
T. Kimura
Nagoya Math. J.
Vol. 85 (1982), 1-80

THE 6-FUNCTIONS AND HOLONOMY DIAGRAMS OF

IRREDUCIBLE REGULAR PREHOMOGENEOUS

VECTOR SPACES

TATSUO KIMURA

Introduction

The purpose of this paper is to investigate the micro-local structure

and to calculate, by constructing the holonomy diagrams, the δ-functions

(See [2]) of irreducible regular prehomogeneous vector spaces (See [1]).

Since we know the relation of 6-functions with respect to castling

transformations (See § 12), it is enough to calculate them only when they

are reduced. In this paper, we shall deal with twenty of all twenty nine

reduced regular P.V.'s in the Table in [1]. Together with other articles,

this completes the list of 6-functions of irreducible reduced regular pre-

homogeneous vector spaces (See § 12) except (SL(S) X GL(4), Λ2 ® Au V(10)

(x) V(4)) which is the most complicated case (See I. Ozeki [11]). This paper

consists of the following twelve sections and one Appendix with I. Ozeki.

§ 1. Preliminaries

§ 2. Regular P.V.'s related with GL(ή)

§ 3. (Sp(ή) X GL(2m), A, <g> Λ» V(2ή) <g) V(2m))

§ 4. (Spin (10) X GL(2), half-spin rep. <g> Au V(16) <g> V(2))

§ 5. (GL(1) X Spin (12), • ® half-spin rep., V(l) <g> V(32))

§ 6. (GUI) XK Π® Al9 V(ΐ) ® V(27))

§ 7. (GUI) X K D ® Λ, V(l) ® V(56))

§ 8. (GL(6)9 A, V(20»

§ 9. (GUI) X Sp(3), D ® Λ , V(1)®V(U))

§ 10. (GL(7), J3, V(35))

§ 11. (SL(δ) X GL(3), ί̂2 ® Au V(10) ® V(3))

§ 12. Table of the 6-bunctions of irreducible reduced regular P.V.'s
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Appendix with I. Ozeki. (GL(1) X Spin (14), • (g) half-spin rep., V(l)

<g> V(64))

In § 1, we shall review the main results of [2] which will be used later.

From § 2 to § 11, we do the classification of the orbits, construction of

the holonomy diagrams and calculation of the 6-functions. In § 12, we

shall give the list of 6-functions for irreducible reduced regular P.V/s.

Some of them have been already calculated by M. Sato and the author

using the different method (See [7]). The holonomy diagrams in § 2, § 8

and § 10 are first obtained by M. Sato. The author would like to express

his hearty thanks to Professors Mikio Sato and Masaki Kashiwara for

their invaluable advice and encouragement.

§ 1. Preliminaries

Let (G, p, V) be an irreducible regular prehomogeneous vector space

(abbrev. P.V.) with the singular set S. Then S is the zeros of the relative

invariant f(x) : S = { x e V;f(x) = 0}, f(p(g)x) = χ(g)f(x) for all g e G and

x e V. We shall consider the micro-differential equations 3ft = £fs where

$ is the sheaf of micro-differential operators of finite order on the cotan-

gent bundle T*V = Vx V* (See [2]). Note that the group G acts on

T7* V by (x, y) ι-> (p(g)x, p*(g)y) for x e V, y e V* and geG where p* denotes

the contragredient representation of p. Let A be the Zariski-closure of a

conormal bundle of some G-orbit ρ(G) xo(xo € V). Since we consider only
the Zariski-closure of a conormal bundle, we shall omit the word "the
Zariski-closure" for simplicity. Assume that A is G-prehomogeneous and
is contained in W = {(x, gradlog/(x)s); xeV — S,seC}. In this case, A
is called a good holonomic variety. It is an irreducible component of the
characteristic variety of Wl. We can show that there exists a local 6-
function bΛ(s) which is unique up to a constant multiple (See [2]). We

have bvx{0}(s) = 1 and b{0}xv*(s) = b(s) where b(s) denotes the 6-function of

this P.V. When two good holonomic varieties Ao and Ax intersect with

codimension one, we have the relation between bΛo(s) and bΛl(s) as follows

(See [2]).

THEOREM 1-1 ([2] Theorem 7-5). Let Ao and At be good holonomic

varieties whose intersection is of codimension one with the intersection ex-

ponent (μ: v). Assume that ίΰl — £fs is a simple holonomic system with

support Ao U At and Ao Π Ax <£ supp 3ft — (Ao U Λ). Assume that m0 > mt where
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ordΛ.f
s = — mts — μ^/2 (i = 0, 1). Then we have, up to a constant multiple,

(1.1) "° S ΛlS ~ ^ L 7 + T ° r Al ~Oΐ Λo + 2(v + μ)\

w h e r e [a]k = a(a + 1) -(a + k — 1) .

Here we denote by ord^/s the order of fs at A (See [2]). Note that m0

and mx are non-negative integers, and (μ: v) — (1 : 0) or (μ: v) is a pair of

positive integers satisfying μ>2, v>l, and (m0 — W2i) is a multiple of

COROLLARY 1-2 ([2] Corollary 7-6). If Ao and A1 intersect regularly,

i.e., μ—\ and v = 0, we

bΛo(s)lbΛl(s) =
(1.2)

α /iere ord^/ s = - m,s - &• (i = 0, 1) .
A

Let i be a good holonomic variety. Then A = G(x0, y0) for some

*o eV, yoe V* where G(x0, y0) - {(^(^Xo, p*(g)yo)`, g e G}. In this case, we

can calculate the order ord^/s by the following proposition.

PROPOSITION 1-3 ([2] Proposition 4-14). Let Ao be an element of the

Lie algebra g of G satisfying dρ(A0)x0 — 0 and dρ*(A0)y0 = y0. Then we

have

(1.3) oτάΛf
s - sδχ(A0) - tτι% dpXQ(A0) + \ dim V*

where V*o denotes the conormal vector space (c?io(g) x0)
1, and dpXo denotes

the representation of qXQ = {A e g; c?/o(A)x0 = 0} induced by dp*.

Now let Λo = ~G(x0, y0) and /ίj = G(xly y j be good holonomic varieties

such that (x0, y^ e Ao Π t̂i and dim G(x0, jj) = dim V — 1. In this case, the

intersection exponent (μ: v) is given by the following proposition.

PROPOSITION 1-4 ([2] Proposition 6-5). Let Aλ be an element of cj

satisfying dp(Ax)xQ = 0 and dp^(A^)yl=y]. Then Aί acts on the one-

dimensional vector space V = V£ modulo dpX0(qXQ)y1. Let β be its eigen-

value, i.e., β = tτΫ Aj. Then μ and v are given by β = μ/(μ + v), (μ, v) = 1.

If β is not determined uniquely, i.e., β depends on Al9 then we have μ = 1,

v — 0, and Ao, Aλ intersect regularly.
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Let A = T(ρ(G)xo)
A- be a conormal bundle of a G-orbit p(G)x0. Then

G acts on Λ prehomogeneously if and only if the colocalization (GXQ, pXo,

V*o) at x0 is a P.V. We shall consider some sufficient conditions that

ΛdW9 i.e., A is a good holonomic variety.

PROPOSITION 1-5 ([2] Proposition 6-6). Lβί Λo and Ax be two conormal

bundles of some G-orbίts. Assume that dimgo p = dim V — 1 for some

p e AoΠ Λx where go = {Aeg; δχ(A) = 0}. Assume that AQ (or A^a W. Then

we have Ao U Aγ(Z. W. Moreover W is non-singular and W = {(x, y) e Vx V*;

(dp(A)x, y`) = 0 for all A e q0} near p.

Let Vxo = Vmod dp($)xQ be the normal vector space. Then the isotropy

subgroup Gxo acts on Vxo. We denote this action by pXQ. Let fxo be the

localization of f(x) at x0 (See [2]). This is a relative invariant of (GXo, pxo,

VXQ) corresponding to χ\GXo. Let Sxo be the singular set of (Gxo, pxo, VXQ).

PROPOSITION 1-6 ([2] Proposition 6-9). // gradlog/Λ 0: Vxo - SXQ-> V*oxo

is generically surjective, then Ao = T(ρ(G)xo)
L c W, i.e., AQ is a good holo-

nomic variety.

COROLLARY 1-7 ([2] Corollary 6-10). Assume that the colocalization

(Gxo, pxo, VI) of (G, p, V) at x0 (e V) is a regular P.V. If δχ\$xo is a non-

degenerate element, then the conormal bundle Ao = T(p(G)xo)
L of the G-orbit

p(G)x0 is a good holonomic variety.

COROLLARY 1-8 ([2] Corollary 6-11). Assume that the colocalization

(Gxoi pxo, V*) of (G, p, V) at xo( e V) is an irreducible regular P. V. Then the

conormal bundle Ao = T(p(G)xQ)A- of the orbit p(G)x0 is a good holonomic

variety.

PROPOSITION 1-9 ([1] Proposition 14 in § 4).

( 1 ) For d = degf and n = dim V, we have d\2n and χ(g)2n/d =

detF p(gf for g e G.

( 2 ) δχ(A) - (din) tr dp(A) for Ae$.

Remark 1-10. Let (G, p, V) be an irreducible regular P.V. with finitely

many orbits. Let & = {A,A'9 - —, A!'} be the set of all conormal bundles

in W, of some G-orbits in V. The holonomy diagram is, by definition,

given as follows.

If dimΛΠΛ' = dim V - 1, and Aΐ\A!ςtA!f for any other Af in Jδf, then

we write the diagram as in Figure 1-1. Moreover, if A and A! are good
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( A j —mΛs —

bA(s)

Figure 1-2. Figure 1-3. {mΛf>mA)

holonomic varieties, we write the orders ordΛf
s = — mΛs — μJ2 for A and

A\ and the ratio of the δ-functions as in Figure 1-3. If dim AΠA' = dim
V — 1 and A{\Λ'aΛ" for some A", then we write the diagram as in Figure
1-2 (e.g. Figure 11-1). Although some general theory for such cases has
been established, it is not published yet and hence in this paper we avoid
to argue this case. Actually, only in § 11, such case will appear and to
calculate the 6-function in § 11, we can use another part of the holonomy
diagram. Although usually we do not write the conormal bundles outside
W (e.g. Figure 3-2), sometimes we write them (e.g. Figure 4-1, Figure 11-1).
Since G is reductive, we have (G, p, V) = (G, p*, V*) and we identify them.

We sometimes write as MΠ \Af) when T and Tf are the dual
orbits of each other (See § 11) where A and A! are the conormal bundles of T
and T' respectively. If T = T\ we write as Qί)™~) (e.g. Figure 4-1 and
Figure 11-1).

§ 2. Regular P.V.'s related with GL(n)

We shall use the same notations as in [1],
2-1. (G X GL(m), β ® Al9 V(m) ® V(m)) where β : G -> GL(V(m)) is an

m-dimensional irreducible representation of a connected semi-simple alge-
braic group G(or G = {1} and m = 1)

The representation space V = V(m) ® V(m) can be identified with the
totality of m X m matrices M(m, C). Then the action p = β (x) Ax is given
by p(g)X = p(g1)X% for g = (gl9 g2)eG=Gx GL(m), Xe M(m, C). The
relative invariant f(X) is given by the determinant: f(X) = detX Since
we are concerned with relative invariants, we may assume that G — SL(m)
and p = Aλ. It is well-known that there exist (m + l)-orbits
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p{G)Xμ = {Xe M(m, C); rank X = μ)

(1

where Xu —

0

0
o)

for μ = 0,1, - ,m .

, m- μ, C), AA, BA e M(m - ^ C)j

We identify the dual V* of F with V = M(m, C) by <X, Y> = tr ιXY

for X, FeM(m,C). Then the dual p* of /> is given by p*(g)Y = 'gΓ`Ygί1

for g = (£„ ̂ ) e G = SL(m) x GL(ι»), YeM(m, C).

Since d ^ ) * , = AZ, + Xμ`B = (Ai±!K!ίk\ for A = (A, B) e g

with A = (^ ^A and B = (% ψ\, the conormal vector space V$μ =

(^( δ )Z^ is given by V^ = [(J ^ J Y, e M ( w - f t c | The isotropy

subalgebra gJί( = { ieg; d/?(A)^ = 0} is given by

(2.1)

This gx, acts on V$μ as dpZμ(A)Yμ = - ^ 7 , - 7,B4 for A e ^ , .

Therefore we have (GX/O ̂ ^ V$μ) ^ (SL(m - //) X GL(m - μ), A, ® Λu

V(m - μ)<8) V(m - μ)). Put Yμ = (^ j° \ where Im_μ denotes the unit

matrix of size m — μ(μ = 0,1, , m). Then Yμ is a generic point of the

colocalization (GXμ, ρXμ, V$μ), and Yμ + ί is a point of the one-codimensional

orbit (μ < m — 1). We denote by Λμ the conormal bundle of p(G)Xμ (0<

μ < m). Then, we have dim ΛμΠΛμ+ί = dim V — 1. Note that the colocali-

zation (GZμ, p*μ, V$μ) (μ = 0, 1, , m) has finitely many orbits with the

unique one-codimensional orbit, it is clear that we have obtained all one-

codimensional intersections among Λμ (μ = 0,1, , m). Since g0 = 3t(m) Θ

Zl(m), we have dim Q0(Xμ9 Yμ+ί) = m2 — 1 for μ = 0,1, , m — 1, and hence

by Proposition 1-5, we have Λμ c VF, i.e., yί̂  is a good holonomic variety

(0 ^ μ ^ m). Note that Λm = V X {0} is always a good holonomic variety.

We shall calculate the intersection exponent (β: v) of ^ and ^ + 1 by using

/ (0
Proposition 1-4. For any βeC, put A^ = (0), 0

\ \
we have dp(A$Xμ = 0,

0
- β eg. Then

and ^ = tr Af

μ where tr denotes
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the trace of Aβ

μ on V£μ modulo dpZ/faZμ)Yμ + 1 since Vgμ modulo dpZ/faZμ)Yμ+1

= {y^+i^ + i β M(m, C); y e C) where Ei5 denotes the matrix unit. Therefore

we have μ = 1 and £5 = 0, i.e., they intersect regularly. Now by Proposition

1-3, we shall calculate the order oτάΛμf
s of m = <§fs at Λμ where f(X) =

detX

Put Aμ = ((0), (J ® )) e fl. Then dp(Aμ)Xμ = 0 and d ^ * ^ ) ^ =

Yμ (0 < μ < m). The character dχ corresponding to f(X) = det X is given

by δχ(A) = t r ΰ for A = (A, S) e g = 3l(m)®$(m). Since dirnVJ; = (m — ̂ )2

and t r F ^ dpZμ(Aμ) = (m — //)2, we have ord^/ s = ŝ χ(A )̂ - t r F ^ dpZμ(Aμ) +

(1/2) dim V^ = — (m — μ)s — ((m — μfj2). Thus we obtain the holonomy

diagram (Figure 2-1).

By Corollary 1-2, we have bAμ(s)lbΔμ+1(s) = s + (m — μ) (0 < μ < m — 1).

Hence

b(s) = bΛo(s) = 6^m(s) Π bΛμ(s)lbΛμ+1(s)

m - l

= Π (s + TO - /;) = (s + l)(s + 2) • -(s + TO).

Note that 61 (s) = 1.

o

—(m — μ)s — (m

(m

—
2

μf

i)2

Figure 2-1. Holonomy diagram of (SL(m)χGL(m), A^AU V(m)(g)V(m))
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Remark 2-1. The 6-function of 2-1 is classically known by using
Capelli's identity (See H. Weyl: Classical Groups).

2-2. {GL{n\ 2Λ19 V(±n{n + 1))) (n > 2)
The representation space can be identified with the totality of n X n

symmetric matrices V — {XeM(n, C); *X = X}. Then the action p = 2ΛX

of GL(n) on V is given by p(g)X = gX'g for geGL(ή), XeV. It is well-
known that there exist (n + l)-orbits p(G)Xv = {XeV; rankX = p} where

0

0
Ό

for v = 0,1, , n .

The relative invariant is given by the determinant f(X) = det X. If we
identify the dual V* of V with V by (X, Y) = trZF, we have p*(g)Y =
ιg-Ύg-` for geGL(n). We have

X,Ά =
(2.2)

A, + Ά, !AΛ
0 /

for A =

Therefore we have

(2.3)
i 6

t e M(?z — ι>)\ .

Since dim gXv = τz(re — v) + (v{v — l)/2), we have dim ρ(G)X, = nv —
(v(v — l)/2). The conormal vector space V$v is given by

(2.4)

Since dp*((Aί

' W, = W, e M(n - v)}

the c o l o r a t i o n

(GXv, pXv, V$) at Xv is isomorphic to (GL(Λ - v), 2^ly V(|(n - v)(n - v + 1))).

Put Yv = (Q j j(ι» = 0, 1, , n). Then Yy is a generic point of the



PREHOMOGENEOUS VECTOR SPACES

colocalization at Xv and Yv+ι is a point of the unique one-codimensional

orbit. Thus we have diraAv Π Λv+ί — dimF — 1, where Λv denotes the

conormal bundle of p(G)Xv. Since dim dp*($Zv Π 80)^+1 = dim dp*(qXv)Yv+ι,

we have άimqo(Xv, Yv+1) = (n(n + l)/2) — 1, and hence Λv is a good holo-

nomic variety by Proposition 1-5 (v = 0, 1, , ή).

0

e QI(Π). Then we havePut At = = 0,

φ*(Af)yυ + 1 = yv+1 and 2β = tr Af where tr denotes the trace of Aβ

v on Vj;

modulo φX v(gZ v)yυ + 1. Hence, Λv and ^ίυ+1 intersect regularly, i.e., the inter-

section exponent of Λv and Av+1 equals (1: 0). We shall calculate the order

ord Λ / s by Proposition 1-3. Put 4 , = βj _ ? j \ (0 < v < ή). Then

dp(Av)Xv = 0 and ^ ( A j y , = Yv. Since (5χ(Aυ) L ^ t r Av = - (n - *), and

trF*,y ^^(A.) = dimV^ = -̂(n — y)(n — v + 1), we have ord^/ 5 = sδχ(Av)

- t r F ^ dpXv(Av) + irdimVl = - (n - v)s - \{n - v)(n - v + 1).

