If @ =0 (resp. @ = 0), then we have (2) (resp. (3))
by 335(—1/2?, 0542(—%)/2), Su(1/4a), {u31 H(()l/«(/)Z)ug, uo—Vau, u, e u, (j+
3,4)} and (0 1 —1/2«) (resp. by (O 0 1) and {us — Uy, Uy U, u >
0 N3 01 1
—u, u;—>u; (j=1,2). If a; = 0, taking 2 and p satisfying a, + p + 2
=ay, +p—A=0, we have x, = alu; A\ U; + apu, N\ uy + u, N\ u,. If al

# 0 (resp. ax; = aj; = 0), then we have (2) (vesp. (6)). If aj;, = 0 and al; ==
1

1 1
0, then we have (4) by S.(d), ( 1 —1/7), s%(——), S, (—T—) ( 1 )
0 1 r 2 72 1

and {u, — (1/29)u,, Uy — 2y, u; > u, (j # 1, 2)} where y = v/ —af;. (i) If ay
= q, = 0, it is reduced to the previous cases. Finally we shall consider
the case [8], i.e., (x, ) = (U, N\ u, + u; N\ wy, u, A\ Uy + u, A\ u;). The iso-
tropy subalgebra § of 3[(5) D gl(2) at this point (x,, x,) is given by

a, 71
o, Q, ,81 72 ,82

r) = —27’2 a, 27,1 @® <—(a1+a2) —72 )
l B —r: B a4 @ T —(a,+a,)
—7 Qs

with ¢, + @, =a; + a, @, +a;,=a, + a; and > 2 a,=0.

Taking one-parameter subgroups from 0, we obtain the following
actions which fix (x;, x,). @) ,(D): u,— u, + Ay, u;— u; (G £ 1), (1) a(2):
Uy — Uy + AUy, Wy — uy (J £ 5), (1) Bi(A): wy = uy + Auy, uy— Uy + AUy, u; — U,
(G #1,3) @v) B uy— Uy + Ay, Uy Uy + AUy, u; - uy (G5 3,5) (v) (D)
Uy > Uy — AUy Uy —> Uy + AUy, Us—> Uy + 220 + Zuy, u;— u; (j+ 2,3,5) and
(201, 2z 203) > (g, A2 + %3, %), (VD) 72(): wy = wy — 22u, + Bus, uy > uy — A,
Uy Uy + Ay, uy>u; (J1,8,4) and (%, x,, 25) — (2, — A%, X, x,).  We
have also £,(2) (resp. &(): (xi, %, x;) — (21, %, 22, + %) (resp. (x;, X,y A%, +
%)) and 7(e): (%, %, %5) — (21, %, pc;) With ¢ = 0. By using these actions,
we shall do the orbital decomposition leaving (x,, x,) fixed. If at least one
of a,;, a; and a,; is not zero, then by 7, 7., &, & and 7, we may assume
that a; = 1, a3 = @ = s, = 0. (1) If a;s + 0, by «,, i, &, &, Bs, s, 7: and
7, we may assume that x, = a,u, A u, + u, A\ us. If ay 0 (resp. a, = 0),
we have (1) (resp. (2)). (i) If a; = 0, by &, &, B, . and «;, we may assume
‘that x, = u, A Uy -+ @ty A\ U, + @yt N\ Uy, If a, + 0, then we have ().
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If a,; = 0, then it is reduced to previous cases. Finally, if a¢;; = a;; = @
= 0, we may assume that ¢, = a,;; = a;; = a5 = 0 by the action of &, &,
and 7,. By considering (x;, x;) instead of (x,, x,), it is reduced to the
previous cases. We shall see later, by calculating the isotropy subalgebras,
that these orbits are different from each other. Q.E.D.

(1) Put x; = Bus N g — Uy N\ Us, Uy N\ Uy — 2Uy N Uy, SUy N\ Uy — Uy N\ 1)).
Then the isotropy subalgebra g,; is the following standard form.

da B

4y 200 28 200 B
(11.1) 8z = 3 0 3B ® ( 2y 28 )
2r —2a 4p r —2a

r —4da

(e _B)=so

Since 4, = V X {0}, we have ord,p,/* = 0 where f denotes the relative
invariant of degree 15 (See [1]).

IR

(2) The isotropy subgroup at x, is locally isomorphic to (GL(1) X GL(1))-
U(2) where U(2) denotes a 2-dimensional unipotent group (See [1]). The
conormal vector space V} is spanned by (u; A u;, 0,0)€S%,. We have
dim 4,N 4, = dimV — 1; ord,,f* = — s — % and b,,(s)/bs(s) = (s + 1).

(8) The isotropy subalgebra g, at x, is given as follows.

[ € 0 0 0 —B

a —2e+7n B 0 0

(11.2) G, =<A4=10 0 7 0 —a
0 0 —B —2e+y) 7
0 0 0 0 3(e+7)

e+ 2y
@ ( 247 =(gl(1) @ gl(1) @ u(@) .

-8 -« —(e+77))

The conormal vector space V3 is spanned by v, = (u; A u,, 0,0), and
v, = (0, u; A\ us, 0), and the action dp,, is given by

Ap:(A) (V1 v2) = (v;, V) (_ (45(;- %) - (650 + 477))
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i) VE—Si<ouv 4+ v, = A u,u A u,0),ie., v, + v, 1s a generic point
of VX, where S} is the singular set of the P.V. (G., p.,, V5). We
use this notation from now in § 11. Put y = y,v, + ¥.0,.

i) (SHiodp(d)=—@e+ b fFr)=nev.=0u Ny, e S,
ie., (SH) = {ye V& () = 0} = p.,(G.) - v, and fi¥(0.,(8)y) = pi(Q)f()
for ye V¥, ge G,,. From now on, we use this notation in §11.

iii) (SH. <> dp(A) = — (6 + 49) < () = o> v1 = (s A\ 4, 0,0) € S,
iv) — 0y = dp, + dp,, trV’;z = dp, + sz

v) ord,f'= — 2s — 2/2.

Since the Hessian of the localization f,,(2) = 2z, (z = zv, + z,v, € V,,)
of f(x) is not identically zero, 4, = A); is a good holonomic variety. We
have dim 4, N 4, = dimV — 1 and b,(s)/b,(s) = (s + 1).

(4) The isotropy subalgebra g,, is given as follows.

ea 00 B
000 0
6,,=<1A=100¢0 0
007y ¢ 8
0000 —(eintd)
(11.3)
—(e+7)
o T e )
e+9+$)

= (gl(1) D gl(1) @ gl(1)) @ u(3) .

The conormal vector space V¥ is spanned by v, = (u, A u©,, 0,0), v, = (0,
Uy A\ Us, 0) 03 = (0,0, u, A\ uy), and

3e+2¢&

3e+2p
dpzs(A) (Ux, Usy Uy) = (vy, Uy, va)(

—(e+2v+25))

1) VE—8Sfouv 4+ v+ v = (U At uy N\ us, u, N\ uy) €S

i) (SEh<do(A) =3+ 2 fE()) =310, + v, = (0, Uy N\ s, Uy N\ wy)
€ Sk,

1ii) (S¥). <> dp(A) = 3e + 28 <> f5 () = yo > U + Uy = (U N s, 0, Uy N\ 1)
e Sk,

iv) (S¥)odof(A)= —(+ 22+ 2)>fFO) =y v+ v = (U N\ U,
u, N\ u;,0) € Sl>|(<i,2

v) — dy = dp: + dp, + dp,, tryy = dp, + dp, + dp;.
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Since the localization f,,(2) = 212z,2, (z= 2z, e V,,) is non-degenerate,
A;,5 is a good holonomic variety and ord, . f° = — 3s — % We have
dim 4, N 4;,; = dimV — 1 and by, ,(s)/b4(s) = (s + 1).