Thus we obtain the holonomy diagram (Figure 2-2). By Corollary

I)

Λ.

A* A —(n — v — l)s — \(n — v — l)(n —

A.) -(n - v)s - i(n - v)(n - v + 1)

Λo J —ns — \n(n + 1)
`—y

Figure 2-2. Holonomy diagram of (GL(n), 2Λly V(Jn(n+l)))
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1-2, we have bΛv(s)lbΛv+1(s) = s + ((n - v + l)/2) (0 < v <"n - 1), and hence

b(s) = bΛo(s) = Π?-i(s + (v

Remark. The 6-function of 2-2 is also already known. It can be
obtained by using Capelli's identity or by a direct calculation of the
Fourier transform of f(x)s.

2-3. (GL(2m), A2, V(m(2m - 1))) (m > 3)

The representation space can be identified with Vm = {XeM(2m, C)\
ιX = — X). Then the action p = Λ2 is given by p(g)X = gXιg for g e
GL(2m), Xe Vm. The relative invariant f(X) is the Pfaffian of X. It is
well-known that there exists (m + l)-orbits p(G)Xμ = {XeVm; rank X = 2μ}

0 0 Iμ Ol
Λ Λ

) < μ <m).where Xu =
0 0 0 0 (

-Iμ 0 0 0
0 0 0 OJ

By simple calculation, we have

(2.5) dp(Ά)Xμ =
- B 3

- A - Ά,

where A =

A ί

•^1 ^ 2

A, + Ά

` - Ί ^ 1

B, B<
A A
A A

and hence

(2.6)

y * — -
Vχμ ~

0
0
0
0

Xμ

0

z
0

-Ύ

0

c,
0

0
0
0
0

A2

A4

c2

c4
o`
Y
0

z

0
— '/

0

.ιχ=

` ιz =

Br`

B,t

2

AJ

— X

- z

Ά

. t ΊD 13 t Γ^ (~^

X Y\.'X= -X\_
ZJ''Z=- Zί~

Since gΛ> acts on F#o a s ί ^ - Ά4Z - χΆt where A', = ( A A j and
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X =
— i

Σ\ with 'X = - X, ιZ = - Z, the colocalization

at Xμ is isomorphic to (GL(2m — 2μ), Λ2, V((m — μ)(2m — 2μ — 1))). Here

we identified the dual V* of Vm with Vm by <X, Y> = tr XY.

Put Y. =

0
0
0
0

0
0
0

-*-m -μ

0
0
0
0

0
Im.

0
0

(0 < μ < m)

Then Yμ is a generic point of the colocalization (GXμ, pXμ, Vgμ) at Xμ9 and

7^ + ! is a point of the one-dimensional orbit and hence we have d i m ^ Π

Λμ+1 = dimF —l(Q<μ<m — ί) where Λμ denotes the conormal bundle

of P(G)Xμ.

By (2.6), we have qXμ ςt. g0 ΐoτ μ ψ m, and hence dim dρ($)Xμ =

dim dp($0)Xμ for μ Φ m. Applying this fact to the colocalization at Xμ, we

have dimg o(^, 3̂ , + i) = dimg(X^, Yμ + 1) = m(2m — 1) — 1. This implies that

A is a good holonomic variety by Proposition 1-5.

Put At =
T

0

0

0

0

0 -β

0

0

0

I lίl -μ-1

f o r βeC

Then we have dp(Af)Xμ = 0, dp*(Aβ

μ)Yμ+1 = Yμ + 1 and tr Aβ

μ = 2/3 where

tr denotes the trace of Aβ

μ on V£μ modulo ^(8^)3^+1, and hence by

Proposition 1-4, Λμ and Δμ+1 intersect regularly, i.e., the intersection ex-

ponent of Λμ and Λμ+i equals (1:0). We shall calculate the order oγάΛf
s.

Put Ao = —
—

—

—
. Then we have dρ(A0)Xμ = 0 and

Ao -

Ao +

= (m - μ)

J; = - (m - μ)s
dp*(A*)Yμ = Yμ Since δχ(A0) = - (w -

(2m -2μ- 1), we have ord^/ s - sδχ(A0) - ^ ;

- -i-(m - //)(2/n - 2μ - 1).

By Corollary 1-2, we have bΛμ{s)jbΛμ+1(s) = s + 2(m - μ) - 1 (0 < μ <

m — 1). Hence we obtain the holonomy diagram (Figure 2-3) and 6-function

b(s) = Π^o1 (s + 2(m - ^ - 1) = Π?»i (s + 2k - 1).
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0

(5 + 3)

-2s - 3

(s + 2m - 2μ - 1)

- μ)(2m — 2μ —

— ms —
m(m — 1)

Figure 2-3. Holonomy diagram of (GL(2m), Λ2, V(m(2m—1))) (m>3).

Remark. These three P.V.'s have many common properties: (1)

(GL(m), 2ΛU V((™y + rn^j with S = l (2) (sL(m) X GL{m\ A1®AU

V((™y + m\\ with £ = 2 (3) (Gl&m), A2, v(ffj£ + mΐ\ with £ = 4.

They have (m + l)-orbits and their relative invariants are of degree m of

ί^?)^ + m variables. We denote (A) by Cμ) if A is the conormal bundle

of a μ-codimensional orbit. Then their holonomy diagrams are as in Figure

2-4.

§ 3. (Sp(n) X GL(2m), Aί ® Λ, ^(2w) ® F(2w)) with Λ > 2m

The representation space V can be identified with the totality of

2n X 2m matrices. Then the action p = A1®A1is given by p(g)X = gxX
tg1

for g = (gl9 g2) e G = Sp(^) X GL{2m), X e V. Let X be an element of V

such that rank X — v and rank ιXJX — 2μ(2m ^ v ^ 2/̂  ^ 0) where J` =

T h e n b y t h e a c t i o n o f GL(2m)> w e m a y assume that X = (X'f 0)(j ~

with X' e M(2n, v) satisfying Put Xv 2μ as follows.
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(s + 1)

(m+l)-orbits deg/=m dim V=(%Ίe+m (1) <!=1

(s + 2)

(s + 3)

(8 + 4)

(s + 5)

(s + m)

— s — I

OS ~9

- 4 s -

— ms — mr

(2) e=2

- 2 s -

15 ) -3s

28 ) -4s - ψ

(s + 9)

2m-

m(2m - 1)
" 2

Figure 2-4
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(3.1)

Iμ

Iμ

1
i

—

—

—

Then XVi2μ satisfies the same condition as X and hence there exists an

element gt of Sp(n) satisfying gxX — Xv,2μ This implies that S^2μ = {XeV;

rank X = v, rank ιXJX = 2μ) (2m >zv`^2μ^0) consists of a single G-orbit,

and we complete the orbital decomposition of this space. Put A e %p(ri)

and Degί(2τn) as follows:

(3.2)

A =

A,
" 2 1

A,,

c,
f C I 2
cCι3

A» A w

" • 2 " - 2 3

c 1 2 c 1 8
^ 2 ^ 2 3

tp p
`^23 ` ^ 3

1

^ 1 3

- ^

- ^ 1 2

— *A1 3

S 1 2 JB 1 3

J B 2 J B 2 3

' -B 2 3 ^ 3

— " 2 1 -^-31

t A t A
J-L2 jΓ132

" 2 3 " 3

A A2

Ai A A
Ai A2 A
A. A3 A3 . A _

v — 2μ μ 2m —v

where 'Bf = = Ct (ί = 1, 2, 3).

Then, for A = A 0 Z) e g, we have

(3.3)

A, + f A Aa + Ά,
4 4-. ι Γ) A -L- t`Γi

Xj.91 p -I_^ I 9 x i o I JL-/9

4 4
- ^ 3 1 ^LZSJL

C, + 'A," CI2 +
 eAs

ί p p
tp tp

Bx +ιl
'5,2 + Ί

ιBn

" 1 2 0
0

and hence the isotropy subalgebra QXv,2μ is given as follows:
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A =

A1 0 0

JΓX.2\ - "-2 -^^-23

0 0 A3

0
0

0 _

A
0

0
0
0

0
0

c 3

A

_0_

0
0

A2

A
0

As
A
0
0

A21

A2

A2
0

-c,
0

A,

0

A4

A«
Du

A

(3.4) A2

0

0

. 0

A2I

A,
_

0

0

Ά2
A

^ • 2 3

A3

0

0

As

A
<A3

A
Bί2

^ 2 1

'As
^-23

-ιA2

A, A
/^ t A
`~Ί - " I

0

— A 2

- Ά 2

0
A*
A J

- 2μ) Θ gί(2m - v) Θ SpCu) ® $p(n - v + μ)) Θ u(fe)

where u(fe) denotes the Lie algebra of a ^-dimensional unipotent group

with k = ^(4n + l)(y — 2μ) — f(y — 2μf + υ(2m — v). In this paper, we

make a convention that the first (resp. second) 0 implies the direct sum

as Lie algebras (resp. vector spaces) for (gt φ g2) Θ 3s

We identify the dual space V* of V with V by (X, Y`) = t r Z ' F for

X, Ye V = M(2n, 2m), and hence we have p*(g)Y = 'g^Ygί1 for g = (gu g2)

eG, Ye F and dP*(Ά)Y = -'AY- YD for A = (A,D)βQ. From (3.3),

the conormal vector space Vjίj,,,, is given by

(3.5) V Xv ,1μ 7 =

0

0

0

0

X
0

0

0

0
0

Y
0

z
w,

, A = —A
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v-2/i 2m-υ

Here the isomorphism is obtained by putting Yt — X, Y2 = Z and Y3

w . Then the action dpXvjaμ of gZv,2// on VJ; 2μ is given as follows.

0
- B ,

Thus the action on Yrspace is isomorphic to (GL(v — 2μ), Λ2, V($(v — 2μ) X

{v — 2μ — 1))) and the action on Y3-space is isomorphic to (Sp(n — v + μ)

X GL(2m - v), A, ® Au V(2n - 2v + 2μ) ® V(2m - v)). First we shall con-

sider the case when v is even, i.e., v — 2v'. Let Yo be an element of V£vΛμ

with X = (_ 7

0 ^ J ^ ) , Y = ( J—Q °), W = (° J»-) and Z = 0 in (3.5).
Then 70 is a generic point and f0 e S2*m_2/,,2m_2l/, i.e., Λ2v,,2μ = Λfm_2μ,27rι_2v,

where ^V)2/l (resp. Λ%μ) denotes the conormal bundle of SVi2μ (resp. S*2μ).

We shall calculate the order orά^^p where f(X) = Pf'XJX. Let Λo be

the element of qZvyaμ with A2 = ^^-μ), A = — (̂m-v')? a U remaining parts

zero in (3.4). Then we have d/o(A0)XV)2/i = 0 and dp*(Ά0)ΫQ = Ϋo Since

δχ(A0) = - (2m - i/ - /£), trF*Xυ^Ao - (^ - μ)(2vf - 2μ - 1) + 4(τn - v θ ( n -

2i/ + μ) + 6(m - i/)(i/ - μ) and dimV^,^ - (^ - μ)(2vf - 2μ - 1) + 4(m-

- 2i/ + //) + 4(m - i/)(^ - /i), we have

^ , , , / ' = - (2/τι - ^ - μ)s - W(3.6)

- 4(m - ^ ( v ' -

b e t h e e l e m e n t o f V £ Λ μ w i t h X - ( θ j ^ - Λ , Y = ί1™-^ °\Let

W = ( 0 / a n ^ ^ ~ ®' ^ince ^ * s a P°in^ °f a one-codimensional

orbit and Ϋt e S2t_2̂ ,2(m-v'-i), we have Λ2v^2μ Γl Λ2iι,+lh2μ = dimV— 1. They

intersect regularly. By Corollary 1-2, we have

(3.7) &ΛaiΛa (s)/ί>Λ2(/+1),2 (s) = 5 + 2rc — 2vr (m — 1 > v' ^ 0) .

Now let F 2 be the element of V# 9H with X =
' -μ-\

0

= ί7"1-^ °V W= (° Qw-y') and Z= 0. Since f2 is a point of the
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other one-codimensional orbit and Ϋ2 e S$m_μ_1)Mm-v>), we have dim A2υ^2μ Π

ΛV',2(«+D = dim V — 1. They intersect regularly. By Corollary 1-2, we have

(3-8) bΛ2v,>2μ(s)lbΛ2v,>2(μ+ί) =s + 2m-2μ-l (m-l>μ>0).

Now we shall show that A^2m is not a good holonomic variety when

v is odd, i.e., v = 2i/ + 1. Let Yo be the element of Vχv^μ with X =

and Z = 0 in (3.5).

Then it is a generic point of the conormal vector space. Let Ao be the

element of §Xv^μ with A2 = ί ̂  2 ( ^ } V DA = — I2m-V9 all remaining parts

zero. Then we have dp(A0)XVt2μ = 0 and dp*(AQ)Y0 = ΫQ. Therefore, if Av,2μ

is a good holonomic variety, mΛv^μ -— — ^χ(A0) = 2m — i/ — μ — 1 + β i s a

non-negative integer which is a contradiction. Thus we obtain the

following proposition.

PROPOSITION 3-1. The irreducible regular P. V. (Sp(ή) X GL(2m), Ax ®

Λu V(2n) (x) V(2m)) (n > 2m) has finitely many orbits Sv,2μ = {XeM(2n, 2m);

rank X = v, rank ιXJX = 2μ] (2m ^ v > 2μ > 0). When v is odd, the co-

normal bundle Λv,2μ of SVj2μ is outside W, i.e., Av,2μ is not a good holonomic

variety. When v is even (v = 2ι/), ΛVi2μ is a good holonomic variety and

ordΛ ; 2 u fs - - (2m - vr - μ)s - \(v' - μ)(2vr - 2μ - 1) - 2(m - vf)(n - 2i/

+ μ) — 4()ft — i/)(i/ — ^). VFe Λαi e dimylv?2/, ΓΊ Λ ^ ^ + D = d i m ^ ^ ΠΛ+2,2^ =

d i m V - 1. The b-function b(s) is given by b(s) = Πϊ=iO + 2fe - 1) Π ^ 1

(5 + 2n - 2£).

(s + 2m - 2μ - 1) \ / (5 + 2n - v)

Figure 3-1. (v: even)
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2m

Figure 3-2. Holonomy diagram of (Sp(n) X GL(2m), A (x) Au V(2n) (g) V(2m)) with n > 2m.
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§ 4. (Spin(lO) X GX(2), half-spin rep. ® A19 F(16) <g) V(2))

The representation space F(16) <g) V(2) is identified with y = y(16) Θ

y ( 1 6 ) w h e r e V(16) i s s p a n n e d b y 1, etej9 eke£emen (l<ί<j<5,l<k<£

< m < n < 5) (See p. 110-112 in [1]). The action p = p1 ® A1 is given by

p(g)x = (pi(gi)X, Pi(gdY)% for g = fe, &) e Spin(lO) X GL(2), x = (X, Y) e y

= y(lβ)θy(16) where ρx denotes the even half-spin representation of

Spin(lO) on y(16). First of all, we shall complete the orbital decomposition

of this space. J-L Igusa completed the orbital decomposition of (Spin(lO),

pl9 y(16)) (See [3]). There exist three orbits S4 = ^(SpinίlO)) xf

m (m = 0, 5,

16) where S^ denotes the w-codimensional Spin(10)-orbit and xf

Q = 1 +

βiβ2e3e4, x'δ = 1, x[Q = 0. If λ e Cx, for any index i satisfying 1 < i < 5, we

put St(λ) = ^`1 + (λ - λ-^βift. Then St(λ) is an element of Spin(lO). For

any two distinct indices ί, j satisfying 1 < i, j < 10, j Φ i + 5, i Φ j + 5,

we put Sij(X) = 1 + λβiβj = exp(^e ;) where e]c = /fc_5 for 6 < A < 10 (See

[1], [3]). Then S^X) is an element of Spin(lO) satisfying S^Sj^X) = 1.

PROPOSITION 4-1. 27ιe ίrίp/eί (Spin(lO) X GL(2), half-spin rep. ® ^ ,

y(16) (x) y(2)) Λαs jzme orδiίs Sm = p(G)xm (m = 0, 1, 4, 8, 9, 13,15, 20, 32)

where Sm denotes the m-codimensional orbit.

( 1 ) x0 = (1 + e A ^ * eie5 + e2eze^

( 2 ) xt = (1 + 6^^364, e,e2 + e2e3e4e5)

( 3 ) x4 = (1, e,e5 + e2e3e4e5)

( 4 ) * 8 = (1, e^zβaβj

( 5 ) x9 = (1, e,e2 + e3e4)

( 6 ) x13 = (1, e^z)

( 7 ) x15 = (1 + e,e2e3e,, 0)

( 8 ) JC20 = (1 ,0)

(9) x,2 = (0,0)

Proof. Let x = (x, ^) be a representative of one of the orbits of V =

y(16) θ y(16). Then we may assume that x - 0, 1, or 1 + e,e2e,e, by the

action of Spin(lO). If x = 0, then we have also y = 1 + e ^ e ^ , 1, 0, i.e.,

(7), (8), (9) respectively. Note that we can exchange x and y in x = (x, y)

by the action of GL(2). Assume that x = 1. We may put y ~ y0 + y2 + y4

Φ 0 where JΌ = y0 1, y2 = ΣI ̂ ^^ j and y4 = J] yr,ίttβre,eίβtt. We may assume

that y0 = 0 by the action of ( 1 ). If y = y 2^0, we may assume that
^~~ ' ίl 0\

yI2 = 1 by the action of some Ŝ (Λ) (ί = 1, 2;7 > 6) and I ̂  .) if necessary.
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In this case, we have y = eλe2 + y34e3e4 + yirβfo + y^fi* by Sj7( — yυ) and

Sj6(y2j) for jf = 3, 4, 5. If y34 = y35 = y45 = 0, we have (6), and otherwise we

may assume that y34 = 1, y35 = y45 = 0 by the action of suitable elements

of {S8,ioC2), Siyl0(X), Sn(X), S59(X)l * e C}, i.e., (5). If y 4^0, we may assume that

yi = eιe2ezei. By the action of S8θ(y12) and ( A, we have y12 = 0.
\y12y34 V

Similarly yυ = 0 for 1 < i < j < 4, and hence y = Σ ^ i y ^ β s + βjegβĝ . If

yj5 = 0 for all j = 1, , 4, we have (4). In the other case, we may assume

that y15 = 1 and yj5 = 0 (2 < j < 4). By the action of S56( - 1) and

S lf l0(l), we have (3).