(5) The isotropy subalgebra g, at x; is given as follows.

—20e+n) « B 0 0
0 e 7 0 —2a
e = {A = 0 0 7 0 0
0 0 —a —@Bet+yp) o
(11.4) 0 0 0 0 4e+2y

e+ 2y 0 0
@ ( —r  2+y 0 ) = (gl(1) @ gl(1)) D u@) .
B —a —e—y

The conormal vector space VjF is spanned by v, = (u, A us, — u; A i, 0),
U, = (u3 AN U, 09 0)7 Uy = (uz AN Us, 0’ O)’ and

—(6e+47) 0 0
dp.rg(A) (U1, Uy, va) = (UI’ Uy, v3) 0 2(6_)7) 0
—2r -3  —5(+7)

1) Vzt’ - S;;’ U+ v=WANu+u Au, —u A u,0)¢ S;’:fx,s
i) (SE)i <> dpi(A) = — (6e + 49) < f*(y) = <> v, € Sf,
1ii) (S;ka')z <> sz(A) = 2(e — 77) <> fFy) =y € S]":s,z

iv) — dy = 2dp, + dp, = — 10(e + 1), tryy = 2dp, + §dp, = — 9% — 11y
Since dim4;;; N 4, = dim 4, ;s N 4, = dimV — 1 and they intersect G,
prehomogeneously, /;;; is a good holonomic variety and ord, ,.f*= — 3s

4

— 4. The intersection exponent of /4,,, and 4, 1is (1:0). We have b, ,(s)/
ba(s) = (s + D(s + B and by, (9/bu(s) = (s + B).
(6) The isotropy subalgebra g,, at x, is given as follows.

e « r 0 0
0 7 B 0 0
g, =<A=10 0 & 0 0
0 0 —a e—9p+& d
(11.5) 00 0 0 —2(e+8)
—(e+7) 0 0

el —8 —(+9 0 = @D gl() @ gl(1) D u4).
0 0 (e+29+8)
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The conormal vector space V% is spanned by v, = (u;, A w,, 0,0), v, = (&,
N s, — Uy N U, 0), vy = (us A us, 0, u, A\ 1), v, = (0,0, u; A\ u), and

2p—e) 0 0 0

0  3e+2 0 0

dp“(A) Wy -, 0) = (U, -+, V) o 6—21877 3e+n+§& 0
0 0 0 —(e+29+28)

1) V:‘;_ SJZ':(_)UI+ Uy 4+ Uy = (U A\ Uy + Uy N\ Us, — U N\ Us, Uy N\ Uy) € Sﬁ,«x
i) (SH < dp(A) = 200 — &) < () = yi <> v + Vs
= (Uy N\ Us, — Uy N\ Us, Uy N\ Us) € S5
iii) (SH. <> dp(A) = 3e + 28 < fi*(y) = o v + 0,
= (u3 N Uy, 0, uy, A us) € ngﬂ
iv) (S« dps(A) = — e+ 29+ 28) < fH(y) = yio v + v,
= (U A\ Us + Uy \ Uy, — Uy /\ Us, 0) € ng,3
v) — oy = dP1 + 2dpz + dﬂa, tryy, = %dpl + 2dP2 + dps-
The conormal bundle 4, is a good holonomic variety with ord, f* = — 4s
— 3. We have b,,(s)/bs,(s) = (s + 1)(s+ 2), b,(s)/bs,,,(s) = (s + 1) and
b4 (8)/b4,, () = (s + 2). Note that these intersections are regular and G-
prehomogeneous.
(7) The isotropy subalgebra g,, at x; is given as follows.

€ 71 I 73 74
0 244y 71 0 Te
oy = A= |0 0 7 0 Tst+7s
0 0 —r1 —(e+37) —T:
(11.6) 0 0 0 0 —2(e+7)
—(3e+47) 0 0
@ Ts—7s —(e+7) 0 = (gl(1) @ gl(1)) D u(6) .

—Ts -1 et2y

Then V3 is spanned by v, = (u; A uy — ws A\ uy, 4y N Us, 0), U, = (uy N\ Us,
— Uy N\ Usy Uy N\ Us), Uy = (U N\ Us, — Uy N\ U, 0), U, = (U, A\ U, 0,0), U, = (1,
A us, 0, 0), and

4467 0 0O 0 0
0 ey O 0 0
(117) dpzs(A)(Uu e ',vs) = (Uu R U5) -7t —7s 35‘|’27) 0 0

—3r; 0 0 6e+99p O
=2rs 26 75—2rs 10 5(e+7y)
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) Vi—Sfouv+uv=0 Nt—u N+ u A u,u A u
— U N\ us, Uy N\ Us) €S

i) (SHiedo(A)=4e+Epeff)=yncv+v e S,
iii) (). < dpz(A) =e—nff)=nuv € S,
iv) — 8y = 3dp, + 3dp,( = 15¢ + 157), try; = 4dp, + 3dp( = 19 + 21y).
The conormal bundle 4; is a good holonomic variety with ord, fs = — 6s
— $. We have b,(9)/b,(s) = (s + ) (s + 3) and b,(8)/b;, .,(s) = (s + 1)(s + %)
(s +%). Note that the intersection exponent of 4; and 4, is (2:1). The
intersection of 4; and 4, is regular and G;-prehomogeneous.

(8) The isotropy subalgebra g,, at x, is given as follows.

I s LY 3el,—'A
(11.8) g, =A=| 0 |L+A| 0 @(——2_———
0 | 0 |eL+B ren

= (gl(1) @ 3(2) P 3((2) DV(D) .

Then V} is spanned by v, = (u, A\ u,, — u, A u,, 0), v, = (0, u, A\ 1, 0), v, =
(us A\ 4y, 0,0), v, = (U N\ U5, — uy N\ U, 0), v;=(0,u, A\ u;, 0), v, = (us A\ u,
0,0), and (G,,, p., V) = (GL(1) X SL(2) X SL(2), 54, ® 24, ® A4,;, V(1) @ V(3)
®OV(2) = (SOB) X GL2), 4, 4, V(8)®V(2)) and hence 4, is a good
holonomic variety.

) VX—Sktouv, +vi= (U A us, 4, A\ 1u,,0) € S

ii) (S;i)l U+ U, = (U A\ Us, Uy N\ Uy — Uy N\ U, 0) € Sf’:;,a
iif) —ay = dpy, trV;s = $dp,
We have ord,f*= — 4s — § and b,,(s)/b,,,,(s) = (s + ).

(9) The isotropy subalgebra g,, at x, is given as follows.

—2e+p) | F 0

- 2)L—A| 0

(1L.9) g., = {Az( 0 |sL+4 0 )@<(e+ ’72)2 |—2 );
0 0 [7L+B 7

TO%_>;A,BG§,I@]

A, B e 3((2),'F ¢ CZ} = (gl(1) D gl(1) D 3((2) @ 8((2) D V(2) .

Then V} is spanned by v, = (u, A uy, — u; A 4,,0), v, = (0, u, A\ u, 0), v,
= (u; A\ u,0,0), v,= (U N\ U, — U A\ U, 0), 5= (0, u, A\ 1, 0), v, = (u; A\
u;,0,0), v, =(0,0,u, A\ uy), and (G.,, p.,, V¥) = (GL(1) X GL(1) x SL(2) X
SL(2), 24Ff @ 34F ®24,® 4) D 24} ® 24,1 ® 1), V(6) D V(L)).