Finally assume that x = 1 + exe2eze±. We may put y = y2 + y4. If y*

Φ 0, we may assume that y4 = e2e3β4β5 or y4 = exe2eze±. In the former case,

if y15 =̂ 0, we may assume that y15 = 1 by the action of S^S^S^λ'1) and

^/2 where Λ4 y15 = 1. Then by the action of Sjί0( — yυ), SJ6( — yj5) (j = 2,

3, 4), S9,10(y23), S8)10( - y24) and S7,10(y34), we have (1). If y15 = 0, we may

assume that y35 - y45 = 0 by {S28(Λ), Sn(λ), S«τtf), S«(X); λeC}. Then by

iS8,10( — y24) and S9>10(y23), we may assume that y24 = y23 = 0. By some S39(^)

and S28(λ), we may also assume that y14 = 0, i.e., y = y ^ ! ^ + ylze,ez + y*&&t

+ β2e3e4β5. By the action of SΊtl0(yu)9 ( A and SUίO(y2,yu), we

have y34 = 0. By S89(y25) and S12(y25), we also have y25 = 0, i.e., y = y12e1e2

+ yi3̂ î 3 + 2̂̂ 364̂ 5? where we may assume that y13 = 0. If y12 φ 0, we have

(2). If y12 - 0, it is transferred to x4 by S 1 2(-l), Sβ9(-1), S 8 4(-l), S 6 7 (-l),

S17(l), S 2 6 (-l), S 5 6 (-l), SMO(1), (J J) , Sβfl0(l), S15(l) and (J " } ) .
Now consider the latter case, i.e., y4 = exe2eze^ If some of y;5 (1 <j < 4)

is not zero, we may assume that y = exe5 + y23β2e3 + exe2e6e±. If y23 = 0, it

is transferred to x4 by S15(l), ίQ " j j , S56(—1) and S1?10(l). If y23 Φ 0, we

may assume that y23 = 1. In this case, it is transferred to xx by S69(l),

S2,(l), S4,1 0(-l), S78(l), S14(l), S46(l), S 1 9(-l), S 2 9(-l), S47(l). When all yj5 - 0

for 1 < j < 4, y = Σ I ^ K ^ W Λ + e^^e,. If all yi3 = 0 for 1 < ί < j < 4,

it is transferred to x8 by I.. . j . In the other case, we may assume

that y = e,e2 + y34e3e4 + e&e^. By the action of S6Ί(λ), Su(λ) and L 1 |

with X" — λ — y34 = 0, we have y = exe2 + (1 + 2>Γ)e1e2e3e4. If (1 + 2Λ) Φ 0,

it is transferred to x8 by S89(μ), S12(μ) and (~ ~^\ with /! = . If\ with /!

(1 + 2a) = 0, it is equivalent to x9 by S 6 7(-l), SM(-1),

and V —1 /2
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Finally consider the case y = y2, i.e., j/ 4 = 0. Since yφO, we may

assume that y = eλe2 + yue,e, + ΣιUiyj*e&- I f ^ = y^ = 0 for 1 < j < 4,

it is equivalent to x9 as we have already seen. If yu Φ 0 and yn — 0 for

1 < J < 4 , it is transferred to x8 by Su(λ), (J ~QIX), S12(l/λ), (J ^ ^

Sβ7(J/2), S8β(l/2J), Q 4 J) with λ2 = y84. If some of ;yj5 (1 < j < 4) is not

zero, y is equivalent to an element of the form e^ + y23e2e3 + ^ ^ + ys-Aβ̂

If y.. — 0 (2 < i < j < 4), it is equivalent to x4 as we have already seen.

In the other case, we have y = exe^ + e3e4. By the action of S26(—1), S17(l),

S 8 4(-l), S 6 7(-l), S7,10(l), ( _ J J), S 8 9(-l), S 1 2(-l), SM O(-1), it is equivalent

to xx. About the codimension of these orbits, we will see later. Q.E.D.

By the degree formula (See Proposition 15, § 4 in [1]), we know that

there exists a relatively invariant irreducible polynomial f(x, y) of degree

four which is unique up to a constant multiple. We shall give an explicit

form of f(x,y) after H. Kawahara's work (Master Thesis in Japanese,

University of Tokyo, 1974).

For an element x = x0 + Σ«<y χijeiej + Σ * x*e* of VX16) where eke%

— e^e^e^ for 1 < k < 5, let X = (xi5) be the skew-symmetric matrix of

degree five determined by xij9 and Xt the skew-symmetric matrix of degree

four obtained from ( — 1YX by crossing out its i-th line and column (1 <

/ < 5). We denote by Pf(Y) the Pfaffian of the skew-symmetric matrix

Y = (yij) of degree four, i.e., Pf(Y) = yl2yM — yuyu + y1Ay23. We define ten

quadratic forms Q^x) on V(16) by Qt(x) = Σu^xax* a n d Qi + *(χ) = χoχΐ +

Pf(Xt) for 1 < i < 5.

PROPOSITION 4-2 (H. Kawahara).

(1) ^(Spin(10)) 1 - {x e V(16) Qt(x) - 0 (1 < i < 10)} - {0}, where Pl

denotes the even half-spin representation. Moreover, this is the totality of

pure spinors.

(2) The relative invariant f(x, y) of (Spin(lO) X GL(2), Pι ® Λu V(16) Θ

V(16)) is given by f(x,y) = Σ,UBί{x,y)Bί+,{x,y) for (x,y)e y(16)φy(16)

where Bt(x, y) — Qt(x + y) — Qi(x) — Qi(y) is the associated bilinear form

of Qi(x) for l<ί< 10.

Proof. We shall use the same notation as in [4]. By simple calcu-

lation, we have β,(x, x) = (1/8) Σί°=i Qi(x)et. Since β^p^x, p^x) = λ(s)

ζi(χ(s)) ^(x, x) for s e Spin(lO) where d is the representation Λx of SO(10)

= χ(Spin(10)) (See p. 90 in [4]), we have
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(4.1) Σ Qi(pis)x)eί = λ(s) d(χOO) ^

This implies that W = {x e V(16) Q,(x) = 0,1 < i < 10} is a Spin(10)-invari-

ant subspace. From the orbital decomposition, it is clear that W = S5' U

S'U9 i.e., Sg = VF — {0}. Since the totality of pure spinors in V(16) is a

single .Γ+-orbit where Γ+ denotes the even Clifford group, and βx{x9 x) = 0

for a pure spinor x (See [4]), we have (1). From (4.1), F(x) = 2?=i QXX)

Qί + 5(x) is invariant under the action ρx of Spin(lO) since f(y) = Σl=ι yiyi+s

for y = Σ l i i ^ e i is invariant under the action ζx of SO(10) = χ(Spin(10)).

The triplet (Spin(lO), p19 V'(IO)) has no relative invariant (See [1]) and

hence we have F(x) = 0. By using (4.1), it is clear that/(x, y) is invariant

under the action of Spin(lO). We shall show that f(x,y) is relatively

invariant under GL(2). Assume that Q*(x) (resp. Qi+5(x)) has a term xίχxί2

(resp. xίzxu) (1 < i < 5). Since F(x) = 0, we may assume that Q/x) (resp.

Qj+s(x)) has a term xίχxu (resp. xί2xu) for somey satisfying 1 < j < 5. This

implies that f(x,y) = Σl^i B^x, y)Bi+^(x, y) is a linear combination of terms

of the following form:

Hence it is clear that f(x,y) is relatively invariant under GL(2). Since

/(I + eiβ2̂ 3̂ 4, e^s + e2e3e4e5) = 1, it is not identically zero. Q.E.D.

Now we shall consider the micro-differential equation 9JZ = Sf{x, y)s

and by constructing its holonomy diagram, we shall calculate the 6-function

of this space.

Since G = Spin(lO) X GL(2) is reductive, we have (G, p*, V*) = (G, p, V)

and hence the dual space F* has also nine G-orbits S*(τn = 0, 1, 4, 8, 9, 13,

15, 20, 32). We identify V and F* by taking (etl- eu, e71- eu) (k, £ = 0,

2, 4) as a dual basis, where eix- eίfc = 1 for k = 0. We denote by Λm (resp.

^ί*) the conormal bundle of Sm (resp. S*).

(1) The isotropy subalgebra g;ro at x0 = (1 + βie2δ3β4, e^s + β2e3e4e5) is

isomorphic to (g2) Θ ^(2) (See (5.40) and (5.42) in [1]). Since Ao = V X {0}

— Λf2, Λo is a good holonomic variety and we have ord^0/
s = 0.

(2) The isotropy subalgebra QXI at x, = (1 + e^e.e,, e,e2 + e2e3β4e5) is

isomorphic to (gί(l) Θ δt(2) Θ §1(2)) Θ u(ll) (See (5.43) in [1]). The conormal

vector space V.* is spanned by ( e ^ e ^ , — e^s) = ^ e S^. Hence ^ ! =
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G(xl9yί) = Λ% and Λn — Λf. Let Ao be an element of $Xl with dn = d22 =

— 1/4, all remaining parts zero in (5.43) of [1]. Then we have dρ(A0)xί = 0

and dp*(A0)y1 = ylβ Since Sχ(A0) - 2(dπ + d22) = - 1, tr y*A0 = dimV* = 1,

we have ordyll/
s = — s — 1/2. It is clear that Λo and ^ intersect regularly

and G0-prehomogeneously with codimension one. Hence we have bAl(s)lbAo(s)

= (s+ 1). Note that G0 = {geG; χ(g) = 1}.

(3) The isotropy subalgebra qXi at x4 = (1, e^ + β2β3β4e5) is, by simple

calculation using (5.38) in [1], given as follows:

(4.3) Qxι = \Λ =
3ε
*
*

elt

0

+
*

X
0
0

-2n

Xe$l(S), ιC= - C with c<5 = O,i = 1, . . . , 4 .

P u t ω, = (e.e.e.e,, 0), ω2 = ( — βiβ2e4e5, 0), ω3 = (e1e2e3e5, 0), a n d ω4 = (e^aβs^, 0).

Then the conormal vector space V,* is spanned by ω1? , ω4. The action

rf/0α.4 of qXι on V̀ζ* is given as follows:

( 4 . 4 ) dpXt(AKwu • •., ωd = ( « , , ••,ωi) ° ) .
Since ωx is a generic point, we have Λ± — ΛfQ and Λ20 = iίf. Let Ao

be an element of QXi with 2?y — 5ε = 1, all remaining parts zero except ε

and η in (4.3). Then dρ(A0)x4: = 0 and dp*(A0)ω1 = ωlβ However we have

^χ(A0) = βε which is not definite. If Λ± is a good holonomic variety, this

must be definite by Proposition 1-3, and hence Ak is not a good holonomic

variety, i.e., J 4 ςt W. Note that the P.V. (GXι, pXi, V£) has no relative

invariant.

(4) The isotropy subalgebra Qxa at x8 = (1, e^e^) is given as follows:

(4.5)

si* + X
0
0

-'δ

r
2η

δ

0

0
0

- ' r
'X

0
0
0

— 2)9

(gt(l) Θ gί(l) Θ δt(4)) Θ it(8) .
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Put ωx = (e2e3e4e5, 0), ω2 = - ( e ^ e ^ , 0), α>3 = ( e ^ e ^ , 0), ω4 = - (exe2e&y

0), ω5 = (0, e^g), α>6 = (0, e2e5), ω7 = (0, e3e5), ω8 = (0, e4e5). Then the conormal

vector space V* is spanned by ω1? , ω8, and the action

is given as follows.

of g^ on V*s

(4.6) dPx,(X)(ω1," ,ωά =
0

o )
2»)It-'X/

where X e g^ in (4.5).

Any relative invariant of (GXs, pXΆ, V?8) is of the form c g(x)m (ceC,

me Z) where g(x) = Σί=i^Λ+4 f° r x = Σ?=i χίω^ Clearly y8 = ωj + ω5 =

(e2e3e4eb, eλeϊ) is a generic point, and y'8 = ω: + ω6 = (e2β3β4β5, β2e5) is a point

of the one-codimensional orbit. Hence we have Ad = Λf and d i m ^ Π Λ8

= dimV — 1. Since A13 — Λf, we have also dim./l8nyli3 = dimV — 1. Note

that (Gx&, pXs, V*) is a regular P.V. since pXΆ(GXf) and its generic isotropy

subgroup are reductive (See [1]). By Corollary 1-7, Λ8 is a good holonomic

variety. Let Xo be an element of qX8 with η — — -| , all remaining parts

zero in (4.5). Then dp(X0)x8 - 0 and dp*(X0)y8 = y8. Since <Jχ(X0) = 4^ -

- 2, trF* Xo = - 16^ = 8 and dimV*8 = 8, we have ordΛ/ s = - 2s - f.

Since mΛ8 — mΛl = 1, they intersect regularly. By Corollary 1-2, we have

bJβ)lbΛl(8) = (s + 4).

(5) We shall calculate the isotropy subalgebra at Xg = (1, exez + e2e4)

instead of x9 — (1, exe2 + e3e4). It is given as follows.

(4.7)

εI4 + A
0

B
2-η

C

0

-si, - Ά
->B

0 39

= - 'C =

P u t <«! = (e2e3e4e5, 0), ω2 = - (e&e^, 0), ω3 = (e!β2e4β5, 0), ω4 = - (e^e^, 0),

ω 5 = (e!e 2 e 3 e 4 , 0), ω 6 = — (β 3e 5, β 2 β 3 e 4 e 5 ), ω7 = ( — e 4 β 5 , e!β 3e 4β 5), ω 8 = (βjβg, — e!β 2 β 4 e 5 ),

ω9 = (e2β5, β̂ aβsβs). Then the conormal vector space V£, is spanned by these

ωl9 ,ω9 and the action d^β/ of ĝ 9/ on ΐζ*/ is given as follows:
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( 4 . 8 ) dpx,.(A)(ωu , ω 9 ) = ( ω , , • • • , ω , ) \

B
- 4 ε

with C =

c

I

!3 + 2C2 4

- c 1 4

0
c]2

2c13 I C 2 4

- c 1 2

0

0
- c 3 4

c 1 3 + 2c 2 4

— c 2 3 2c,

c34

0

•Cu

3 + c 2 4

Clearly, y9 = α>5 + ω6 is its generic point and y'9 = ωj + ω8 is a point of the

one-codimensional orbit. Note that (GXa'9 pX9>, V*9,) has only one orbit of

codimension one. Since j>9, y'9 e S9*, we have Λ9 = Λf, and τl9 has no one-

codimensional intersection with other conormal bundles. Let Ao be an

element of gX9, with ε = — \, η = — f, all remaining parts zero in (4.7).

Then dp(AQ)4 - 0 and dp*(A0)y9 = y9. We have δχ(A0) = 2{(2ε + η) + v} =

— f, we have mAa — f. This implies that the conormal bundle Λd is not

a good holonomic variety, i.e., Λ9 ςΔW since otherwise mΛ9 must be a non-

negative integer (See § 1 or [1]).

(6) The isotropy subalgebra qXιz at x13 = (1, e^) is given as follows.

(4.9)

Θ

=

β A + X

0

3ε + εj j b
c12 !3ε-ε

Hid) θ §r(2)

z

2εI3+Y

9 §r(2) g

0 —6
b 0

0

-εJ.-'X
- z

g[(2), Yeί

5 §ί(3)) Θ u

0

0
0

-2εI3-Ύ J

(15).

- C

/

Since y413 = Λf, Λ8 — Af, and dimΛflΊΛ* = dimV— 1, the conormal

bundle yd13 is a good holonomic variety and dim Λsf] An = dimV — 1. They

intersect regularly. Put ωι = (0, β2β3e4β5), ω2 = (β2e3e4e5, 0), ω3 = (0, e ^ e ^ ) ,

<̂4 = (^163^5, 0), ω5 = (e4e5, — eλe2e^), ωδ = (e3e5, — e&efo), ω7 = (β3e4, —e^e^,

ω8 = (0, β4e5), ω9 = (0, e3e5), ω10 = (0, β3e4), ωn = (β^.e.βs, 0), ω12 = (e^e^, 0),

fi>is = (βiβ2e3β4, 0). Then the conormal vector space V]*8 is spanned by these

β>i, - - ̀><*>n a n d the action φ X l 3 of g 1̂3 on V*1% is given as follows:
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d p x l z ( X ) ( ω l 9 ,«

(4.10)

0

where ^ = A, <E) A1 for SL(2) X SL(2), ^2 = (2Λ,) <8> Λt for SL(2) X SL(3) and

As a generic point, we may take yn = ω5 + ω9 + α>18 = (e4e5 + exe%e%e^

£& — β A ^ ) . Let Xo be an element of qXlz with ε = — \, all remaining

parts zero. Then dρ(X0)xlz = 0 and dρ*(X0)yn = j>13. Since δχ(X0) = 12ε =

- 3, tiy*i8X0 = - 60ε = 15 and dimV^3 = 13, we have ord^13/
s = - 3s - Λf.

By Corollary 1-2, we have bΛlz(s)/bΛ8(s) — (s + 5). By (4.10), we can see

that (GXli, pXl3, V?1S) has the unique relative invariant (See Lemma 4 and

Proposition 5 in § 4 in [1]), i.e., it has the unique one-codimensional orbit.

(7) The isotropy subalgebra qXl6 at #15 = (1 + exe2eze^ 0) is given as

follows.

(4.11)

X
0

c

y
2ε
C
0

/Πf//

0

«y

0
0
0

- 2 s 1

Θ

Xe §1(4), CC" = - Pf C 74)

 ιC = - CeM(4)

= (0l(D θ gί(l) θ o(7)) Θ u(9) .

~ IX Cf/ \
Note that, in (4.11), XQ = I ) is the spin representation of Xo

\ C — ιX I

i n o(7). P u t ωι = (0, e&), ω2 = (0, e2e,), ωz = (0, e3e5), ω4 = (0, β4β5), ω5 = (0,

e2e3e4e5), ω6 = (0, — e1e3eAe5)f ω7 = (0, e^e^), ω8 = (0, — eie2e3β5), ω9 = (0,

| ( 1 — eie2β3β4)), ω10 = (0, β2e3), ωn = (0, — e 2e 4), ω12 = (0, e3β4), ω13 = (0, e ^ ) ,

cy14 = (0, e^g), G)15 = (0, βjβa). The conormal vector space V^5 is spanned by

ω1? , ω15. Then y15 = α>9 is its generic point and y'lδ = ωί0 + ωu is a point

of the unique one-codimensional orbit. Since j>15, y[b e Sίξ, we have Λ15 =

ί̂f5, and A15 has no one-codimensional intersection with any other conormal

bundle. Let X2 be an element of qXl5 with ε = β + 1, η = /}, all remaining

parts zero in (4.11). Then dp{X^)x^ = 0 and dρ*{X^yλι = y15. Since ^χ(X0

= 2(ε + 37) = 2(2/3 + 1) is not definite, the conormal bundle Λ15 is not a

good holonomic variety, i.e., Λ15 ςzί PF.
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(8) Since Λ20 = Λf and Λ4 ςt W, the conormal bundle Λ20 is not a good

holonomic variety. Note that W C V X V* is symmetric with respect to

V and V*.

(9) Since Ai2 = {0} X V*, the conormal bundle Λ32 is a good holonomic

variety. Put Ao = (0) Θ (—12). Then dp(A0)x32 = 0 and d/o*(Ao)y32 = 3̂2 where

yZ2 is a generic point of (G, /?*, V*). Since δχ(A0) = — 4, trF Ao = 32 and

dimV,*a = 32, we have o`rάΛs2f
s = — 4s — ^/ and hence by Corollary 1-2,

we have bΛ3£s)lbΛl3(s) = 5 + 8. Note that A32 = Af and Λn = /if. Since

6^/s) = 1 and 6 3̂2(s) = 6(s), we have the 6-function b(s) = (s + ΐ)(s + 4)

(s + 5)(s + 8), and the holonomy diagram (Figure 4-1). We denote Am by

The conormal bundles

outside W.
- 4 s -

Figure 4-1. Holonomy diagram of (Spin(lO) X GL(2), half-spin rep. (g) A, "̂ (16) (g) V(2))

§ 5. (GL(ί) X Spin(12), • ® half-spin rep., Γ(l) (x) F(32))

The representation space V = V(l) ®V(32) is spanned by 1, e ^ , ereseteu,

exe2e,e,e,eQ (1 < ί < j < 6, 1 < r < s < ί < H < 6) (See [1], [4]). J-I. Igusa

has completed the orbital decomposition of this space (See [3]). There

exist five G-orbits Sm = p(G)xm (m = 0, 1, 7,16, 32) where Sm denotes the

m-codimensional orbit and xn = 1 + e^e^e^e^ xι = 1 + e2e2ebe6 + e ^ e ^ , x7

= 1 + β2β3β5e6, x16 = 1, x32 = 0. We identify V* with V by taking {1, e ^ ,

ereseteu, e^eβ^e^ as a dual basis. Since (G, /?, V) ^ (G, /?*, V*)> there exist

also five orbits £*(ra = 0,1, 7,16, 32) in V*. We denote by Am (resp. ^ί*)

the conormal bundle of Sm (resp. S*). Clearly, we have J o = V X {0} =

Λ3*2 and J3 2 = {0} X F * = ^0* The Lie algebra g of GL(1) X Spin(12) is

given as follows:
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(5.1) = {(d) Θ ;A,B,Ce M(6), 'B = - B, 'C = -

(1) The isotropy subalgebra QXo at x0 is given as follows (See [1]).

(5.2) flx. = {(0) Θ ( A _ J > _ ) ; A e sr(6)} S 81(6).

Since J o = V x {0}, we have ordΛof
s = 0, where / denotes the relative

invariant of degree four (See [1], [3]).

(2) By using (5.29) in [1], we can calculate the isotropy subalgebra QX1.

QX1 = JA = (d)@

(5.3)

^j}; *i + a, = a2 + a5= - α 8 - σβ = 2d, c36 = θ}

S {(d) Θ = 0

= (βl(l)

01 012

021 02

031 032

04T 042

042 052

" l α 6 2

0
0

0 3

0

0

063

P(3»

014

015

034

0 4

- 0 1 2

064

® V(

015

025

035

— 021

0 5

065

14)

0 `
0

036

0

0

06 -

where

—

0

0

— c 4 6

0

0

0

0

— c 5 6

0

0

— c 3 5

c46

c56

0

— c l e

— c 2 6

- 6 3 6

0
0

Cie

0

0

— c 1 3

0

0

^26

0
0

- c 2 3

A -

0 ,

with bZ6 + cu + c25 = 0.

The conormal vector space V* is spanned by e ^ e ^ on which $Xl acts as

dpXl(A)e1e2e4eb = — 4de1e2e4e5 for A e gXl. This implies that Λx = G{xλ, e&e^)

= ylf6. Since 0 is the point of the one-codimensional orbit, we have

dimΛΠ^i = dimV— 1 and ΛOΓ\ΛX is G0-prehomogeneous, i.e., Λγ is a good

holonomic variety by Proposition 1-5. Let Ao be an element of qXι with

— 4d = 1. Then d<o(A0)x1 = 0 and d|0*(A0)y1 = ̂  where yx = e!e2e4e5. Since

δχ(A0) = 4d = — 1, try^Ao = dimV^ = 1, we have ord^,/5 = — s — -| . By

Proposition 1-4, τl0 and ^ intersect regularly and hence bAι(s)lbAo(s) —

(s + 1) by Corollary 1-2.

(3) By using (5.29) in [1], we can calculate the isotropy subalgebra qX7.

α β = 0 )
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ιC — C, A and C are given as follows)

29

(5.4)

= (<*)« U

w

o
dpAV)
-'US

0
0

Γ Ve 0(7), E7eM(8.2)j

o(7) ® §t(2)) Θ u(17)

where ^ is the spin-representation of Spin(7), S = I j J), and

A -

a, 0

a21 a

#31

#41

#51

0

#23

#32 #3

0 0

#52 #53

#14 0

#24 #25

#34

#4

#35

0

I α 6 1 α 6 ;
# 6

#54 #5

#64 #65

0

#26

#36

0

#56

#fi

/"V

0
0

0

0

0

0

0
0

- c 5 6

0

^36

— C«

0

c56

0

0

- c 2 6

c

0
0

0

0

0

0

0
- c 3 6

c26

0

0
_c

0

C35

- C 2 5

0

^ 2 3

0 .

ω2 =Put ω1 = e{e, — e^e^e

ω6 = e^e^Q, ω7 = e^e^e^. The conormal vector space V*7 is spanned by

these ωl9 • - -, ω7, and (GXΊ, pX7, V*) = (GL(1) X SO(7), D ® Λ, V(l) ® V(1)).

Then ĉ i is its generic point and ω2 = e^e^e^ is a point of the one-codi-

mensional orbit. Since Ax = G(xl9 ω2), we have codim Λx Π ΛΊ — 1. Since

Λγΐ\Λn is Go-prehomogeneous, Λ7 is a good holonomic variety. We have

ΛΊ = Λf.

Let A'β be an element of a>X7 with Ad = 2(α: + α4) = —jQ — X, 2(α3 + α6)

= — 2(α2 + α5) = 1 — β, all remaining parts zero in (5.4). Then we have

dρ(Aβ)xΊ = 0, d/o*(A^) ω2 = ω2 and tr f A^ = 0 where V = V*moddpXΊ(QXΊ)ωz.

This implies that yίi and A7 intersect regularly by Proposition 1-4. Let Ao

be an element of §X7 with d — — \, all remaining parts zero in (5.4). Then

dp(A0)x7 = 0, dp"t:(A0)ω1 = ωj Since βχ(A0) = 4d = — 2, trF* Ao = — 14d =

7, dimV*7 = 7, we have ord^/`* = — 2s — | . By Corollary 1-2, we have

bA£s)lbAl(s) = (s + ί).

(4) Since (G, ̂ o, V) ^ (G, /o*, F*), Λf = ΛΊ and yl* - Λ16, we have d i m J 7

Π A16 = dimV — 1 and they intersect regularly. Since AΊ Π ̂ i6 = Af Π ̂ 7* is

G0-prehomogeneous, Λί16 is a good holonomic variety. Since dp(A) 1 = d

— (tr A/2) + Σlί<j bijβtβj, the isotropy subalgebra qXl6 at x16 = 1 is

(5.5) _?A /C= -C,A,Ce M(S)
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The conormal vector space y*β is spanned by e^e^e^ and eiejehee (1 <

i<j<k<C£<6). Then the action dpxi% of g l̂e on y*β is given by

(5.6) dPxu(Λ)(ωl9 • , «O = K • , ^ ( ^ A ^ ( A ) )

where ω, = e&e&eM, {ω2, , ω16} = { e ^ e ^ 1 < i < j < k < £ < 6}, `d e C15,

^ = A2 for GL(6).

Then y16 = e!e2e4e5 + eie3e4eβ + β2e3e5β6 is its generic point. Let Ao be

an element of gXlβ with A = — £Jβ, C = 0 in (5.5). Then dp(A0)xle = 0

and d/o*(Ao)yJβ = ylβ. Since ^χ(A0) = 4<i = 2tr(— ^Jβ) = — 3, trF*16A0 =

—11 tr (— ^/6) = ψ and dimV^*, = 16, we have ord^16/
s = sδχ(AQ) — trF*i6A0 +

Ί dim Vj , = — 3s — Ĵ -. By Corollary 1-2, we have bj,u(s)lbA£s) = (s + V")-

By (5.6), the character group of ρXίQ(GXu) is one-dimensional and hence

(GΛlβ, /?ajie, V?16) has (at most) the unique one-codimensional orbit.

(5) Since Λ32 = J^ and Λ16 = Λf, they intersect regularly with codi-

mension one. We shall calculate the order ord^32/
s. Since (GX32, pXZ2, VXi2)

~ (G, p*, V*), y32 = 1 + ^̂ 2636465̂  is its generic point. Let Ao be an

element of g with d = — 1, all remaining parts zero in (5.1). Then dp(A0)x32

= 0, dp*(A0)y82 = yB2. Since δχ(A0) = - 4, trF*2A0 = - 32<2 = 32, dimVL , =

32, we have ord^32/
5 = - 4s - ψ. By Corollary 1-2, we have bΛz£s)[bΛί6(s)

= s + 8. Since bAo(s) = 1 and bAz2(s) = b(s), we obtain the 6-function b(s)

= (s + ϊ)(s + | ) ( s + JgL)(s + 8) and the holonomy diagram (Figure 5-1).

We denote (jΛ by ( ^ U

Figure 5-1. Holonomy diagram of (GL(T) X Spin(12),
G® half-spin rep., V(l) (x) F(32)).
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Remark. (1) (GL(1) X Spin(7), Π ® spin rep., V(l) ® V(8))

(2) (Spin(7) X GL(2), spin rep. ® Λu V(8)ΘV(2))

(3) (Spin(7) X GL(S), spin rep. ® Au F(8)®F(3))

(4) (GL(1) X Spin(9), Π <8> spin rep., V(1)®V(16))

(5) (GL(1) x (G2), π ® Λ , F(1)®F(7))

(6) ((G2) X GL(2), Λ 2 ®Λ, V(T)®V(2))

(7) (GL(1) X Spin(ll), Π ® spin rep., F(1)®F(32))

Since Spin (7) =—> SO(8) by the spin representation, the first three triplets

(1), (2), (3) are reduced to the triplet (SO(8) X GL(n), A, ® Au V(8)<E)V(n))

(n = 1, 2, 3) (See [1]). Since Spin(9) =—> SO(16) by the spin representation,

(4) is reduced to (SO(16) X GL(1), A, ® Au V(16) <g>V(l)) (See [1]). Since

(G2) =—> SO(7) by Λ2, (5) and (6) are reduced to (SO(7) X GL(n), A, ® yl1;

V(7)ΘV(n))(n = l,2)(Sθθ [1]).

Since the spin representation of Spin(ll) is obtained by the restriction

of the half-spin representation of Spin(12) to Spin(ll), (7) is reduced to

Spin (12) in § 5. Note that the 6-function depends essentially on the relative

invariant itself, not on the group.

§ 6. (GL(1) XE6,Π® Λ19 V(l) <g> F(27))

The Lie algebra g of G = GL(ί) X E6 can be written as g = ^ 0 θ $~x

θ ^ z θ ^ θ {Ry}ye/ (See Proposition 37 and Example 39 of § 1 in [1]). The

representation space is identified with the simple Jordan algebra f.

ί /fi Xz X2\

(6.1) / = IX = \x3 ξ2 xA;ξί9 ξ2, ?3 e C; xu x29 x3 e:

{ \X2 Xl ξj

where S£ denotes the complex Cayley algebra.

DEFINITION 6-1. For αei f , we define elements T^a) and T-(ά) (i = 1,

2, 3) of g as follows:

/ 0 0 xza \

Γ1(α) Z = [RAl(a) + r1(2a)]X= 0^ ^ aξ2

\ xza aξ2 tr(Xiα) /

/ 0 ax2 0 \

Tί(a)-X= [RAlia) - <r1(2a)]X= ax2 trfe) of,

\ 0 of, 0 /

/ 0 0 aξx \

T2(ά) X - [β^ ( f i ) + ^ 2(2ά)]X - h 0 x3α
\ of i αx3 tr(x2α) /
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( tr(αx2) α^i α?3

X& 0 0

of, 0 0

0 aξx 0

αfl tr(αx3) ^

0 x2α 0

( tr(αx3) αf 2 αx! \

ax, 0 0 /

where A£(α) denotes the element of / with x* = α, all remaining terms
zero in (6.1) for i = 1, 2, 3, and tr 6 = 6 + 5 for b e &. Thus we have g

- ^ 0 Θ Γ, Θ T2 Θ T8 θ 2Ϊ θ 2V θ ϊ7/ θ{ΛΛl o 0 \} For α e ^ w e put ίt(α)=
(θ 72 0 )
\0 0 7 3 /

exp Γ,(α) and ί-(α) = exp T-(a) for £ = 1, 2, 3. They are elements of G. For

ξ eC, let Bi(f) be the element of f with fέ = ξ, all remaining terms zero

in (6.1) for i — 1, 2, 3 and put c = exp f. We define an element S^c) of

G by Ŝ (c) = exp-βg.^ for ί = 1, 2, 3. The following proposition is well-

known.

PROPOSITION 6-2. There exist four orbits Sm = p(G)xm (m = 0,1,10, 27)

where Sm denotes the m-codimensίonal orbit, and xm is given as follows:

Proof. Let X be a non-zero element of /. Then we may assume

that ξ! = 1 by tu t\ and Sλ. By t2(—x2) and Z3(—x3), we have x2 — xz = 0.

Unless f2 = f3 = Xj = 0, we have f2 = 1 by ίί and S2. Then by ίi(—Xi),

we have xx = 0. If ξ3φ0, we have f3 = 1 by S3. Thus we obtain four

orbits. We shall calculate their codimension later. Q.E.D.

DEFINITION 6-3. We identify the dual vector space V* of V = f with

V by (X, Y) = trXo Y. Then the dual actions are given as follows: (i)

D*Y= DY for D e &0. (ii) Tf(a)Y = - Γ/(α)Y for α e i? and i = 1, 2, 3.

(iii) Γί*(α) Y = - r€(a)Y for i = 1, 2, 3 and a e Jίf. (iv) RfY = - R2Y for

DEFINITION 6-4. Since (G, £, V) = (G, p*, V*), the dual space has also

four orbits S* (m = 0, 1, 10, 27). We denote by Am (resp. Λ*) the conormal
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bundle of Sm(resp. S*). Clearly we have Λo = V X {0} = Λ% and Λ27 = {0}

(1) The isotropy subalgebra g^ at x0 is ^ 0 which is the Lie algebra

of F, (See [1]). Since Ao = V X {0}, we have ord^0/
s = 0.

(2) For A = D ® Σ L i (Γiία*) θ Γ/(αO) ® Λ/αi^ O\ we have ^ ( A ) ^ =

α2\
at , and hence A is an element of the isotropy subalgebra

α2 ax 0/
^ a t tfj if a n d only if A = D ® T((a[) ® Γ^αD ® [Γafe) ® Tί(-as)] ®

ί/0 0\ ]
The conormal vector space V.* is given by V*x = < 0 η e C > = {57}

i W J
and dpXl0(A)η = —a3η. For Ao = R/o Q \, we have φ(Ao)x! = 0 and dp*(A0)y

°
= 3>! w h e r e >Ί = 0 . Since δχ(A0) = — 1, trF* Ao = dimV^ = 1, we

h a v e orάΔlf- = — s — | . By Corol lary 1-2, we h a v e bΛl(s)lbΛo(s) = (s + 1).

(3) F o r A = D ® 2]*-i (TM) ® Γ/(αO) ® ί?/«i \, we h a v e dp(A)x10 =

I as 03 02 a n d h e n c e A € $X1O if and only if A = D ® ^ ( α ^ © Γ/feO ® ^/(aD
\a2 0 0/

\. In this case, A acts on the conormal vector space as
i U2

V «3.

follows:

/0 0 0
dpXl0(A) - 0 ?̂2 yj

\0 5?i W

Let ;y10 (resp. yί0) be the element of / with Xj = 1 (resp. ξz = 1), all re-

maining parts zero in (6.1). Then yί0 is a generic point of (GXl09 pXl0, V£Q)

and y'10 is a point of the one-codimensional orbit. Thus we have Aί0 = ί̂f,

^j = ί̂* and dimτlln./ίio = dimV— 1. Put AQ = J2/o \. Then we have

dp(A0)x10 = 0 and dp*(A0)y10 = yίC. Since ^χ(A0) = — 2, trF* An = 10 = dim

V£o9 we have ordΛlQfs — — 2s — ^ψ. By Corollary 1-2, we have bΛlo(s)lbΛι(s)

= (s + 5).