) V¥E-—SEeunt+v+v=0uANu,u Au,uA\u) e Sk

i) (k) o do(A) = — 8 — 12 f()([degfr = D<= v, + v, + v, € Sk,



PREHOMOGENEOQUS VECTOR SPACES 61

i) (Sk) o do(A) = — 2 + 2 >[5 () =y, o v, + v, € Si,
iv) —dy = dp, + dp,, tryx = $dp, + dp..
Then by Corollary 1-7 conormal bundle /,, is a good holonomic variety
with ord, f*= — 5s — % We have dim4,, N 4, = dim4,, N 4, = dimV
— 1, by, (&)bu(s) = (s + D), and by, (/bus) = (s + 1).

(10) The isotropy subalgebra g,, at x7 is given as follows.

3eta  f T T2 s
7 Be—al 7, Ts 7s
G = {A = —2 -2 —28
O —B  —2+42c 0
(11.10) —7r 0 —2e—2a

—6¢ | 0 ‘
® (72_7’4 —e—a 7 ) = (gl(1) @ 3((2)) DV(6) .
T1—7s ﬂ —eta

Then V3 is spanned by v, = (u, A u,, 0, us A\ w,), Uy = (U, A\ Uy — Uy, A\ u,
— Uy N\ Uy, — 2u N\ Us), Up= (U A\ Uy — Uy N U, 2 N Us, — U A\ ), U, =
(= A usyus A s, 0), 05 = (u, N\ us,0,0), v = (u; N\ ©,0,0), v, = (u; A\ u,
0,0) and the action dp,, of g,;, on V% is given by

5el,+A 0
dJ'A Uy + vy Uq) = Ua""v7<7 c -_>
0 7( ) (v, D = (v, ) C 10:1 5 A,
where
7s 2ri—1s 3r2—2r.  —7s 0 —23 2
(C, A) = 76— 271 27, 7s 0 —7 —2« 0
0 s 27s 72—274 B 0 2«
and

i) ViE—Skeuv +uv= 0w A u —u N\ u, u; N\ u, uy A\ w) e Si
il) (S}), < dp,(A) = 20e <> f*(y,, - - -, y,): the discriminant of binary cubic
forms <> v, € S¥;
ill) — oy = 2dp,, trys , = $dp..
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The conormal bundle /{4 is a good holonomic variety with ord,,,r:;f" = —
8 — 42 We have dim /4 N 4% = dimV —1 and b,,;:;(s)/b,,s(s) =(G6+3%
(s +%). The intersection is regular and G,-prehomogeneous.

(11) The isotropy subalgebra g,, at x; is given as follows.

RETIRNE .
0 0 |7L—A

1111) g, =

Ace 5[(2)] = (gl(1) @ gl(1) © 3((2)) D u(®) .

Then V. is spanned by v, = (u; A\ u,,0,0), v, = (U, A\ uy — U N\ Us, — Uy
A Uy 0), Uy = (U A Us, Ug N\ Uy — Uy A\ 15, 0), v, = (0, up A\ s, 0), U5 = (U A s,
— Uy N\ Uy U N us), vy = (u; A u5,0,0), v, = (0, u, A\ us,0), and

— (243, +34,(A)| 0 0
dpx.’,’(A)(vn ) U7) = (Ub Y U7) 0 E—7 0 .
s x | —(e+4pL+A

i)y Vi —Skrouv+u+uv e S
i) (S« dpy(A) = — 8 — 127 f¥(y,, - -
cubic forms <> v, + v, + v, € S
iii) (S;v);")z > sz(A) =e—neff)=ycv+u e St
iv) —dy = dp, + 3dp,, try,; = $dp, + 3dp..
The conormal bundle 4% is a good holonomic variety with OrdA;f;fs =
7s — Lt We have dim 4; N 4% = dim 4, N A% = dimV — 1, b,e(s)/b4(8) =
(s + %) and b, (8)/bs(s) = (s+1)(s + $)(s + §). The intersections are regular
and G,-prehomogeneous.
(12) We shall calculate the isotropy subalgebra at &%, = (v, A\ u; +
Uy N\ uy, Uy N U+ u, N g, 0) instead of x,.

-, ¥.): the discriminant of binary

e+ (247 71 72 73
~ _ Gy de—a 7, 71 T4
1112) gz = 1A = —2 — 20, — 205,
, 0 —ay  —2e—20
\ — 0y —2e+2c

—eta Qg l
Of_a —e—a

Ts
0{6_) E = (gl(1) @ gl(1) ® 51(2)) DV(6) .

7
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Then Vi is spanned by v, = (0,0, u; A w,), v, = (0,0, u; A\ w), v;= (0,0,
U N\ U — up N\ ug), v, = (0,0, u;, A\ u, — u, \ u,), vs = (0,0, u, \ u,), v, = (0,0,
u, A\ ug), v, = (0,0, u; A\ ), v = (0,0, u, A\ u,) and the action dp;, of g;, on
Vi is given by

—6e—y| 0 0 I
d(oi‘s(g) Wy, -, 09) = (g, -+, vs)(_ ,,,,,,,g‘ - :ﬂeiv)L+A1 0 )}4
0 C, (45""7])-[3"!'142 }3
where
—72 71 73 74 0 200, — 20ty
(G, Ay) = ('—TI 2y, 74 0 oy —2a 0 )
0 e —2r —71s —0 0 2o
and
[— 7+ —3a 3y, 0 0
(C,A)=|"T o, —a 20y, 0
—71 0 20, @ —y
T2 0 0 —3a, 3Ba

) VE—-Siou+uv=00,00u Au+u Au)e Si s

i) (S#), <> dp,(A) = —4e — 47 <> f*(¥s - - -, ¥5): the discriminant of binary
cubic forms <> v, + v, = (0,0, u, N\ w, + u; A\ u;) € S

iii) (S§). < dpz(g) = —6e—pff)=ycv+v=(00uAu+u
N uw) e Sks

iv) —dy = 10e — 5y = —3dp, + 2dp,, tryy = 2 — 8y = 2dp, + $dp,.

The conormal bundle 4, is a good holonomic variety with ord,, .f® =

—5s — 4. The conormal vector space (G,,, p.,, Vi) is a regular P.V. In fact,

for z = >3%.,2v, € V,, the localization f;(2) of f(x) is given by f;(2) =

22 + 222 + 22,232:2; + 232 + 232025 + 22,2,2:28 + 2,23 + %2267 + 2225 +

320252522 |+ 2RsRiRs — ZRiZiRG — ZyRiBeR% — RaRsRiRs — 23Ry — RiRed, — 22,2:%6%%,

and hence its Hessian is not identically zero. Now we shall show that

dim 4% N 4,5 = dimV — 1. From iii) above, 4 = G(&, v, + v;) is one-

codimensional and 4 C /4,4 It is enough to show (%, v, + v;) = {(u, A u,

4w A wy U A\ Uy A+ u A us, 0), (0,0, uy A us + u, A u)l e A, Put oz =

{(y A gy sy N\ Uy + g A gy Uy A\ wy Uy A w), (W A Uy — Uy A U, U N U,

u; A\ u)}. Then z ¢ A (See (10)). Then for ¢>0, put

]