(4) The isotropy subalgebra QX27 is g. Put y27 = x0 and ̂ 7 = #ί Then

d/o(A0)x27 = 0 and dρ*(A0)y27 = y27 for Ao = i?_/3. Since ^χ(A0) = — 3, trF* AQ
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= dim V*7 = 27, we have ordΛ27f
s = — 3s — ^-. Since A10 = Af, A21 = Af, we

have codim A1Q Π A2Ί = 1 and bΛ27(s)lbΛlQ(s) = (s + 9). Thus we obtain the 6-

function 6(s) = (s + ί)(s + 5)(s + 9) and the holonomy diagram (Figure 6-1).

Note that the relative invariant f(X) is given by the determinant άetX

of X in / .

Figure 6-1. Holonomy diagram of (GL(1) X E$,

U V(1)®V(27))

§ 7. (GL(ΐ) XE7, D ® Λ, F(l) ® F(56))

The representation space V(l) ® F(56) is identified with

(7.1) V = {X = (x, x'); x, x' e M(8), ιx = - x, >x' = - x'} .

Then the infinitesimal action dp of g = gC(l) φ E7 is given by

(l) (x, xθ >̂ (px + X'P, -ιpy - yp) for P e SL(8, C)

(7.2) (2) (x, xθ ^ (ex, ex*) for c e βt(l)

(3) ((x) (xί)) Λ (( Σ ^ ^ ^ Λ ( - Σ
m, n=l

where -9 denotes a tensor, antisymmetric in its indices, and upper, lower

indices satisfy the relation

Q _ 1 Y1 Π, ,8 OJw",Ji

4! ju- jt
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H e r e I1il','.'.:8,u,jU...ji d e n o t e s t h e s i g n a t u r e o f t h e p e r m u t a t i o n ( • '
\hy ' ' ' 9 h)Jl>

' . ) when {iί9 , ίA9jl9 -,jA} = {1, , 8}, and 0 otherwise. The product

as a Lie algebra is given as follows:

(1) LP> P'] = PP' — P'P where ppf denotes the matrix multiplication

(7.3) (2) [p,&\ = y where (#)*>*< = Σ($mmPir* + $tn*'pjn + $ίjm%m +

(3) [$, 9'] = p where ptj = f ( Σ («'""'(n».i - i f e ^ " " Wm.rW

PROPOSITION 7-1 (Stephen J. Haris). There exist five orbits Sm = p(G)xm

(m — 0,1,11, 28, 56) where Sm denotes the m-codίmensional G-orbit and xm

is given as follows.

> ^ 2 8

and x56 = (0, 0).

Proof. See [5]. Q.E.D.

We identify the dual vector space V* with V by (X, Y) = tr xx' +

try/ for X = (x, *'), y = (y, / ) e V.
Then the dual action dp* is given as follows:

p*

(i) (y, /)>->•(- 'py - yp, p / + y 'P)

(7.4) (2) (y,y')^(-cy,-cy')

(3) ((y«Λ(^))^(( Σ ViMny'Λ (- Σ $i3mny
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Since G = GL(ί) X E7 is reductive, the dual triplet (G, p*, V*) has also

five orbits S* (m = 0,1,11, 28, 56). We denote by Λm (resp. A*) the conormal

bundle of Sm (resp. S*).

(1) The isotropy subalgebra ĝ 0 at x0 is the Lie algebra of E6 (See [5],

[1]). Since Ao = F x { 0 } = Λ5*6, we have ord^/' = 0 where /(X) = Pf(x) +

Pf(x') - \tτ(xx'xx') + ^ t r (xxO2 for X = (x, x') e V.

(2) The isotropy subalgebra QXI at xx is the set {c®p®θ} satisfying

the following conditions:

(7.4) p =

Pi Pl2 Pl3 Pl4

Pl2 P2 P23 P24

Pis P23 Ps P34

0 0 0 D4

where trp^ = 0

= (9ιJki)for i = 1, , 4, and p o A y = - άetpυΊ2 for 1 < ί < j < 3.

satisfies 9m) + 8Mίj + -95β<J = 0.

In fact, the isotropy subgroup is connected, and is isomorphic to

(GL(ί) X F4)U where [/ is unipotent of dimension 26 (See [5]). The co-

normal vector space Tζ* is given by

0
(7.5)

0

0
0 x lO\;xeC\

Let jΊ be the element of V]* with x = 1 in (7.5). Then it is a generic

point, and y[ = 0 is the point of the one-codimensional orbit. Let Ao be

an element of QX1 with c = — -J , all remaining parts zero in (7.4). Then

dp(A0)x1 = 0 and dp*(A0)y1 = y4. Since ^χ(A0) = - 1 , trF*χA0 = dim V* = 1,

we have ord^/' = - s - $ and bΛl(s)/bΛo(s) = (s + 1).

(3) The isotropy subalgebra gJΓll at xn is the set {cξBpξBθ} satisfying

the following conditions

(7.6)

P =

K =

where with

0 1
1 0

, trp, = 0, (ΰ) with ^12,, + Qui3 - 0 for all ί, 7.

The conormal vector space V̂ ^ is given by
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Then, for A = c ®p Θ θ in Qxn, we have dp*(A)Ϋ = (YJj £ J , ( ^ jj̀ )̀ ) where

m,n=l

and

Put yn = - 1

- 1

and y'n =

- 1

Then 3Ή is a generic point and y[x is a point of the unique one-

codimensional orbit. Thus we have Λn = Λfλ and d i m ^ Π Λ i = dimV — 1.

Let Ac be an element of qxil with c = — -J, all remaining parts zero in (7.7).

Then cZ/)(Λ)*n = 0 and dp*(AQ)yn = yn. Since £χ(A0) = 4c = — 2, trF* AQ

= — 22c = 11 and dimV"^ = 11, we have ordΛllf
s = —2s — ^ and hence

bAιι(8)lK(s) = (s + ¥)•
(4) The isotropy subalgebra gX28 at x28 is the set {c@p@θ} satisfying

the following conditions:

(7.8) P =
0

with trp x = trp 4 = 0

&•= (#w) with -912ίi = 0 for all i, j .

The conormal vector space V,*8 is given by

Then for A = c ®p Θ 6> in (7.8), we have
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ί = - 2cYί + Pχ + γ(% - Pί'γ; + Yί'Pϊ

ί = -±CY; + PίYζ + Yfa - ( Σ &iimπymn).
3 \ra,7!-3 /

m,n=3

Therefore, one can see that the colocalization at x2S has at most unique

one-codimensional orbit.

Since Λ28 = Λf and Λn = Λfx, A2S is a good holonomic variety and

π = dimV`— 1.

(s

1 -8-i

l i ) -2s - -y-

28 ) - 3 s -

(β + 14)

56 ) - 4 s -

Figure 7-1. Holonomy diagram of (GL(l)]χ EΊf
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P u t y28 = ]
- 1

- 1

- 1

,0 Then y28 is a generic point.

Let Ao be an element of qX29 with c = — f, all remaining parts zero in

(7.8). Then we have dp(A0)x28 = 0 and dp*(A0)y28 = y28. Since <5χ(A0) = 4c

= - 3 , trF*28A0 = -38c = 4f and dimV^8 = 28, we have ord^28/
s = - 3 s - ψ

and hence bΛ2£s)lbΛίl(s) = (s + ψ) by Corollary 1-2.

(5) Since x56 = 0, we have (GXu, pX5β, V*J = (G, p*, V*). Since Λ56 =

{0} x V* = At and Λ28 = Λf, we have dimΛ56 Π Λ28 = d i m V - 1 and they

intersect regularly. Let Ao be an element of gΐ28 with c = — 1, all re-

maining parts zero in (7.2). Then dρ(A0)x5β = 0 and dp*(A0)y5β — y56 where

y5β = x0. Since δχ(A0) = - 4, trΓ*56A0 = dimV£β = 56, we have ord^56/
s =

—4s — ^ , and hence 6yί5β(s)/6/ί28(s) = s + 14. Thus we obtain the 6-function

b(s) — (s + l)(s + ^ ) ( s + -^)(s + 14) and the holonomy diagram (Figure

7-1).

§8. «7L<6), A» F(20))

Let Vj be a 6-dimensional vector space spanned by wh •••, uQ. Then

G == GL(6) acts on V, by pi(g)(uu , M6) = (i^, , w6)^ for ^ e G. The

representation space V = V(20) is spanned by skew-tensors ẑ  Λ Uj A uk

(1< ί < j < k < 6), and p = Λz is given by p(g){ui A Uj A uk) = pι{g)ut A

P\(g)u3 Λ pι(g)uk for 1 < i < j < k < 6, and g e G. Then it is well-known

(and also one can easily check) that there exist five G-orbits Sm = |θ(G)xm

(m = 0,1, 5,10, 20) where Sm denotes the m-codimensional orbit, and x0 —

Wi Λ u2 A u3 + u4 A u5 A u6, xx = ut A u2 A u3 + ux A u± A u5 + u2 A u, /\ u6,

x5 = u1Au2Au3 + UiAu^A u5, xί0 = uxAu2A u3, and x20 = 0. We identify

the dual space V* with V by ( 2 aijkut A Uj A uk, Σ ί>rsίwr Λ w s Λ α^ =

Σlι<i<j<k<eaijkbijk Since (G, ̂ o, V) = (G, /?*, V*), there exist also five orbits

S* (m = 0,1, 5,10, 20) in V*. We denote by Λm the conormal bundle of

Sm. The isotropy subalgebra ĝ  at x e V(20) is, by definition, QX = {Ae gί(6);

dp(A)x = 0} where dp(A)(ui A Uj A uk) = dpt(A)Ui A u3 Auk + utA dpx(A)Uj

A uk + ut A Uj A dpλ{A)uk.

(1) The isotropy subalgebra §XQ is, by simple calculation, given as

follows:
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(8.1) e gΓ(6); A, B e

We have AQ = V X {0}, and hence ord i o/ s = 0 where / denotes the relatively

invariant irreducible polynomial of degree four (See [1], [14]).

(2) Put x[ = Ux A u2 A u6 + u2 Λ w3 Λ u4 — ux A w3 Λ u5. Then xί e Slβ

By simple calculation, the isotropy subalgebra c^ at xί is given by

(8.2) = {Λ = (A *
A - (tr A)

) e β t( 6 ) ; A, fl β M(3), t r B _ θ} .

Therefore we have GXl ~ GL(3) (Gα)8 where denotes a semi-direct product

and Ga = C The conormal vector space V& is of one-dimension with a

basis U4 A u5 A u6. The action dpxί of $xί on V]*, is dpxί(A)uA A u5 A u6

= — 2tr A w4 Λ w5 Λ w6- Take Ao e gxί with tr Ao = — £. Then we have

dp(A0)x{ — 0 and dp*(A0)y1 = yx where yx = w4 Λ w5 Λ w6. Since ^χ(A0) =

(deg//dimV)trd/o(A0) = ^ X (lOtr Ao) = — 1 and trF*^A0 = dimV]*/ = 1, we

have oicάΛlf
s — — s — \ by Proposition 1-3. Since 0 is the point of the

one-codimensional orbit, we have dimA0 Π Ax = dimV"— 1 and Ao Π Ax is

Go-prehomogeneous, i.e., Aλ is a good holonomic variety by Proposition

1-5. Also we have μ = 1 and y = 0 by Proposition 1-4, i.e., Ao and At

intersect regularly. By Corollary 1-2, we have bΛl(s)lbΛo(s) = (s + 1).

(3) Put X5 = &! Λ (u2 A u± + u3 A u5) e S5. Then the isotropy subalgebra

c^ is given as follows:

(8.3) QX, =
-2ε

0

0

B

0

c
D
V

e βI(6); A € , D e C\ C e c\

where u(9) denotes the Lie algebra of 9-dimensional unipotent group.
P u t ωx = (u2 A u4 — u3 A U5) A u6, ω2 = uA A u5 A u6, ω3 = uz A u^ A u6, ω4

= u2Au5Au6 and ω5 = u2 A u3 A u6. Then the conormal vector space V&

is spanned by ωl9 , ω5 and (Gx,, Px,, V*,) ~ (GL(ΐ) X Sp(2), Λx ® A2i V(ϊ)

(8) V(5)) ^ (GL(1) X SO(5), ̂ ! ® ^ , V(l) ® V(5)), where ω i is a generic point

and ω2 = w4 Λ w5 Λ u6 is a point of the one-codimensional orbit. Therefore

we have dim^j Π A5 = dimV — 1. Since the (Gx^ Π G0)-orbit of ω2 is one-

codimensional in V,*,, i.e., Ax Π Ab is G0-prehomogeneous, A5 is a good

holonomic variety by (2) and Proposition 1-5. Let Ao be an element of

g^ with η = — 1 and all remaining parts zero in (8.3). Then we have



PREHOMOGENEOUS VECTOR SPACES 41

dp(A0)x'δ = 0 and dp*(AQ)ω1 = ωx. Since dχ(A0) = 2tr Ao = — 2, trΓ^A0 =

- 5(2ε + 27) = 5, and dimV£ = 5, we have oτάΛJ
s = - 2s - f. Put A^ =

β(E22— Eu) + (β + ΐ)E66 for /3 e C where £Jί; denotes the matrix unit. Then

dp(Aβ)xf

b = 0 and dp*(Aβ)ω2 = ω2. Since V = V** mod dpxί (QX£)CO2 is spanned

by u2 A us A u69 we have trΫAβ = 2/3 + 1. Hence we have μ = 1 and 1; = 0

by Proposition 1-4, i.e., Λx and Λ5 intersect regularly. One can also get

this from the fact mΛ. — mΛl = 1. By Corollary 1-2, we have bA.(s)/bAl(s)

= s + f.
(4) Put x10 = ux A u2 A uz e S10. Then the isotropy subalgebra c 1̂0 is

given as follows:

(8.4) qXlQ = [A = ( ^ j ^ ) 6 βί(6); A, B, C e M(3), tr A = θ

i.e., GΛ l 0 ~ (SL(3) X GL(3)) (Ga)\

In general, we write Gx — G2 when two groups Gx and G2 are locally

i s o m o r p h i c t o e a c h o t h e r . P u t ωx = uλ A u± A u$, ω2 = ux A u± A u6, ω3 =

ux A Us A u6, ω4 = u2 A u4 A w5J ω~Ό = u2 A u± A uδ, ω6 = u2 A u-0 A u6, ωΊ =

uz A u± A U5, ωs = M3 Λ uA A uβ9 ω9 == u3 A u5 A u6 a n d ω10 = w4 Λ u5 A u6.

Then the conormal vector space V^o is spanned by ωί9 , ω10. The action

dpXlQ of QX10 on V*Q is given by

(8.5) dpXl0(A)(ωu , ω10) = (ω1? , ω10)

where ^ = τl2 ® Λf, i.e., the action of GXo induced on the subspace spanned

by ωl9 --,ω9 is isomorphic to a triplet (SL(3) X GL(3), ̂ ! ® Λί9 V(3) Θ V(3))

as a triplet (See [1]). Then ωλ + ω5 + ω9 e Sf is a generic point and ωλ

+ ω5 e S5* is a point of the one-codimensional orbit. This implies that

dimyί5 Π Λί0 = dimy — 1. Since Λ5 Π ̂ 1 0 is G0-prehomogeneous, .//10 is a

good holonomic variety by Proposition 1-5. Let A be an element of QX10

with A = B = 0 and C = - | I 3 in (8.4). Then dp(A)x10 = 0 and φ*(A)

(ωj + ω5 + ω9) = (ω2 + ω5 + ω9). Since ^χ(A) = 2 tr A = — 3, trτ*iQA =

— 7tr C = ^ and dim V*Q = 10, we have ord^10/
s = - 3s - Af by Proposition

1-3. Let Aβ be an element of qXl0 with A = B = 0 and C = Λ~~^/2) / ^ j )

in (8.4). Then dp(Aβ)xί0 = 0 and dp(Aβ)(ω1 + ωb) = (ωx + ω5). Since V =

V^modc^Xg^Xω! + ω5) is spanned by u3 A u, A u6, we have trΫAβ = β.

This implies that μ — 1 and v = 0, i.e., /15 and yl10 intersect regularly by

Proposition 1-4. One can also get this from the fact mΛl0 — m,h — 1. By
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Corollary 1-2, we have bAlQ(s)/bA£s) = s + f.

(5) Put x20 = 0 e S20. In this case, (GXM, pX209 V£) s (GL(6), Λ3, V(20)).

Λ ^ = {0} X V* is a good holonomic variety. Put A = — ̂ -I6. Then dp(A)xz0

= 0 and dp*(A)xf = xf where xjf = i/j Λ w2 Λ ^3 + u4 A w5 Λ u6 e So*.

Since δχ(A) = 2tr A = - 4, trF*2oA = 20 and dimV^o = 20> w e h a v e orάAi0p
/βi 0\

= — 4s — ̂  by Proposition 1-3. Put Aβ = I ' with c^ = α2 = α4

\0 'aj
= 1/2 - β/6, a, = a5 = a6 = /3/3. Then dp(A^Xn = 0 and dp*(Aβ)xf = *?

where xf = Wj Λ w2 Λ w3 + Mi Λ W4 Λ W5 + u2 Λ w4 Λ u6. Since V = Vβ*β

mod dρX20(QX20)x? is spanned by u3 A u5 Λ wβ, we have tr?A^ = β. This

implies that // = 1 and y = 0, i.e., A20 and J l o intersect regularly. One can

also get this from mΛ20 — mΛl0 = 1. By Corollary 1-2, we have bΛ2O(s)lbΛlo(s)

= s + 5. Thus we obtain the 6-function b(s) = (s + l)(s + f)(s + f)(s + 5)

and the holonomy diagram (Figure 8-1). We denote CA^) by

(s + 1)

10) - 3 s -

(β + 5)

20 ) -4s -ψ

Figure 8-1. Holonomy diagram of (GL(6), Λ3, F(20)).

§ 9. (GL(1) X Sp(3)
9
 D ®

Put o)i = u
x
 Λ w

2
 Λ w

3

w
5
 Λ u

Q
, ω

5
 = Wj Λ u

z
 A u^

u
A
 A M

5
,
 ω
9 =

 u
\ Λ w

2
 Λ H

5

F(14))

ω2 = uA A u5 A u6, ωs = u2 A u3 A u4, ω4 = ux A

ω6 = u2 A uA A u6, ω7 = ux A u2 A u&, ωB = uz A

— Wi Λ w3 Λ w6? ω1 0 = w2 Λ u, A u^ — uz A uk A w6,
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o>n = ux A u2 A u, + u2 A uz A u6, ωί2 = ut A u, A ub + u3 A w5 Λ u6, ω13 =

ux A uz A u± — u2 A uz A w5, ωu = Ui A u^ A u6 — u2 A ub A u6. Then the

representation space V is identified with the subspace of V(20) in § 8

generated by ω1? , ω14. Then the representation p = Π ® Λ3 is the

restriction of Λ3 for GL(6) to G = GL(1) x Sp(3). The orbital decomposi-

tion of this space has been completed by J-I. Igusa (See [3]). There exist

five G-orbits Sm = p(G)xm (m = 0,1, 4, 7,14) where Sm denotes the m-codi-

mensional orbit, and χ0 = ω: + ω2, x{ = ωΊ + ω13, xi = ω13, x7 = ω^ xu = 0.

We identify the dual space V* with F b y (ΣJii #*<*>«> Σ ^ I ^ ^ J ) — Σ&4=iαA;δfc

Since (G, ̂ , V) ^ (G, p*, V*), there exist also five G-orbits S* (m = 0, 1, 4,

7, 14) in V*. We denote by Λm the conormal bundle of Sm. The Lie

algebra g of G = GL(1) X Sp(S) is given as follows:

(9.1) fl = {A = ; A, J3, C e M(3), *B = B, *C =

(1) Since d^(A)x0 = (d + t r ΛJωj + (d — t r A)ω2 + cλωz + 6^4 — c2ω5 —

62ω6 + c3ω7 + 63ω8 + c23ω9 + b2Zω10 + cnωn + 613ω12 — c]2ω13 — b12ωH where ct =

cu and bi — bu for i = 1, 2, 3, we have

l0 = {A = (0) ; A e St(3)} ^ δt(3) .(9.2)

We have Λo = V X {0}, and hence ord^0/
s = 0 where / denotes the relatively

invariant irreducible polynomial of degree four (See [1], [3]).

(2) Since dp(A)x1 = (63 — 2612)ω1 + 2α21ω3 + c2ω4 — 2α12ω5 — c^6 + (d +

aχ + a2 — az)ω7 + 2c12ω8 + (α13 — α32)ω9 — c13ω10 + (α23 — α31)ft>π — c23ω12 + (d +

«3)^i3 + (c12 — c3)ω14 where at = au for ί = 1, 2, 3, we have

(9.3)

V(5)

where V(5) denotes the Lie algebra of (Gα)5.

The conormal vector space y * is one-dimensional with a basis ω2.

The action dpXl of gJCl on V*x is given by dpXl(A)ω2 = ( — d + a1 + a2 + α3)ω2

= — Adω2. Therefore we have Λx = G(xu yd where yx = ω2. Let Ao be an

' -d+a

0

r

0

— d—a

β

0

β

r
-d

6i

biz

bn

d—a

0

~β

b12

b2

b23

0

d+a

-r

b^

b2Z

2&12

—r
—β
d .
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element of ga.1 with d = — \, all remaining parts zero in (9.3). Then we

have dp(A0)x1 = 0 and dp*(A0)y1 = y1# Since 3χ(A0) = 4d = — 1, try* A =

dimV^ = 1, we have ordΛlf
s = — s — \ by Proposition 1-3. Since 0 is the

point of the one-codimensional orbit, we have dim Λo Π Λ1 — dimV — 1

and Ao Γ) Ax is G0-prehomogeneous, i.e., Λ1 is a good holonomic variety by

Proposition 1-5. Also we have μ = 1 and v = 0 by Proposition 1-4, i.e.,

Λo and Λι intersect regularly. By Corollary 1-2, we have bΛl(s)lbΛo(s) =

(β + 1).

(3) Since dp(A)Xi = — 2b12o)! + 2α21ω3 — 2α12ω5 4- 2cj2ω8 + a13ωs — c,3ίθj0
+ α2sωu — cizω12 + (<i + α3)ω13 — c3ωI4, we have

d

0

α

Cί

0

0

0
α2

r
0

c2

0

0
0

-d
0

0

0

b>
0

i8
- α ,

0

0

0

b2

δ

0

0

ε

— a

-γ

d,

(9.4) 1

(d)@

-d

0

0

I 0

a β

0

o

ϊ S

0

a2 o2

C2 Cί2

0

ε \

β
— a

- r

Θ 3«2) Θ §ϊ(2)) Θ V(5) .

The conormal vector space V£ is spanned by ω2, ω4, ωβ, ω7 on which

acts as follows:

(α>2, ω 4 , 2, ω49 ω6, ω7)

A 2 -b, b2 0
- C j A 2 0 - 6 2 ,

c 2 0 A 3 6i
0 — c 2 Ci A 4 y

A> = — αj + α2 — 2d, A3 = ax — α2 — 2d, A4 =where A1 = ax + α2 —

— αx — a2 — 2d.

Hence we have (GXι, pxo V*) ^ (SL(2) X GL(2), J, ® Al9 V(2) ® V(2)) s

(GL(1) X SO(4), π ® Al9 V(ΐ) ® y(4)).

Clearly, :y4 = ω4 + ωQ is its generic point, and ω2 is a point of the

one-codimensional orbit. Since Λ1 = G(xi, ω2), we have dim Λx Π Λ± — dim

V — 1. Since Λx Π Λ is G0-prehomogeneous, Λ4 is a good holonomic

variety by (2) and Proposition 1-5. Let Ao be an element of g^ with d
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= — \ and all remaining parts zero in (9.4). Then dp(A0)xi = 0 and

dp*(A0)y4 = y4. Since δχ(A0) = 4d = - 2, tτv%AQ = - 8d = 4 and dimV*4

= 4, we have ordyil/
5 = — 2s — f. Let A^ be an element of qXi with ĉ  =

-| (1 — β), d = — \{β + 1), all remaining parts zero in (9.4). Then we have

dp(Aβ)xi = 0, dp*(Aβ)ω2 — ω2 and tτΫAβ = /3 where V = V.* mod dpXi(QXi)ω2.

This implies that J 4 and Λι intersect regularly by Proposition 1-4. By

Corollary 1-2, we have bAi(s)/bAl(s) = (s + 2).

(4) Since dp(A)x7 — (d + ax + α2 + αg)^ + c ^ — c2ω5 + c3ω7 + c23α>9 +

c13ωn — c12ω13, we have

(9.5) flx7 = {A = ( - tr A) Θ (^-|-J^-) ιB - s} - βt(3) Θ

The conormal vector space V£ is spanned by ω2, ω4? ω6? ω8, ωm ωl2, ωu, and

acts on V*7 as follows:

(9.6) dPxη{A){ω2, ωt, , ωu) = (α>2, ωit • • •, α > 1 4 ) ( 1 ^ - — ^ - J L — — )

where ιB e C6 and Pl = 2ΛX.

Then yΊ = ω4 + ω10 is its generic point, and ω4 + ω6 is a point of the

one-codimensional orbit. Since Λ± = G(x4, ω4 + ω6), we have dim Λ^f] Λ7 =

dimF— 1. Since J 4 Π ΛΊ is G0-prehomogeneous, yί7 is a good holonomic

variety by (3) and Proposition 1-5. Let Ao be an element of qX7 with A

= £I 8 and B = 0 in (9.5). Then φ(A0)x7 = 0 and dp*(A0)y7 = y7. Since

) = — 4tr A = — 3, trFj7A0 = 10 tr A = -^ and dimV?7 = 7, we have
5 = — 3s — | . Let Aβ be an element of o>X7 with aλ = az = •%, a3 = \

— | , all remaining parts zero in (9.5). Then dp(Aβ)x7 = 0, dρ(Aβ)(ωi + ω6)

= (ω4 + ω6) and tr fA^ = /3 where V = V*moάdpX7(qX7)(ωA + ω6) = Cω8. This

implies that AA and yl7 intersect regularly by Proposition 1-4. By Corollary

1-2, we have bΛl(s)lbΛ£s) = (s + f).

(5) Since x14 = 0, we have (GXu, pxio V*J = (GL(1) X Sp(S), D ® Λi9

V(ΐ) ® V(14)) and Λu = {0} X V* is a good holonomic variety. Take A =

(-1) Θ (0) e β = gΓ(l) Θ ^(3). Then dp(A)xu = 0, dp*(A)(ωx + ω^= (ω, + ω2).

Since δχ(A) = — 4, trF*uA = 14 and dimV^*4 = 14, we have ord^14/
s = — 4s

— -^. Since Λu = Λf, Λ7 = ylf where ί̂* denotes the conormal bundle of

S*(C V*), they intersect regularly by (2). Note that (G, ̂  V) ^ (G, ̂ o*, V*)

since G = GL(1) X Sp(S) is reductive. By Corollary 1-2, we have bΛl£s)[

bA7(s) = s + -|. Since 6/ll4(s) = 6(s) and bΛo(s) = 1, we obtain the δ-function
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(8+D

(s + 2)

0 ) 0

1 ) - s -

4 ) -2s -

7 ) - 3 s -

14) -4s - -ψ

Figure 9-1. Holonomy diagram of (GL(1) X

b(s) = (s + l)(s + 2)(s + | ) (s + | ) and the holonomy diagram (Figure 9-1).

We denote Am by

§ 10. (GL(7), As, F(35))

The representation space V= V(S5) is spanned by the skew-tensors

ut A Uj A uk (1 < i < j < fe < 7) of degree three, on which G = GL(7) acts

as in § 8. Then it is known (See [6], [7]) that there exist ten orbits Sm

= p(G)xm (m = 0,1, 4, 7, 9,10,14,15, 22, 35), where Sm denotes the m-codi-

mensional orbit, and x0 = u2 A u3 A z/4 + w5 Λ w6 Λ u7 + ux A (u2 A u5 + us

A u6 + Ui A u7), xt = u2 A uz A w5 + u* A w4 Λ u6 + ux A (u2 A u7 — u± A ub),

xA = ux A u3 A u± + u2 A w5 Λ u6 + ux A u2 A uΊ, xΊ = u2 A uz A uA + ux A

(u2 A u5 + uz A u6 + Ut A u7), x9 = uλ A u2 A u3 + u4 A u5 A u6, x10 = ux A

u2 A u6 — ux A u3 A u5 + u2 A u3 A u4, xu = ux A (u2 A u5 + u3 A ue + uA A

u7), Xis = Mi Λ (u2 A u± + u3 A u5), x22 = uγ A u2 A u3 and x35 = 0. Note that

we chose these representative points xm so that the isotropy subalgebra

QXm at xm will be the standard form. The relative invariant f(x) of this

space is of degree seven (See [1], [14]). Since (G, p, V) ^ (G, ρ*9 V*), there

exist also ten G-orbits S* (m = 0,1, 4, 7, 9,10, 14, 15, 22, 35) in V*. We

denote by Am (resp. Λ%) the conormal bundle of Sm (resp. *S*). Clearly we

have Λo = V x {0} = Λ* and Λ35 = {0} X F * = Af.
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(1) The isotropy subalgebra gxo at x0 is given as follows (See [1]).

(10.1)

f Γ
a

b

c

d

e

I /

2d

0
c

-b

2e

X

— c

0
a

2/

b
— a

0

2a
0

- /
e

26

/
0

-d

-ιX

2c -
—e

d

0 X e §1(3)

Since Λo = V X {0}, we have ord^0/
s = 0.

(2) The isotropy subalgebra QXI at xλ is given as follows.

(10.2)

α21

d
2"

i+a-β
-or-/

Ϊ2

Ts - 1
-d 2621 2612

612 - d + 2 / 3 0

621 0 —d—2β

Θ §r(2) Θ δl(2)) Θ V(8)

The conormal vector space V,* is spanned by u5 A u6 A u7. Then

dρXl(A)ub A u6 A UΊ = 3d u5 A u6 A uΊ for A e QXI. Since 0 is the point of the

one-codimensional G-orbit, Ao and Ax intersect regularly with codimension

one. Let AQ be an element of QXI with <i = -g , all remaining parts zero in

(10.2). Then dp(A0)xί = 0 and dp*(A0)y1 = y1 where y1 = u5 A u6 A uΊ. Since

3χ(A0) = (deg//dimV) trΓA0 = 3tr Ao = - 3d = - 1 (See Proposition 1-9),

trF*A0 = dimlζ* = 1, we have ordΛlf
s = — s — \ and hence bΛl(s)lbAo(s) =

(s + 1). We have also Ax = A}2, and hence A22 = Af.

(3) The isotropy subalgebra QXi at x4 is given as follows.

-trX 0
0 -try

(10.3)
0

0

^(βr(2)Θβt(2)).u(10).

X

0

0

ft ft
0

Y

0

ft

-βi

-a,

tr(Z+y).

The conormal vector space V 4̂ is spanned by ωx = w3 Λ w5 Λ w7, ω2 = w3
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A u6 A u7} ωz = u4 A Us A u7, ω4 = u4 Λ u6 A u7. Then we have (Gxo pXι,

V*) S (GL(2) X GL(2), Λ2 ® A, V(2) <g> V(2)), and y, = ω, + ω4 is its generic

point, yi = ω1 is a point of the one-codimensional orbit. Since the colo-

calization (GXi, pXι, V*) is an irreducible regular P.V., J 4 is a good holonomic

variety by Corollary 1-8. Let Ao be an element of ĝ 4 with^X = — \I2y

all remaining parts zero in (10.3). Then dp(A0)x4[ = 0 and dp*(AQ)y± = y4.

Since dχ(A0) = 3tr Ao = — 2, trF*4A0 = 4dimV£, we have oτA.AJ* = — 2s —

I by Proposition 1-3. We have also dp*(A<)y'4L = yi and trΫA0 = 1 where

V = y^ mod dpXi(Qx)yi = Cω4. This implies that Aι and ̂ 44 intersect regu-

larly with codimension one by Proposition 1-4. By Corollary 1-2, we

have bA£s)lbAl(s) = (s + 2). We have also A± = Λ% and hence Aκ = Af.

(4) The isotropy subalgebra ga.7 at xΊ is given as follows.

(10.4)

ε

0

0

ΐl Ϊ2 ΪS

X

0

y v yM / 5 / 6

— εl 3 — ' X

e §1(3)

S(βI(l)Θ3l(3))0u(12).

P u t ^ = w5 Λ w6 Λ w7, o)2= u2 A u6 A u7, o)3 = u4Au,A u6, ω, = u3 A w5 Λ

w7, ω5 = u2 A u5 A u7 — u3 A u6 A u7, ω6 = u, A u, A u7 — u3 A u5 A u6, ω7

= u2 A Us A u6 + Ui A uQ A UΊ. Then the conormal vector space V*7 is

spanned by these ωl9 , ω7. The action dpXl of gX7 on V£ is given by

(10.5) d p X Ί ( A ) ( ω ί , .• , ω 7 ) = ( ω 1 > .. , ω
2ε J6 Θ d/

where Pl = 2AX for SL(3).

Here y7 = ω2 + ω3 + ω4 is its generic point, and ̂  = ω2 + ωz is a point

of the one-codimensional orbit. This implies that AΊ = Λ$, A1Q = Af and

dimy44 D A7 = dimy — 1. Since J 4 Π ̂ 7 is G0-prehomogeneous, A7 is a

good holonomic variety. Let Ao be an element of QX7 with ε = | , all

remaining parts zero in (10.4). Then dp(A0)x7 = 0 and dP*(A0)yΊ = y7.

Since 5χ(A0) = 3tr Ao = — 6ε = — 3, trF*7A0 = ^ψ and dimV]* = 7, we have

ord^7/
s = — 3s — f by Proposition 1-3. Let Aβ be an element of §XΊ with

(V \
ε = jr-\-±,X=l η with η = | — ̂ -, all remaining parts zero in

(10.4). Then we have dp(Aβ)x7 = 0, dp(Aβ)y7 = y7 and t r ^ = β where

V = V*7 mod dPx7{§X7)y'Ί — Cω4. This implies that A± and yί7 intersect regularly
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by Proposition 1-4. By Corollary 1-2, we have bΛ7(s)lbΛ4(s) = (s + f).

(5) The isotropy subalgebra qX9 at x9 is given as follows.

(10.6) X, Y e §1(3), Z , f e C 3

Θ V(6).

The conormal vector space V,* is spanned by ut A u3 A u7(l < i < 3; 4 <

j < 6). By seeing the weights, we have (GX9, pX99 V*) s (SL(3) X GL(3), Λ

®-4i, V(3) ® V(S)). Since this is an irreducible regular P.V., Λd is a good

holonomic variety by Corollary 1-8. As a generic point, we may take y9

= (ut A uA + u2 A u^ + z/3 Λ u6) A u7) and y'9 = {ux A u± + u2 A u5) A u7 is

a point of the one-codimensional orbit. This implies that Λd = Ĵf4, yl14 = Λf

and dim^ 4 Π A9 = dimF— 1. Let Ao be an element of QX9 with e = — 1,

all remaining parts zero in (10.6). Then dp(AQ)x9 = 0, d/?*(Ao)y9 = y9. Since

jχ(A0) = 3 t r Λ = - 3, trF* AQ = 9ε = - 9, dimV*9 = 9, we have ord^/5 =

- 3s - f. Let A^ be an element of &X9 with e = ((β + 2)/3), X = I ^

with )y = ((1 — β)jS), all remaining parts zero in (10.6). Then we have

dp(A0)x, = 0, φ*(A0)y9 = j>9 and tr f A 0 = β where V = V ^ m o d φ ^ g ^ ) ^ =

Cuz A u6 A uΊ. This implies that A4 and yl9 intersect regularly. By Corol-

lary 1-2, we have 6,9(s)/6,4(s) = (s + 3).