Svl
g& =1 _fﬁjfif@ww X ( —e! ) e G = SL(5) x GL(@3).
et




64 TATSUO KIMURA

Then g.-2 = {(us N\ us + uy N\ Uy, Uy A\ Us + U N Us, — EUy A Uy), (— Uy N Us,
eus A\ uy, Uy N\ us + U, A\ u)}. Since g,-z e Af) and AfY is closed, we have (%,
v, + v;) =lim, , g.-2 € 4f} and hence dim A{; N 4, ;= dimV — 1. One can see
easily that their intersection is regular and G,-prehomogeneous. We have
b1 (8)/bug,1(8) = (s + 1)(s + $)(s + §). Next we shall show that dim 4, N
Ay ;3= dimV — 1. From ii) above, 4 = G(Z;, v, + v,) is one-codimensional and
A C Ay 15, where (&, U + V) = {(us A us + uy A wy, uy A us + us A us, 0), (0,0,
Uy A\ Uy + us A ug)l. Put w= {(u Aty g A U 4 Uy N Uy, Uy N Uy U N W),
W A\ us + us A\ uy, —us A\ u;, 0)}. Then w e 4, ;, (See (5)). For « > 0, put

—y =1t

L i: 0 —v/ =12 0
| |

g = —+ —1e 0 0 &
v —=1¢ 0 0

e G = SL(5) x GL3).

Then g,-w = {(u; N\ uy + u; N\ wy, g N\ Uy + tuy N us, — %uy N\ ), (%us A us,
0, u, A\ u, + u; A\ u)}. Since g,-w € 4,,; and 4, is closed, we have (X,
v+ v)=1lim,_,8, -we 4,,, ie, 4 C A, N 45, Hence we have dim 4, ,
N Ay s = dimV — 1. The intersection is Gy-prehomogeneous and regular,
and hence we have b, (s)/b,, ..(8) = (s + (s + D).

(13) The isotropy subalgebra g,; at x; is given as follows.

eta+p (240) Bz 71
Aoy e—a+p| —pBiy 72
(11.13) Qg = A= Bt e—a—f 7s
— P eta—B| 1,
4 [ 0 —4e
—2e—28 — B l
o 2498 ﬁm)f = (gl(1) @ 5((2) ® 5((2)) D V().
%, | —28 |2 }

Then V% is spanned by v, = (u; A ©;,0,0), v,=(us N U, 0, — uy /\ ), Uy =
O, us A Us, — ty A 15), v, = (0, u, N\ s, 0), v; = (U, A us, 0,0), U= (u; A 1,0,
u, A\ ), U= (0, u, A\ us, uy A\ us), U= (0,u A u,0. We have (G, p.s
V) = (GL(1) X SL(2) x SL(2), 54, 34, ® 4,, V(1) ®V(4) ®V(2)). Since
dim 0,(G,) = 7 < dimV} = 8, this is not a P.V. The dual of the orbit
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S is Siis in V¥ ie., 4y, = Afis

(14) The isotropy subalgebra g,, at x; is given as follows.

J e T T2 7s T4
0 7 s Ts 77
Gy=-+A=10 0 —2(p+& O Te
l 00 0 E —T1
\ 0 O 0 0 —et9p+é
(11.14)
—(e+7) 0 0 )
@ ( —7s —e+2p+2¢ 0 )
Ts—7 —7s —n—§

|

Then Vj%. is spanned by v, = (u; A u; — Uy /\ Uy, 2uy A\ Uy, Uy N ), U, = (0,
Uy \ Us, 0), Uy = (U A\ Uy, 0, Uy A\ 15), v, = (s N\ us, — uy N\ us, 0), v; = (0, u, A\
us, 0), v, = (u; A\ u,, 0,0), v, = (u, \ us;,0,0), v, = (1, /\ us, 0, 0).

The action dp,; of g,;, on V. is given by

= (1) ® gl(1) @ gl(1)) D u(®) .

C At

A,
A,
A, 0
do.(A) s -, v) = (v, --oyv) | 20T Z7e A
’ 3rs  —7s A;

375 Ts Ae
—2r, —Te|7s T8 A,
L — 72 2ri—1s —2r5 71 Ag}

where A, =¢— & A, =2 — 49— 3§, Ay=e+ 29+ 28 A, =2 — 79 —¢,

Ay =2 — 3 — 4, Ay=e+ 3+ & A, =2 — 28 and A, = 2+ 2p + &,
) VE - Skt <ouv+uv+uv e S

ii) (Sxﬁ;")l <dp(A)=c—EofFf )=y =2yv) v+ U+ € Sife

i) (S5). <> dpy(A) = 2 — 4y — < fF(y) = v + v, e ST

v) (S5)s < dp(A) = e+ 2+ 28 < f5(y) = ys v+ v, € S

v) —dy = 6dp, + dp, + 2dp, try1,. = LBdp, + $dp. + $dps.

Since the intersection of A and A4{) is G,-prehomogeneous, the
conormal bundle 4§} is a good holonomic variety by Proposition 1-5. The
order is given by ord,, f°= — 9s — 4% We have dim 4§} N 4;, = dim A4}
N A;? =dimV -1 (l = 1, 2), b,,gfg(s)/b/,;:g(s) =8 + % and b,,sr?ys(s)/b,‘;f;(s) =
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s+ (@6 +D. In (15), we shall prove that dim A% N A% N AR = dim 4§
N AH N A% = dimV — 1.
(15) The isotropy subalgebra g,, at x, is given as follows.

& 0 7 712 7s
0 & 7. 75 7
G, =<A=10 0 & O T
|0 0 0 e Ts
(0 0 0 0 —(eytetete)
(11.15)
—&—¢&, 0 0
® 74 —& & 0
72 0 —& &

= (gl(1) @ gl(1) @ gl(1) @ gl(1)) D u(®) .

Then V3 is spanned by v, = (0, u, A\ ©;, 0), v, = (0,0, u, A uy), v, = (U, N\ s,
—uy A\ us, 0), U, = (uy A us, 0, uy N\ us), U5 = (0, u, A\ us, 0), v, = (0,0, u; \ us),
v, = (us A\ 1, 0,0), v, = (u; A\ 1, 0,0), v, = (u, \ us,0,0).

The action dp,, of g,, on VI is given by

(A,

A,

74 A,

— 72 A,
Ao, (A)(y, -+, 0) = (Uy, -+, V)| =75 A;

T A,

A,
=21, —n —72 —Ts A,
—7s =212 714 77 A, |

where A, = 2, + 26, + &, A, = 26, + 6, + 2¢,, Ay = 2¢, + &, + & + ¢, A, =
&+ 2 66, As= 26+ & + 26, Ag =&, + 26, + 26, A; =&, + &, — & —
&, Ag = 2¢, + 2¢, + ¢, and A, = 2 + 2, + &,

) Vi—Strouv+uv+v= 0 Au,u A\ u,u A\u)e SH

i) (SHiedo(A) =2+ 2+ ffMN=novn+v,+0v,+ v € Siy
i) (SE) <> dpu(A) = 2, + ¢ + 26, > () = 3o > 0, + v, + U+ v € S
iv) (SHhedp(A)=a+a—g—aofFfO)=yov+v+ 040, € S,
v) —dx = 3dp, + 3dp, + 4dp, try = 4dp, + 4dp, + 5dp; .
The conormal bundle A4,, is a good holonomic variety with ord, f*=
— 10s — L.
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PUtp:(ul/\ Uzy Uy /N Uy Uy /N Uy Uy /N Us + Uy N\ Uy, Uy /N U, Uy N\ Us +

u, A\ u;). Then by iii), we have p e A N 4% and dim G-p = dimV —1. We

shall prove that p e A§), ie., dim A% N 48 N 4§ = dimV — 1. By (14),

for any ¢ >0, we have (u, A u,, t; N Uy, Uy N\ Us + Uy N\ U Uy N\ Us — Uy N\ U,

+ @/us N us + () us N wy, 2us N\ uy + uy N g, uy N\ us + (1/e)us A\ us) €
e

1 e!
(x/, V) C A8). Therefore, by the action of g, = g X( 1 )
1 1

1
e G = SL(B) X GL(B), we have p, = (u; N\ s, u; N\ U, ety N\ Uy + Uy N\ Uy
Uy N\ Us — elUy N\ Uy + elly N\ Uy + Uy N\ Uy 260y N\ Uy + U N\ Us, Us N\ Uy + U N\ 1)
e A Hence, we have p = lim, ,p, € A§). Since A# = A8, AF = A3,
A = AE and (G, p, V) = (G, p*, V*), we have also dim 4% N AH N 4B =
dimV — 1.
(16) The isotropy subalgebra g,,, at x, is given as follows.

Ui Ti| T2 73 It

. —4e| O 0 | 7s 4e—7 0|76 ?
(11.16) g, = 1A = o |fte @ | 1 | ®| =1 2
( Cay e—a| -7, 0 § E
0 0 2e—7

(gl(1) @ gl(1) @ gl(1) @ 31(2)) D u(7) .
Then Vj*

o+ 1s spanned by v, = (0,0, u; A\ u;), v, = (0,0, u, A\ wp), v;= (0,0,
u N\ us — uy A\ ), v,= (0,0, u, A\ u), v; = (0,0, u, \ w), v,= (U \ us, 0, 0),
Uy = (u4 YA\ Us, 07 0)7 Ug = (O, Oy U, A us)) Uy = (O: 07 Uy A u5), Uy = (O; 07 [223 VAN u5).

Vi — Sk v+ v+ v = (u, A u, 0, uy A\ uy + up A u) = Y

Let A, be an element of g, Wwitha = —4 — 5, p =% + 66, & = — § — Ze,
all remaining parts zero in (5.16). Then dp(Ay)x,, = 0 and dp*(A) Y1 = Yo
Since — dy(A,) = 10(1 + 3¢) is not definite, the conormal bundle 4, ,, is
not a good holonomic variety.

(17) The isotropy subalgebra g,,, at x;,; is given as follows.

(11.17) [e—l—yy 7T s 74
f o |eT® @z 75| T (—25—77—04 — &y 0 )
8, =-A= Uy E—Q| 71y s | @D q—_‘Q’lzﬁ*_ZS,T?'*'“ R
t 0 0 E=N | T Te—Ts I —ri—7r | —2

n, | —4e

= (gl(1) ® gl(1) @ 8((2)) D u(9) .
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The conormal vector space Vj} is spanned by v, = (0, u; A us, — u, N\ w),
U, = (s N\ Us, 0, us A\ ), Uy = (U A\ Us, 0, — 1y A\ 1), 0, = (U, A\ wy, — us A\ 1, 0),
U= (0, up A\ u, 0), vy = (uy N\ 4,,0,0), v, = (U A\ ts, — us A\ us;,0), v, = (0,
Uy A\ U5, 0), vy = (A us;,0,0), v, = (0, u, A\ us;,0), v,, = (&, A\ us;,0,0).

The action dp,,, of g.,, on V}* is given by

A, }e
B: Az } 1
dp.,(A) (v, - -+, V) A, }s
B2 As Bs A4 } 3
B, B, B, B, A}
PO S

where (Bl, Az) = (" 75 T 5e + 7])’ B3 = - T9~ISa B4 = - Ta'Iz, A: = 5612 + A/’
A5 = (56 - 277)[2 + A/ Wlth A/ — <'—0( 0{21),

a, «

—7Vs Ts 0

(Bsy Bea B7) = < AN
76 0 714

72— 215

Y s O)
—7s 0 — 7

0 Oy —0y,
Ay =29 I, + A”, A, = (Be + I, + A” with A" = 20y, —2c 0|,
— 2, 0 20

— 7 —Vi— 7
(Bz, As)= ”‘27’1—T7 Qo |«

0 7521, —an
Note that A, will disappear if we take v, — fv, instead of v,.
) V¥ —8SHoeuv+u+u==0/NAt+ u/t,u/\u — u, /N, u, N\
—u A u) e SO
i) (SFhov+u 4 v,= =0 A u+ uy A\ s, uy N\ Uy — Uy N\ Uy — Uy N\ Us)
e S <> dp, = 10e + 29
i) (Sk), o v+ v = (A s, uy A\ wyy s N\ w5) € S < dp, = 4y o £5(y)
=¥i + ¥
iv) — oy = 30¢ -+ 10y = 3dp, + dp,, tryy = 40e + 147 = 4dp, + $dp,.
Remark for calculation of dp,. Let fi* be the relative invariant on
V3 corresponding to dp,. Since f*(v, + v;) 7 0, the restriction of dp, to
the isotropy subalgebra of g,, at v, + v; should be zero. Hence dp, must
be of the form dp, = 51 + Ay for some 2. Take an element A, in g,,
satisfying dp*(Ay)x}; = «f where xfi = v, + v, + v, € Vi, — S, Then, by
the Euler’s identity, we have (degf*)-fi*(x}) = {dp*(A)y, D> f¥(M|y=at, =
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dp,(A) f*(x,) and hence degf* = dp,(A)) = 32 € N. Therefore dp, = (10¢
+ 2p)p where p is a natural number. Since — Jy is a linear combination
of dp, and dp, with coeflicients in Z, we have g =1 or 3. On the other
hand, 2try: is also a linear combination of dp, and dp, with coefficients
in Z, 4 is a divisor of 8, and hence x = 1, i.e., dp, = 10e + 2.

(18) The isotropy subalgebra g,,, at x,, is given as follows.

0 n
BT sl M R ¢ R —2 0|7,
(11.18) g, = 1A= 0 7+8  Bu s ®(_0 -27/rs)
t B =B 0 3
0 0 —2(e+7)

= (gl(1) @ gl(1) @ gl(1) D 8L(2) D 8(2)) D V(B) .

The conormal vector space VJ, is spanned by v, = (0, 0, u, A u;), v, = (0, 0,
u, N\ ug), vy = (0,0, u; A\ u), v, =(0,0,u, A\ u), v;= (0, u, N\ u;,0), v, = (0,
Uy N\ Us, 0), U; = (us A 14,0,0), vy = (u, \ 4, 0,0), v,= (0,0, u; N\ w), v,=
0,0, u; A\ u), vy, = (0,0, u, A\ uy), v, = (0,0, u, A\ w,).