(6) The isotropy subalgebra ĝ 10 at xl0 is given as follows.

(10.7) β Λ l 0 = A ^
B

-2εL
0

Θ u(14) .

= 0 , C , ΰ e C 3

Put ωx = w5 Λ ^6 Λ w7, ω2 = α4 Λ u6 A u7, ω3 = zz4 Λ w5 Λ 7̂> 4̂ = wx Λ w*

Λ w7, ω5 =: w2 Λ w5 Λ M7, ω6 = w3 Λ w6 Λ M7, ω7 = (uj A u, + u2 A u4) A u7,

o>8 = (M2 Λ ^ + u3 A ub) A u79 ω9 = (MJ Λ ^ + M 3 Λ M4) Λ U7, ω10 = w4 Λ w5 Λ

w6. Then the conormal vector space V ô is spanned by ωu , ω10, and

the action dρXl0 of g,,10 on V£Q is given as follows.

(10.8)

where

dpx M(A)K

= 2yl. for

• , «Ίo) = (ω1 ; ,

SL(3).

/(4ε —τ?)7

C) 0

1 o

3+A: β' 1
(ε-η)It + dpt(X)ί

0

0

fie
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Then y10 = ω4 + ω8 + ω10 is a generic point. There exist two one-codi-

mensional orbits. As a representative point, we may take y'10 = ω8 + ωί0

and yio = ω4 + ω5 + ω6 respectively. This implies that dim Λ7 Π Λ10 = dim Λ9

ΠΛo = dimV — 1. Since yl10 = Λ?> Λlo is a good holonomic variety. Let

Ao be an element of gXl0 with ε = `̂  , 37 = — | , all remaining parts zero in

(10.7). Then dp(AQ)xί0 = 0 and dp*(Ao)y1Q = yl0. Since <5χ(A0) = - 9ε + 3η

= - 4, trΓ* io Ao = 24ε — 9^ = ^ , and dim V*o = 10, we have orάAιof =

— 4s — Ϋ by Proposition 1-3.

Since dp*(A0)y'10 = y'10 and tτΫA0 = 1 where V = V*o mod dpXl0($Xι0)y'10

= Cω4, yί7 and yl10 intersect regularly by Proposition 1-4. Let Aβ be an

element of gXl0 with ε = | , 27 = | — 1, all remaining parts zero in (10.7).

Then we have dp(Aβ)x10 = 0, dp*(Aβ)yΊo = yio, and tr^A^ = β where V =

V*10 mod dpXl0(qxjy/0 = Cω10. This implies that Λd and ^ί10 intersect regularly

by Proposition 1-4. By Corollary 1-2, we have bΛlo(s)lbΛ7(s) = (s + 3) and

bΛι£s)lbAAs) = (s + f).
(7) The isotropy subalgebra g ^ at xu is given as follows.

7 € Cβ} s (βr(l) Θ ̂ (3)) Θ V(6) .(10.9)

P u t ωx = u2 A uz A ui9 ω2 = w5 Λ u& A u7, ωz = uz A uA A ub, ω4 = u2 A u& A

uΊ9 ω5 = u2 A u4 A u6, ω6 = uz A u5 A u7, ω7 = u2 A uz A u7, ω8 = u4 A u5 A

u6, ω9 = u2 A uz A u6 — u2 Au4 A u7, ω10 = uz A w5 Λ u6 — u4 A u5 A u7, ωn

= u2 A uz A Us + uz A u± A u79 ω12 = u2 A u5 A u6 + u± A u6 A u7> ωίz = u2

A u± A Us — uz A u± A u6f ωu = u2 A u5 A u7 — uz A u6 A u7. The conormal

vector space V*u is spanned by these ωί9 , ωu. By seeing the weights,

we have (Gxu, pXli9 V*J s (GL(Ϊ) X Sp(S), D ® ΛZ9 V(ί) ® V(14)). Since this

is an irreducible regular P.V., Λu is a good holonomic variety by Corollary

1-8. As we have seen in § 9, yu = ωι + ω2 is a generic point. Let Ao be

an element of gXl4 with ε = - }, X = Y = 0 in (10.9). Then dp(A0)xu = 0

and dp*(A0)yu = yu. Since δχ(A0) = 3tr Ao = - 4, trF*14A0 = 14 X 3ε =

— 14 and dimV*u = 14, we have ord^14/
s = — 4s — 1^. Since Λu — Λf9 Λ7 =

Λ%9 and Λ% and Λ10 intersect regularly with codimension one, so do Λu and

AΊ. By Corollary 1-2, we have 6,14(s)/6,7(s) = (s + | ) .

(8) The isotropy subalgebra g ^ at x15 is given as follows.

-2ε
(10.10)
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P u t ωi = ui + 1 A u6 Λ uΊ (1 < i < 4), ω5 = ux A w6 Λ M7, ω6 + j = (M2 A U± — UZ

A M5) Λ ^6+JJ ω 8 + J = u2 A u3 A u6+j, ω10+j = u2 A u5 A u6+j, ω12+j = u3 A u± A

u6+j, ωH+j = w4 Λ w5 Λ uζ+j (j = 0, 1). Then the conormal vector space V*15

is spanned by ωί9 , α>15. The action d^ 1 B of gXl5 on T4*5 is as follows.

dρXli(A)(ωl9 , o)15) = (ωl9 , ω15)

(10.11)
X

0 0 Y)

where ^! = Λλ for Sp(2) and ^2 - Λ2 ® ί̂j for Sp(2) X SL(2). Since ^115 =

Λf and yd4 is a good holonomic variety, Λ15 is also a good holonomic

variety. j>15 = ω5 + ωn + ω12 is a generic point. Let Ao be an element of

g,;lg with £ = = — £ , 37 == — -f , all remaining parts zero in (10.10). Then

dp(A0)x15 = 0 and dp*(A0)yκ = y15. Since 3χ(Λ0) = 3 t r Λ = 6(e + rj) = - 5,

t r F * 5 A = - 22ε - 20^ = iφ-, and dimV^5 = 15, we have ord^15/
s = - 5s -

A£. Since Λ15 = At, Au = ^ ? , J 1 0 = ylf, we have dimΛ15ΓΊΛi4 = dimy415D

A10 = dimV— 1 and they intersect regularly. By Corollary 1-2, we have

bAl£s)lbAll(s) = (s + 3) and bAl£s)lbAl0(s) = (s + f).

(9) The isotropy subalgebra g 2̂2 at x22 is given as follows.

(10.12) ; Xe st(3), Ye , 4)

θ θ

The conormal vector space V£2 is spanned by ut A Uj A uk (4 < j < j <

A < 7) and a* Λ ^ ; Λ uk (l<i<3,4<j<k< 7). The action dpXM of g^,

is given by

dp(X)(u, A u, A uΊ, •)

(10.13)
( Λ= (w5 Λ u 6 A u Ί , •-•)(-

0

where ^j = Λ1 (x) τί2 for SL(3) X SL(4). For example, y22 = ux A (u± A u^ +

6̂ Λ w7) + u2 A u4 A u6 + uz A u5 A uΊ is a generic point. Since yί22 = Jf,

Λ22 is a good holonomic variety. Let Ao be an element of qX22 with ε = — \,

X=Y=Z=ΰin (10.12). Then ^(A 0 )x 2 2 = 0 and dp*(A0)y22 = y22. Since

3χ(A0) = 12ε = - 6, trF*22A0 = - 48e = 24 and dimV*2 = 22, we have o r d ^

fs=-6s- ψ{ = - 6s - 13). Since A22 - /if and Λlft - /!?, we have
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dim. A22f]A^ = dimV— 1 and they intersect regularly.

By Corollary 1-2, we have bA2£s)lbΛl5(s) = (s + 4).

(10) The isotropy subalgebra qXS5 at x35 = 0 is g itself and we have

(GXM, p w V^) - (G, <o*, V*) s (GL(7), Λ3, V(35)). Then y35 = ^ = « , A « , A

Λ w4 + w5 Λ u6 Λ w7 + Wj Λ (u2 Λ u5 + Us Λu6 + Ut Λ uΊ) is its generic point.

Put A = - }I7. Then dp(A0)xκ = 0 and d/o*(A0)y35 = J35. Since ^χ(A0) =

3tr Ao = — 7, trF*35A0 = — 35 and dimVΛ*β = 35, we have oτάΛnf' = — 7s

— ^-. Since A22 — Λf and Λ^ — Λ$, they intersect regularly with codi-

mension one. By Corollary 1-2, we have bAw(s)/bA22(s) = (s + 5). Since

bΛo(s) = 1 and 6 3̂5(s) = b(s), we obtain the 6-function b(s) = (s + l)(s + 2)

(s + f)(s + | ) ( s + 3)(s + 4)(s + 5), and the holonomy diagram (Figure 10-

1). We denote Λm by Cm J

Note that the colocalization at xl9 xif x19 x9, xu, x22 and x35 has the

unique one-codimensional orbit respectively, and the colocalization at

x10 and xί5 has the two one-codimensional orbits respectively. Therefore

we have obtained all one-codimensional intersections among the conormal

bundles.

Figure 10-1. Holonomy diagram of (GL(7), Λ3, F(35)).
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§ 11. (SL(5) X GX(3), A2 <g> A19 F(10) <g> F(3))

Let V(10) be a vector space spanned by 2-forms ut Λ Uj (1 < i < j <

5). Then the representation space is identified with V = V(10) Θ V(10) Θ

V(10) (See [1]). Let A be the conormal bundle of an orbit S in V and A*

that of an orbit S* in V*. When A = A*, we say that S and S* are the

dual orbits of each other. We denote by S$ the z-codimensional orbit

whose dual orbit is j-codimensional, where k denotes the dimension of the

central torus of the isotropy subgroup of this orbit. When there is no

confusion, denote this by St or Sij9 We denote by A{£) (resp. Aij9 At) the

conormal bundle of S,(f) (resp. Sij9 St). We identify V and its dual V* by

taking (μt A M4/, us A uy, uk A uk>) (ί < ί',j < j ' , k < kf) as a dual basis.

PROPOSITION 11-1. This space has following twenty five orbits S<fj.

( 1 ) S $ o : (ux A u2 + u3 Λ u4, u2 A uz + u, A u,, ux A uz + u2Aub) ( = x0)

( 2 ) Sί%: (^ A u2, ux A ub + uz A u4, u2 A u3 + w4 Λ ub) ( = x,)

(3)

( 4 )

( 5) S3%:

A u2, u2 A Us + uz A w4, ux A uz + u, A u5) ( = x2)

Λ u2, uz A ui9 ux A ub + u, A M5) ( = â)

Λ Uz, u, A uz + u2 A u,, u2 A u3 + u, A ub) ( = x£)

( 6 ) Si%: (u, A u2, u, A u3 + u2 A u4, uA A M5) ( = Λ4)

( 7 ) S ^ : (^! Λ u2, ux A u3 + u2 A uA9 u, A u5 -h u3 A u,) ( = x5)

( 8 ) S6%: {ux A u2, u, A u3, u2 A u3 + u, A w5) ( = ^β)

( 9 ) S% : fa A u2, ux A u3, u4 A u,) ( = x7)

(10) S% : (M! Λ U2, UX A U3 + u2 A ui9 u2 A u3 + u, A w5) ( = x'7)

(11) S ^ : (M! Λ W2, MI Λ M3, M2 Λ M4 + w3 Λ M5) ( = x")

(12) S8

(f}8: {ux A u2+ u3 A u,, u2 A u3 + u4 A M5, 0) ( = x8)
(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(«! Λ u2, u3 A w4, «, Λ ws + «j Λ w4) ( = x's)

(ut A u2, Ui A u3, Ut A u, + u2 A ut) ( = x'B')

(Ui A u2, Ui A u3, u2 A u4) ( = x9)

(Ui A u2, u3 A ^ + ux A u5, 0) ( = xw)

(u, Λ u2, ^ A u3, ^ A ut + u2 A u3) ( = xn)

(^ A u2, u3 Λ uf, 0) ( = x12)

(wi Λ u2, Ui A u3 + u2 A u4, 0) ( = x13)

(u, Λ u2, ^ A u3, Ui A u^ ( = x14)

(^ A u2, Ui A u3, u2 A u3) ( = xκ)

(^ A u2, ^ A u3, 0) ( = xκ)

(^ A u2 + u3 A ut, 0, 0) ( = x18)

(u, Λ u2, 0, 0) ( = x21)
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(25) S&]0: (0,0,0) ( = x30).

Proof. It is easy to check that the non-regular P.V. (SL(5) X GL(2),

Λ2 ® Al9 V(10) ® V(2)) has eight orbits which are represented by the following

points; [1] (0, 0), [2] (ut A u2, 0), [3] (ux A u2 + u3 A uK9 0), [4] (u, A u2, ux A

ud, [5] {ux A u2, ux A u3 + u2 A O , [6] (ux j \ u2, u3 A u4), [7] {ux A u2, u3 A u^

+ ux A ub), [8] {ux A u2 + u3 A u4, u2 A u3 + u, A u5). Therefore, for a point

x = (xl9 x2, x3) of V, we may assume that (xl9 x2) is one of these points.

In the first three cases, repeating the same argument, we obtain (12), (16),

(18), (19), (22), (23), (24) and (25). For λ e C, we define Stj(λ) by StJ(λ)uk =

uk for Jι Φ i and S^/Λ)^ = ut + λuj. Then S^X) is an element of p{G).

Put x3 = 2]i<j &ijUt A Uj. First we consider the case [4], i.e., (xl9 x2) = {uγ A

u2, ux A u3). Assume that α45 Φ 0. Then we may assume that x3 = a23u2 A

uz + u± A u^ In fact, we have α35 = 0 by *S43( — α35/α45) and so on. If α23

= 0, then we have (9). If α23 Φ 0, then we have (8). Next assume that

α45 = 0. If one of ai3 (i = 2, 3; jf = 4, 5) is not zero, we may assume that

x3 = u2 A Ui + auut A u5 + α35w3 Λ M5. If «35 Φ 0 (resp. α35 = 0 and α15 ^ 0,

α35 = αi5 = 0), then we have (11) (resp. (14), (15)). If any atj = 0 (i = 2, 3;

j = 4, 5), then we may assume that xz = α14Wi Λ w4 + α23w2 Λ w3. If α14 ^ 0

and α23 Φ 0 (resp. au Φ 0 and α23 = 0, α14 = 0 and α23 Φ 0, α14 = α23 = 0),

then we have (17) (resp. (20), (21), (22)). Next we consider the case [5],

i.e., (xl9 x2) = (μx A u2, uγ A u3 + u2 A uA). If α35 ^ 0 or α45 Φ 0, we may

assume that xz = a23u2 A u3 + u4 A u5 and hence we have (5) (resp. (6))

for α23 Φ 0 (resp. α23 = 0). If α35 = α45 = 0 and one of αfc5 (k = 1, 2) is not

zero, then we may assume that xz = a22μ2 A uz + auu3 A u± + ux A ub and

hence we have (7) (resp. (10), (14)) for α34 Φ 0 (resp. α34 = 0 and α23 Φ 0,

au = a23 — 0). If αfc5 = 0 for 1 < k < 4, we may assume that x3 = a13ux A

u3 + anil! A u± + a23u2 A u3 + auu3 A uκ. Then we have (13) (resp. we have

(19); it is reduced to the case [4]) for α34 Φ 0 (resp. x3 = 0; α34 = 0 and x3

Φ 0). Now we consider the case [6], i.e., (xί9 x2) = {ux A u29 u3 A u4). (i)

If α35 ^ 0 or α45 Φ 0, we may assume that x3 = α12M! Λ w3 + α ^ Λ w5 +

α25w2 Λ ub + w4u5. Moreover if α25 ^ 0, then we have (3) (resp. (4)) for α13

Φ 0 (resp. α13 = 0). If α25 = 0, then we have (4) (resp. it is reduced to the

case [4] or [5]) for α15 Φ 0 (resp. α15 = 0). (ii) If α35 = α45 = 0, it is reduced

to the previous cases. Next we shall consider the case [7], i.e., (xl9 x2) —

(Ut A u2, u3 A uA + ux A u5). (i) If α35 Φ 0 or α45 Φ 0, then we may assume

that α45 = 1 and α35 = α24 = au = aί2 = 0. By S53(X), S4ί(μ), S21(v) and GL(3),

we have x3 = (α18 + (α15 — α34)^ + (α23 + α25)v + λ2)u, A u3 + (a23 + ^α25)w2 Λ u3
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+ a2bu2 Λ ub + (α15 ^ ) (

If α25 ^ 0, we may take λ, μ, v so t h a t α13 + (α15

μ — λ)u3 A uA + u± A κ5.

au)λ + y(α23 + Λα25) + A2

= α15 + va2l + μ + λ=a3

+ u2 A u5 + w4 Λ M5. If

by S85(-l/2α), S42(-l/2),
/I 0 0 \

3,4)} and 0 1 — l/2α)
\0 0 1/faJ

μ — λ = 0 and hence we have x3 — au2 A u3

0 (resp. α: = 0), then we have (2) (resp. (3))

and
/I 0

(resp. by 0 0
\0 1

— M4, Wj ι-> 1^ (7 = 1, 2)). If α25 = 0, taking λ and μ satisfying a^ + μ + λ

= α34 + μ — λ = 0, we have x3 = a[zux A u3 + a^zu2 A u3 + uA A M5. If <4

^ 0 (resp. α̂ s = a[z — 0), then we have (2) (resp. (6)). If α^ — 0 and a'13 Φ

0, then we have (4) by SMI \ 1 -1/Λ sJ--\ sJΆ I 1 )

and {Uί ^> (l/2γ)uu u2 •-• 2^ι/2, M̂  I-> ^ (7 Φ 1, 2)} where ^ = V — αί3. (ii) If α35

= α45 = 0, it is reduced to the previous cases. Finally we shall consider

the case [8], i.e., (xί9 x2) = (ux A u2 + u3 A ui9 u2 A u3 + u4 A u5). The iso-

tropy subalgebra ζ of 1̂(5) Θ gί(2) at this point (xu x2) is given by

A
θ

/ (<2i + α>) γ2 \

V 7Ί —(a>4 + a5y

with a, + a2 = α3 + α4, α2 + α3 = α4 + α5 and

Taking one-parameter subgroups from

]Li α« = 0.

we obtain the following

+ λu2, u5 (J

uγ — 2λu3

1), (ii) αr2(^):

-̂> w3 + ^^2? u31-> ^

(7 ^ 3, 5) (v) Tι(λ):

ŵ  (7 ^ 2, 3, 5) and
2us, u3^-> u3 — λuiy

— ^x2, x2, χ 3 ) . W e

actions which fix (x1, x2). (i) αi

w5 ^ w5 + ^w4, ^ H-> ̂  (j φ 5), (iii

0' ^ 1, 3) (iv) /92(Λ): w3 ^ u3 + ί

u2^ u2 — λuiy uz^> u3 + λulf u5

(xu x2, x3) «-• (xi, ^Xi + x2, ^ 3 ) , (vi)

w4 ^ w4 + Λw2J ŵ  H-> Wj (7 ^F 1, 3, 4) and (xu x2, x3)

have also ξ^λ) (resp. ξ2(λ)): (xu x2, x3) -̂> (xu x2, λxλ + x3) (resp. (x1? x2, ^x2 +

x3)) and η(μ): (xl9 x2, x3) -> (xi, x2, μx3) with μ Φ 0. By using these actions,

we shall do the orbital decomposition leaving (x1? x2) fixed. If at least one

of am α15 and α35 is not zero, then by γl9 γ2, ξl9 ξ2 and η, we may assume

t h a t α13 = 1, α34 = α35 = α45 = 0. (i) If α15 ^ 0, by αr̂  ^j, ξl9 ξ29 β2, a29 γ, and

η, we may assume t h a t x3 = α24w2 Λ w4 + ux A u5. If α24 Φ 0 (resp. α24 = 0),

we have (1) (resp. (2)). (ii) If α15 = 0, by ξl9 ξ2, βl9 β2 and aί9 we may assume

t h a t x3 = uγ A u3 + auu2 A u± + α25ι/2 Λ u*,. If α25 ^ 0, then we have (1).
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If α25 = 0, then it is reduced to previous cases. Finally, if α13 = α15 = α35

= 0, we may assume that aί5 = a25 = α35 = α45 = 0 by the action of ξl9 ξ2

and γ2. By considering (xl9 x3) instead of (xl9 x2), it is reduced to the

previous cases. We shall see later, by calculating the isotropy subalgebras,

that these orbits are different from each other. Q.E.D.