The action dp,,, of g,, on VJ, is given by

A, B, B, }2
. A, B, B,|}:
Ao, (A) (s, -+, V) = (Uy, -+, V) = A, }o
A, }e
[ A; )}

E S S S

where B, = — TsIz, B, = — 2’5[2, A, = (5 + 27] - S)Iz + A,’ A, = (25 + 79— S)Iz

+ B, A=C+ 4L+ A, A= @+ L+ B with A= ("7 *Z)
Uy

r_ (—B _:Bzx> _ (—OII+B’ —ay, I, _

B = (_1812 0 ﬂ O’ A5 - (e iy 7(})+ SE)L - _aszz CYIQ‘EIBZ’ ’ BZ -
Y St £ R ' (N 72

( 0 0 —7s "T4> and B4 (O 71 0 T2>.

i) VE=Shov + v+ ve+ o= s A s, U N Usy s A Uy A+ U A )

e St

1) (SF) <> Us+ Us + vy = (U A U, s N\ Us, s N\ Ug) € S <> dp,
= — 20 + 7+ &) > f*(y) = Y — Yo
111) (S.Z‘Tz)Z <> Us + U + Uy + Uy = (ua AN Usy Uy /N Usy Uy N Uy + Uy N u4)
e Sfy o dp, =4 + ) — o degfi*(y) =3
iv) — 0y = 10(c + n) — 5& = dp, + 3dp,, try}, = 12(c + 7)) — 8& = 2dp, + 4dp,.
(19) The isotropy subalgebra g,,, at x,; is given as follows.
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et ag 71 72 7s

Ay E— Ts It Ts_

(11.19) g,,=+A = 0 —(e+n)—a — @ty T4
l — Uy "'(5+77)+0¢ T8

0 0 2y

—2 0 ¢, ?
@ (72—7’3 ) 52) = (gl(1) @ gl(1) @ gl(1) © 31(2)) D u(10) .
0 0 S

The conormal vector space Vj}, is spanned by v, = (0,0, — u, A u;), v, =
0,0, u; A u;), v;=10,0,u, A u), v,=1(0,0,u, N\ w), v;= (0,0, u, \ ©), v,
=(0,0, —u, Au), v.=0,0,u, A\ u;—u, Au), vy=(0,0,u, N\ u), v,=
(— u, A\ us, 0,0), v,y = (u; A 45,0,0), v,, = (u; A\ u, 0,0), v, = (u, N\ Us, u, \
Us, 0), Uy = (U N\ Uy, — Us A\ Us, 0).

The action dp,,, of g,,, on V} 1is given by

(A, B, B,
A,

c,m

Jos!
SR
(S
1) 8

A,

YTV

Fe

d(oxm(A) (vl’ Tty vl3) = (vla ] vl3)
A,

P VR
=

e{>

e e e
2 2 1 3 2

~{

where Aa = 2 + 277 — &, Ba = (7’1, T2 + 73 7’4), Bs = — 0, AG = 4e + 27]’ B4 =
B, = —4l, B;=2d1I, A =(— 7 — OL + A" with A’ = (—a _zzl)’

— Qe
— T2 Vo =T Ts Te 0) :<TB - ) —
(B, B, By—(_I+ 1+ T1 7 D) B, ") BuB)=

—71 2127 74 ) - ’ — _ ’
<'_Te =711 12—2p)° 4 C+27+ L+ A, A= @B — L + A, A,

—20  —2a,, 0
=E—2p,+ A and A, = (@ — &L + | —ay, 0 — Wy |-
0 —20, 2o

n Vi - Sxfs U+ Uy + Uy + v € S
ii) (Sxfs)x U, + Uy + Uy € Séfi;’ <~ de = 4e + 2y <« fi*(y) = Yu
i) (S o v + vy + v € Sl dp, = 20y — §) < £5(9) = 37 — Yo
iv) (SEh<v,+ v+ vy € S& < dp; =2 — 3y — &« degfi(y) =3
v) — 0y = dp: + dp, + 3dp,, tr,y, = 3dp, + 2dp, + 4dp,.
(20) The isotropy subalgebra g,, at x, is given as follows.
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X*

( 1, +X *
—e—3y

(sl(1) © gf(l) ® 51(3)) @ u(7) .

D (= €+ L —'X); X € 3l(3)

(11.20) g, = {

The conormal vector space Vj, is spanned by v, = (u; A u,, 0, 0), v, = (0,
u, N\ uy, 0), v5=10(0,0,u, A\ ), v, =0, u, A\ g, — s \ 1), U5= (U, A\ 1,0,
Uy A\ ), Vs= (Uy N\ Uy — Uy N\ Uy 0), U= (ug A Uy, — Uy A\ U, 0), vy = (0,
Uy N\ Us, — Uy N\ Us), Uy = (0, u; A\ 5, 0), vyp = (0,0, us A\ ), v,y =(u, A\ us,0,0),
U = (U N\ 15, 0,0), v; = (0, u, A\ us,0), vy, = (0,0, u, \ u).

Since dim p,,, (G,,) = 13 and dimV}, = 14, the conormal vector space
(Grp 0210 V) is not a P.V. Note that it is also obtained from the fact that
Ay 1w = A s is not G-prehomogeneous (See (13)).

(21) The isotropy subalgebra g, at x,, is given as follows.

— 25I+X| Z _41’ S—l .
112l .. [A ( - )_3€IZ+Y)@( eI, + S'XS); X e 2(3),

1
Yesl2),Ze Ve6),S = ( —1 )}
1

= (gl(1) @ 3l(3) @ 8l(2)) DV(6) .

The conormal vector space V}* is spanned by v, = (0,0, u, A w,), v, = (0,
Uy ANy, 0), vy = (u, A u,0,0), v,=0,u Auwu,—uA u), Us= (U, N\ u,
— Us N\ Uy, 0), Vs = (U A\ Uy 0, us N\ uy), v, = (0,0, u; A\ u), v; = (0, u, A\ us, 0),
U, = (U3 N\ 1, 0,0), v= (0, uy A s, — Uy, A\ Us), Uy = (U N Us, — Uy A Us, 0),
Ve = (U A\ s, 0, s A\ 1), U3 = (0,0, u, A\ wy), vy, = (0, u, A\ uy, 0), vy, = (u, A\
u;, 0,0). Then the action dp,,, of g,,, on V} is given by

GL(1) x SL(3) x SL(2)

0
R 54, ® 24¥ ® A
W o i) > (U -5 ) . GL() x SLB)
104, ® AF

1) Vx‘; S;:5<_>01+ Uy + Uy + Uy = (ua/\ Usy Uy /\ Uy, Uy N\ Uy + Uy A us)
e S
11) ( 1;5)1 <> U+ Uy + Uy € SA 11 <> d{h = 60¢
iii) — gy = 60e = dp;, try; = 90 = $dp..
(22) The isotropy subalgebra g,, at x,, is given as follows.
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—2(5+77) 71 Ig 7s 74
0 etoay o 7s 7s
(11.22) Qs — A= ] Oy €0 Tq Te
77+,81 1912
0 0
Bu  7—p
€+277_a1 — gy 7’9
® —aty, e+2p+a| 7110
0 §

= (gl(1) @ gl(1) @ gl(1) D 381(2) D 8I(2)) D u(10) .

The conormal vector space V., is spanned by v, = (0,0, u, A\ u), v, = (0,
—u N\ U5, 0), v, = (u, \ u;,0,0), v, =(0,0,u, A w), v;= (0,0, u, \ u), v,
=(0,0,u; A\ u), v,=1(0,0,u, \ u), v,=1(0,0,u, \ u), v,= ©,0, u, A\ u,),
U = (0,0, u; A\ Us), Uy = 0, — u, \ 1, 0), v, = (U, \ Uy, — U, A\ 1, 0), v, =
(us \ 4, 0,0), v, = (0, — u, \ s, 0), U5 = (U A\ Us, — Uy A\ Us, 0), Ve = (1, A
u,, 0, 0).

The action dp,,, of g,,, on Vj} is given by

’Al Bl BZ BB

6 B7
dp(A) Vs, -+, V) = (U, -, V) b

B
A, }e

1 2 4 1 2

where (Al} Bu Bz) = (— 277 — & 7100 — To Ve — Tss Tey — 7'7), B, = (?’4, - Ta)y A,
— =2 A= =G+ (T8 W) B= (P70 TP I

4

(447 oy ’ 0 Te Te 0 Vs —7T ’
A= @ +7-9L+B with B=(_f “gj‘), A= —(+ g+ 8L+

<——0{1Iz+B‘ —ayl, ), A= — (2e + 37])-[6 + < —‘B‘IS-I_A | "-52113___) with A’

“aszz ‘“1I2+B —ﬂmIa |,81I3+A/
—20;, —2a, O
=( —a;, 0 —a21) and
0 — 2, 20,
=TV | — T | Tio —7s ]
B, B, B)=| " o T T
Ts | — 7 Tio  —7e

[ Te -7 Tw —7s
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1) V;’:s - S:;':s U+ Uy 4 Uy 4+ Uy + U = (U A Us + Uy A U,
— U N U, — U N\ U, Uy N\ U+ U A1) € Sz(?i;
ii) ( 115)1 Uy 4 U+ Uy + Vg = (U A Usy, — Us A Uy Uy A U + Uy A us)

e Sy do = — 2 — £ fi*(y) = ¥,
1)) (SE)< U+ Uy + U+ vy + Vs = (U A Uy, — Uy A\ Uy — Uy N\ Us,
Uy N\ g+ uy AN ug+ uy A\ uw) € SPi<dp, = — 8 — 12y
<« f¥(y) = det(y“ y,4>2 — 4det(y12 y“’)-det(y“ y“)
Yiz Yie Yis Vs Y2 Vs
) (SE)so Vs + v+ v+ Vg = (U A Usy — Uy A Uy Uy A\ Us + U N\ W)
€ S do,= — 4y — 2
o f20) = det( % P2) - det(% I+)-det(% )
Yo Y15 Yo Yu Yio Vi

v) — 0y = dp, + dp, + 2dp,, try, = 2dp, + $dp, + 3dp;.
(23) The isotropy subalgebra g,,, at x,; is given as follows.

11.23) g, — {A _ (GLBL X } —*45 ) @( "02ei ;) Xean@),Y e gr(z)}

= (gl(1) @ gl(1) D 3p(2) D 81(2)) P V(6) .

The conormal vector space V3 is spanned by v, = (0, u, N\ u, — u, N\ u,, 0),
v, = (0, u; A\ u,,0), v,= (0, u, A\ u,0), v,= (0, u, A\ u,0), v, = (0, u, N\ u, 0),

=(0,0,u, N\ u, — u, \u), v,= (0,0, u, \ w), v, = (0,0, u, A\ w), v, = (0,
0, us A\ w,), Uy = ©,0, u, \ u,), vy = (0, u, A\ us, 0), vy, = (0, u, \ s, 0), vy =
O, u; A s, 0), vy, =0, u, N s, 0), v;=10(0,0,u A u), v,=1(0,0,u N\ u),
vy = (0,0, u; A w,), v, = (0,0, u, A\ u;). The action dp,,, of g,, on V} is
given by

(vl’ cty le)
GL(1)1>< %L(AD é) 85(2) X SL(2) ‘ o
2/1*
= (0 s V) N GL(1) x GL(1) x Sp(2) x SL(2)

34, ® AF ® A, ® AF

i) fog S;(:S <> Uy U+ Ug + Uy + Ugs € S;fls
i) ( xm)l(—)lh + Us + Uy + Uy € S§k,1s<—>dp1 = — 2 — 677<—>degf1* =6
i) (Skrr<v, + v, + v, + v, € Sfgerdo,= —8 —4dpe>degft =4
iv) — oy = 3dp, — 2dp,, tryy = 4dp, — $dp,.
(24) The isotropy subalgebra g, at x,; is given as follows.
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SeL+X| * ) ( —Ge| )
11.24) g, = {A= (_ ;
1L.24) g { o | —zi+7/)®%\0 77z

X, Zedl(®), Ye gr(s)}
= (gl(1) @ gl(L) D 3L(2) @ 2L(2) D 8L(3)) D V() .

Then V}, is spanned by v, = (0, u, A u;, 0), v, = (0, us A\ us, 0), v, = (0, u; A
u,0), v,=(0,0,u, A\ u), vs=10,0,u, A\ u), v;,=(0,0,u;, A\ u), v,= (u, A\
us, 0,0), vy = (u; A\ 45, 0,0), v, = (u; A\ ©,,0,0), v, = (0, u, A\ uy,0), v,; = (0,
u, A\ U, 0), v, = 0, u; A\ us, 0), v, = (0, uy A U3, 0), vy, = (0, u, A\ 1, 0), Vs =
©, u, A\ u;,0), ve=(0,0,u, Au), v,=100,0,u, A\ w), veg=(0,0,u, N u),
U = (0,0, u, A ), Uy = (0,0, u, A\ ), 0oy = (0,0, u, A\ ;). The action dp,,,
of g,,, on V* is given by

vy -+, Uay)

r GL(1) X GL(1) X SL(2) 1

X SL(3) * *

44, ® AF ® AF ® 4,
GL(1) x SL(3)
—(Vy, e, Uy) 0 (104) ® 4, 0
GL(1) x GL(1) x SL(2)
0 0 X SL(2) x SL(3)

AFQAFQMFQ AF R AF )

1) Vi — Sk ov 4+ e+ U+ U+ Uy = (@ A us, s A\ Uy + u, A\ uy,
Uy N Us + Uy A\ Ug) € Sg;;
1) (SE) o v+ v+ Vi + Ui + Ui = (U A Us g N\ Uy + Uy N Uy,
U N\ us+ u, \ ) € SEi<>dp, = 18 — 2p > degff =4
1) (Sk)<> Vs + Uy 4 Uy + Uy + Vg = (U A\ @y + Uy N\ Us, Uy N Uy
4+ u, A\ gy ug A\ ug) € S dp, = — 6 — 6p<«>degfif =6
iv) — 0y = 2dp, + dp, tryr = 3dp, + 2dp,.
(25) The isotropy subalgebra g,,, at x, = 0 is g itself.
This is a good holonomic variety and ord,f* = — 15s — 32, Thus we
obtain the holonomy diagram (Figure 11-1). From this diagram, we obtain
the b-function b(s) = (s + 1)(s + D + DY+ + D + PI-(s + s + D).

Remark. Let A,= G(x,,y,) and /4, = G(x,,y) be good holonomic
varieties satisfying (x,, ¥;) € 4, N 4, and dim G(x,, y,) = dimV — 1. Then we
can calculate 8 by Proposition 1-4. It is known that if 8 depends on the
choice of A,, then (x, ¥y, is not contained in other 4, (i # 0, 1), i.e., there
are no three 4,’s which intersect at (x,, ¥,) with codimension one. (If more
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Fig. 11-1. Holonomy diagram of (SL(5) X GL(3), 42X 4;, V(10) ® V(3)) where

denotes the conormal bundles of the orbit S{¥’ in Proposition 6-1.
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than two 4,’s intersect with codimension one, then 8 = 1 and it does not
depend on A,) All one-codimensional intersections obtained from (1)~ (14)
satisfy this condition except AN AF), and AHN AR, In general, if (x,, y,)
€ G(x,, y,), then we have codim,o(G)x, = codim,p(G)x, and codim,.o*(G)y,
= codim,«0*(G)y,. From this, there are no other A’s satisfying dim AN A4&N
Ay = dimV — 1. For A% N A, it is enough to check A, A% and A®.
By using the duality, i.e., (G, p, V) = (G, p*, V*), we get all one-codimen-
sional intersections of three good holonomic varieties.

§12. Table of the b-functions of irreducible reduced regular P.V.’s

(1) (G X GL(m), p ® 4,, V(m) ®V(m)) where p: G— GL(V(m)) is an m-
dimensional irreducible representation of a connected semi-simple
algebraic group G (or G = {1} and m = 1).

b(s) = (s + 1)(s + 2)- - -(s + m) (See Figure 2-1 and 2-4).

(2) (GL(n), 24, Vgn(n + 1)) (n = 2)

0= s )= 0o fer Do 7

(See Figure 2-2 and 2-4).
(3) (GL(2m), 4,, V(m(2m — 1))) (m = 3)

b(s) = ﬁl(s + %=1 =(+1DE+3)(s+2m—1)
(See Figure 2-3 and 2-4).
(4) (GL(®2), 34, V(4)
b(s) = (s + 1)(s + (s + %) (See [2]).
(5) (GL(), 4;, V(20))
b(s) = (s + (s + $)(s + %) (s + b) (See Figure 8-1).
(6) (GL(T), 45, V(35))
b =6E+DE+2DE+PE+ D6+ N+ D+ 5)
(See Figure 10-1).
(7) (GL(8), 4,, V(56))
b(s) = (s+D(s+8)(s+'(s+2)(s+2) s+ 5+ (s +E) (s+3)*(s+%)
(See [10]).
(8) (SL(B)XGL(2), 24, A,, V(6) QV(2))
b(s) = {(s + (s + §)(s + (s + D(s + D (See [12]).
(9) (SL(®) x GL(2), 4, 4,, V(15) @V(2))
bs) = (s + (s + B + D + (s + 2+ s+ Hs + %)
(See [12]).
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(SL(5) x GL(3), 4, ® 4,, V(10) ® V(3))

b(s) = (5 + D(s + s + 2 (s + D + DF (5 + DG +
(See Figure 11-1).

(SL(5) x GL(4), 4, ® 4,, V(10) @ V(4)) (See [11]).

(SL(3) x SL(3) X GL(2), 4,® 4, ® 4,, V(3) ® V(3) ® V(2))

b(s) = (s + D'(s + §)'(s + $)(s + (s + (s + §) (See [12]).
(Sp(n) X GL(22m), 4, 4,, V(2n) @V(2m)) (n = 2m = 2)

b(s) = [] (s + 2k — 1)"‘n (s + 2n — 20)

=(s+ D+ 3) (s + 2m — 1)(s + 2n)(s + 2n — 2)- - -
(s + 2n — 2m + 2) (See Figure 3-1 and 3-2).
(GL(1) % Sp(3), O ® 4,, V(1) ®V(14))
bs) = (s + V(s + 2)(s + P(s + 3 (See Figure 9-1),

(SO(n) X GL(m), 4, ® A,, V(n) @ V(m)) (n >3 2 zmz 1)

b(s) = f[; (s + k'; )ﬁ (s + n—étl)

(e ) o e e 5
(s S tl) (See [2]).

(GL(1) x Spin (7), [0 ® spin rep., V(1) ® V(8))

b(s) = (s + 1)(s + 4) (See Remark in §5).

Spin (7) X GL(2), spin rep. ® 4,;, V(8) ® V(2))

b(s)=(s+ D(s+ s+ H(s + 5 (See Remark in §5).

(Spin(7) X GL(3), spin rep. ® 4,, V(8) ® V(3))

b(s) = (s + (s + (s + 2)(s + 4)(s + P(s + 3) (See Remark in §5).

(GL(1) x Spin (9), [ ® spin rep., V(1) ® V(16))

b(s) = (s + 1)(s + 8) (See Remark in §5).

(Spin (10) X GL(2), half-spin rep. ® 4,, V(16) ® V(2))

b(s) = (s + 1)(s + 4)(s + 5)(s + 8) (See Figure 4-1).

(Spin (10) X GL(3), half-spin rep. ® 4,, V(16) ®V(3))

b(s) = (s + 1)(s + §)(s + 2)(s + 3)(s + F)s + 4(s + $)(s + 3)s + ) X
X (s + 96+ D6+ 1D (See [15]).

(GL(1) x Spin (11), [J ® spin rep., V(1) ® V(32))

b(s) = (s + (s + H(s + H)(s + 8 (See Remark in §5).

(GL(1) x Spin (12), 0 ® half-spin rep., V(1) ® V(32))

b(s) = (s + (s + (s + (s + 8) (See Figure 5-1).
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(24) (GL(1) x Spin (14), OO0 ® half-spin rep., V(1) ® V(64))
b(s)=(s+ D(s+ P+ P+ H(s + 5)(s + (s + L2)(s + 8)
(See Appendix).

(25) (GL(1) X (Gy), O ® 4, V(1) V(7))
b(s)=(s+ I)(s+ %) (See Remark in §5).

(26) ((Gy X GL(2), 4,® 4,, V(T) Q V(2))
bs)=(s+ D+ (s + (s + 3) (See Remark in §5).

@7 (GL(Q) X E,, O ® 4,, V(1) ®V(27))
b(s) = (s + (s + 5)(s + 9) (See Figure 6-1).

(28) (E, X GL(2), 4,® 4,, V(27) ® V(2))
b(s) = (s + DXs + §)(s + (s + $)'(s + (s + (s + (s + 5
(See [12)).

(29) (GL(1) X E,, O ® 4, V(1) ®V(56))
b(s) = (s + D(s + L) (s + LD(s + 14) (See Figure 7-1).

We can obtain the b-functions of all irreducible regular P.V.’s, except
for those in the castling class of (11), from the Table above and the following
theorem due to T. Shintani.

TueoreM (T. Shintani). Let (G, p’, V') be a castling transform of an
irreducible regular P.V. (G, p, V), i.e., there exists a triplet @6, g, V(m)) and
a positive number n with m > n = 1 such that

(G, p, V) = (G X GL(n), 5 ® 4,, V(m) @ V()
(G, 0, V') = (G X GL(m — n), 5* ® 4,, V(m)* V(m — n)) .

Then the b-functions b(s) and b'(s) of them satisfy
b(o) [1(ds — )ds — i+ D---(ds —i+m—n—1)
= b(s) [1 (ds — i)(ds — i+ 1) -(ds — i + n— 1)

where deg f = dm and deg f’ = d(m — n). Here f and f’ are the basic relative
invariants of (G, p, V) and (G’, p’, V') respectively.

Appendix with I. Ozeki

Here we consider the regular irreducible P.V. (GL(1) X Spin (14),
[ ® half-spin rep., V(1) ® V(64)). The orbital decomposition of this space
has been done by the author and I. Ozeki ([7]), by Popov ([9]), by V. Gatti
and E. Viniberghi ([10]). There exist ten orbits, and the conormal bundle
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of each orbit is a good Lagrangian variety. The relative invariant of this
space is of degree eight ([1]), and its b-function is given by b(s) = (s + 1)
8+ D6+ D+ D+ 5)(s + (s + 22)(s + 8). Its holonomy diagram
is given by Figure A, where we denote by @ the conormal bundle 4
of the m-codimensional orbit.

Figure A. Holonomy diagram of (GL(1) X Spin(14),
0O & half-spin rep., V(1) ® V(64))
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