(1) P u t xΌ = (3u3 A Uι — u2 A u59 ux A u5 — 2u2 A ui9 3u2 A us — ux A u4).

Then the isotropy subalgebra ĝ ^ is the following standard form.

(ii.i)

Act

Aγ
β

2a

3γ

2β

0

2γ

3β

-2a

ΐ

Aβ

— Aa

Since Λo — V X {0}, we have ordFoco)30/"
s = 0 where / denotes the relative

invariant of degree 15 (See [1]).

(2) The isotropy subgroup at x1 is locally isomorphic to (GL(ΐ) X GL(ί))

[7(2) where C7(2) denotes a 2-dimensional unipotent group (See [1]). The

conormal vector space V*x is spanned by (u3 A M5, 0, 0) e Sfltl. We have

Λ Π Λ = d i m V - 1; ord^/ s = - s - | and bΛl(s)/bΛo(s) = (s + 1).

(3) The isotropy subalgebra $X2 at x2 is given as follows.

(11.2)

ε

a

0

0

0

ε + 2η

~β

0
- 2 ( e -

0

0

0

2ε + η

—a

0

H7) β

V

-β
0

-(e + ?)

0
0

0

-2(ε+V)
0

\

/

- s(gί(l) (

-β
0

—a

ΐ
3(e + i

The conormal vector space V*2 is spanned by vx = (u3 Λ uit 0, 0), and

ι>2 = (0, Uι Λ «5, 0), and the action dpXi is given by

dPxi(A)(Vι, υ2) =
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i) V£ — S*2 <-> v, + v2 == (u3 Λ Us, u, A ub, 0), i.e., v, + v2 is a generic point

of V*, where S* is the singular set of the P.V. (GX2) pX2, V*). We

use this notation from now in § 11. Put y = y1v1 + y2v2.

ϋ) (S£)i ^ dPl(A) = - (4e + Gη)++f?(y) = y1+> v2 = (0, ^ Λ w5, 0) 6 S* f l,

i.e., (Sζ*)i = {y € V* Λ 1 = 0} = pX2(GX2)'V2 and f*(pxj

for y e V*2, g e GX2. From now on, we use this notation in § 11.

iii) (£*) 2 «-> dp2(A) = — (βε + Aη) <+ff(y) = y2 <-> v, = (u3 A u5, 0, 0) e S2*M

iv) - δχ = dp, + dp2> trF*2 = dp, + dp2

v) ord j 2 / s = - 2 s - 2/2.

Since the Hessian of the localization fX2(z) = z,z2 (z = z,v, + z2v2 e VX2)

of f(x) is not identically zero, Λ2 = τί^ 6 is a good holonomic variety. We

have aim A, Π Λ2 = dimV— 1 and bA£s)/bAl(s) = (s + 1).

(4) The isotropy subalgebra gX3 is given as follows.

ε α 0 0 β

0 ^ 0 0 0

0 0 ξ 0 0

0 0 γ e β

0 0 0 0 -(2ε-

(11.3)

β*. = 1

- (flt(l) Θ flΓ(l) Θ flΓ(l)) Θ u(3) .

The conormal vector space V£z is spanned by υx = {uz Λ M5, 0, 0), υ2 = (0,

w2 Λ w5, 0) v3 = (0, 0, w2 Λ M3), and

dpx£A)(vu υ29 v3) = (Ui, υ2 j ϋ8

S * ^> υx + v2 + v3 =
ii)

iii) (S*)2

dPl(A) = 3ε

= 3ε

ι/3 Λ M5, w2 Λ ui9 u2 A uz) e S^ | 3

/*(y) - ^ ^ u2 + 1;, = (0, u2 A u5, u2 A u3)

/2*(y) = J 2 ^> ^i + 3̂ = (MS Λ M5, 0, w2 Λ M3)

iv) (S*) 8 ^ φ,(A) = - (ε + 2η + 2f) ^ /3*(y) = 3/3 ^

M2 Λ w5,0) e 5^,2

v) — 3χ = φ i + dp2 + d^3, trF*3 = dp, + dp2 + dpz.

= (M3 Λ
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Since the localization fX3{z) = zxz2zz (2 = Σ zfli e VXs) is non-degenerate,

Λ3)15 is a good holonomic variety and ord^8>15/
s = — 3s — f. We have

dimΛ2 Π Λ,i5 = d i m V - 1 and &,3,15(s)/6,2(s) = (s + 1).

(5) The isotropy subalgebra g^ at x'3 is given as follows.

(11.4)

A =

0
0
0
0

a

ε

0

0

0

Θ| -

β

r
v

— a

0

0
0

0
0
0

0

-2a

0

0 4ε + 2^

The conormal vector space V£, is spanned by υx = (u2 A ub, — u3 A u*,, 0),

v2 = (uz A u4, 0, 0), u3 = (u3 A Us, 0, 0), and

( —(6ε + 4 )̂ 0 0 \

0 2{ε-yj) 0

-2γ -δ -5(ε + r/)J

i) V*. - S*. ++v1 + v2 = (u2 Aub + u3A uo - u, A u» 0) e S*,3

ii) (S*0i «-> dp£A) = - (6ε + Aη)+*f?(y) = yi<+v2 e S£tl

iii) (S*s')2 <-> dp2(A) = 2(ε — 37) <->f*(y) — y2++v1 e S§,2

iv) — δχ = 2dpi + d^2 = — 10(ε + η), trF* = 2d|0i + \dp2 = — 9ε — II37.

Since dim^ 3 } 1 3 Π Λ2 = dimΛ,i3 Π Λx = d i m F — 1 and they intersect Go-

prehomogeneously, ^ί3jl3 is a good holonomic variety and ord^3?13/
s = — 3s

— -f. The intersection exponent of ΛSylz and Λx is ( 1 : 0). We have bΛ3nz(s)/

bΛl(s) = (s + l)(β + I) and bAt,j8)lbJt(8) = (s + f).

(6) The isotropy subalgebra c 4̂ at x4 is given as follows.

ε a γ 0 0

0 37 β 0 0

0 0 ξ 0 0

0 0 —a ε-η+ξ δ

(11.5) I 0 0 0 0
f-(ε+η) 0

θ ~β -(ε+l)
\ 0 0

0
0
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The conormal vector space V]* is spanned by υx = (u3 A u4, 0, 0), v2 = (u2

A Us, — u3 A Us, 0), v3 = (u3 A Us, 0, u2 A u3), u4 = (0, 0, u2 A u3), and

20? - ε ) 0
0

0

0
0

-2/3
0

0
0
0

0

dpx£A)(vl9 - , v4) = (vl9 , v4)

i) VI - SI ++Vl + v2 + V4 = (u3 Au, + u2A Us, - u3 A w5, U2 A u3) e S*M

= (u2 A Us, — u3 A Us, u2 A u3) e S5>3

iii) (S*)2 ++ dp2(A) = 3ε + 2ξ<+ff(y) = y2^v, + υA

— (u3 A uit 0, u2 A u3) e Sftt2

iv) (S*X ^> dp3(A) = — (ε + 2η + 2ξ) <+ff(y) = y,<^vx + v2

= (u2 A Us + u3 A uif — u3 A Us, 0) e S&j

The conormal bundle J 4 is a good holonomic variety with ord^4/
s = — 4s

-f. We have bΛi(s)lbA2(s) = (s + l)(s + f), 6,4(s)/δ,3,13(s) - (s + 1) and

& 4̂(s)/& 3̂,15(s) = (s + f). Note that these intersections are regular and Go-

prehomogeneous.

(7) The isotropy subalgebra $X5 at x5 is given as follows.

(11.6)

8 ϊl Ϊ2

0 2ε + 4;? γs
0 0 ^
0 0 -γ
0 0 0

r3
o
o

Ύ

0
0

Then F^5 is spanned by i;, = (u, Λ w5 — uz Λ M4, W4 Λ W5, 0), u2 = (w2 Λ u3,

— U2 Λ U}, U, Λ Us), V3 = (M2 Λ US, — U3 Λ M5, 0), U4 = ( M 4 Λ W5, 0, 0), IΛ> = (lίj

Λ u,, 0, 0), and

(11.7)

0 0
0 ε — η 0

- 3 r 3 0

0
0

0

0
0
0
0
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i) V* - S* <-> vx + v2 = (u, A u5 - uz A uA + u2 A us, u, A u,

— u2 A u5, u3 A u5) e S8*5

ii) (S*)! <+ d/^A) = 4ε + 6? ^Λ*(y) = Λ <-> u2 + ι;4 6 S*,4

iii) (S*) 2 <-> φ 2 ( A ) = £ - η+>f?{y) = y2 <-> ̂  e S&8

iv) — 5χ = 3 ^ ! + 3<2<o2( = 15fi + 15?), trF*5 = 4 d ^ + 3dp2( = 19ε + 21?).

The conormal bundle A5 is a good holonomic variety with ord^/ 5 = — βs

- | . We have bA5(s)/bA£s) = (s + | ) ( s + 1 ) and bΛ5(s)lbΛsJs) = (s + ΐ)(s + | )

(s + I). Note that the intersection exponent of Λ5 and Aκ is (2 :1). The

intersection of Λ5 and yl8>18 is regular and G0-prehomogeneous.

(8) The isotropy subalgebra qXe at x6 is given as follows.

(11.8) = A = 0
- 4 ε

0

0

εl2 +A
0 εl2

0
0

+B

ΆεL-'A

S (gϊ(l) Θ §t(2) Θ §1(2)) φ V(2) .

Then K* is spanned by vt = (u2 Λ w4, — u3 Λ «4> 0), ^ = (0, u2 Λ «4, 0), y3 =

(w3 Λ u4,0, 0), υ4 = (u2 Λ w5, - w3 Λ M5, 0), υ5 = (0, u2 Λ «5, 0), v6 = (u3 Λ w5,

0,0), and (G β i, Pxe, V*) S (GL(1) x SL(2) x SL(2), 5/ί, ® 2Λ, ® /!,, V(l) ® V(3)

®V(2)) s (SO(3) X G L ( 2 ) , Λ ® Λ , V(3)®y(2)) and hence Λ6 is a good

holonomic variety.

i) V* - S* +> v2 + ve = (u, Λ «,, u2 Λ a4,0) e S*2,6

ii) (S*\ •«-> y2 + y4 = (1*2 Λ ws, u2 A ut - u3 A u5,0) e S5, s

iii) — δχ = cίio,, trF»β = f d ^

We have ordΛJ° = - 4s - f and 6,β(s)/6,3il3(s) = (s + f).

(9) The isotropy subalgebra QX7 at x7 is given as follows.

(ii.9) β i t = μ = -2J'

A, B e §1(2), Ψ e C 2 s (gt(l) ® gί(l) Θ §1(2) θ §1(2)) φ V(2).

Then V*7 is spanned by ^ = (u2 Λ u4, — u3 Λ w4,0), u2 = (0, u2 A u4, 0), v3

= (u, Λ w4, 0, 0), 14 = (u2 Λ Ms, - M3 Λ M5, 0), ι>5 = (0, u2 Λ w5, 0), y6 = (M3 Λ

M5, 0, 0), v7 = (0, 0, u2 A u3), and (Gxv pXΊ, V*) ^ (GL(Ϊ) x GL(1) x SL(2) X

SL(2), (24f ® 3Λ* (x) 2^1, ® J t ) θ (2Λ* ® 2Λ ® 1 ® 1), V(6) φ V(l)).

i) V* - S* -e-> y2 + ϋ, + ϋ7 = (w3 Λ M5, κ2 Λ w4, w2 Λ M3) 6 S9*7

ii) (S*), ^ dp,(A) = - 8e - la? **Λ*(y)(dβgΛ* = 4) <^ ι>2 + u4 + y, e S*,4
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η*+f*(y) = y7 <-> v2 + v6 e sg > 6

61

iii) (S*)2 <-> dp2(A) - - 2ε + 2η+>f

iv) — δχ = d^! + d/o2) trΓ*7 = f d ^ + φ 2 .

Then by Corollary 1-7 conormal bundle Λ7j9 is a good holonomic variety

with oτάΛ7^fs = — 5s — | . We have dimΛ7)9 Π i 4 = dimΛ759 Π Λ = dimV

- 1, &*>)/&*(*) =(s + f), and &*>)/&*(*) = (s + 1).

(10) The isotropy subalgebra g^ at x'Ί is given as follows.

(11.10)

A =

3ε —

0
- 2 ε - 2 r -2/3

-β -2ε + 2a 0
- ^ 0 -2ε-2α:

- 6 ε

Θ r2-r4
— ε — r

— ε + α y

T h e n V]*/ is s p a n n e d b y υx = ( ^ Λ w4, 0, w3 Λ w4), ^2 =

— us Λ w4, — 2w4 Λ w5)? ^3 = (wj Λ it*, — u2 Λ uz, 2u, Λ

(— w2 Λ M5, w3 Λ z/5, 0), ι;5 = (M4 Λ M5, 0, 0), ve = (ι/3 Λ w4

0, 0) a n d t h e a c t i o n dpxh of $x> o n V.*/ is g iven by

(^i Λ u2 — u2 A

5> — u3 Λ u5), υA

0, 0), y7 = (uz Λ

where

(C, A2) - u-2rι

\ 0

2γ2

and

/3

0
0

2Γa

— α

— 2jS

0

0

0

-2r
a

3β

5

O`

0

r
3α

0
— γ

β

— 2β
-2a

0

2γ
0

2«

ϊ) V*, - S*, *-> v, + u4 = (^ Λ

ii) (Sp*/)i <-> dp^A) = 20ε <+f?(yu

forms <-> u2 e S8*5

iii) - δχ= 2dpl9 trv*χ7, = f φ l β

u2Λ u5, uz A u,, uz A ud e S$*

,yd'- the discriminant of binary cubic
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The conormal bundle Afy is a good holonomic variety with ordv(»Ίf
s = —

8s - ψ. We have dimΛ5 Π A?} = d i m V - 1 and bΛφ)/bΛ5(s) = (s + f)

(s + -J). The intersection is regular and G0-prehomogeneous.

(11) The isotropy subalgebra QX<Ί> at x" is given as follows.

(11.11)
-2(β+ 7 )

0
0

0
εI2 + A

0

cD 0 );

A € 3Γ(2) s (gί(l) Θ gί(l) ® §t(2)) Θ u(5) .

T h e n V*» i s s p a n n e d by vx = (w3 Λ w4, 0, 0), y2 = (u2 A z/4 — uz A u5, — uz

A ui9 0), v3 = (MZ Λ M5* U2AU4 — U3A ulf 0), u4 = (0, w2 Λ u5, 0), z;5 = {ux A u5,

— Ui Λ uif u4 A ub), v6 = (u4 A u5, 0, 0), υΊ = (0, u4 A u5, 0), a n d

dpx,7,(A)(v19 - , vΊ) = (ϋj, , ϋ7)
-(2ε + SV)l + 3A1(A)

0
*

0
e-η

0
0

-(ε+4η)It + A

ii) ( S ^ ) ! *> dp^A) = — 8ε — 12^ <-> /i*(3Ί, , y4): the discriminant of binary

cubic forms <-> u3 + y4 + i>5 e S8*5

iii) (5*4 <-> Φ2(A) = ε - η+»f?(y) = y^υ. + v, e S?2jβ

iv) -δχ = dp, + 3φ 2 , trFiBy = \dpx + 3 φ 2 .

The conormal bundle Afy is a good holonomic variety with ord^2)7/* = —

7s - -y . We have dim A, Π A% = dim yί6 Π A?} = dimF - 1, b^sjlb^s) =

(s + f) and bA^Ί{s)lbM{s) = (s+l)(s + f)(s + | ). The intersections are regular

and G0-prehomogeneous.

(12) We shall calculate the isotropy subalgebra at x8 = (w2 Λ w3 +

^! Λ w4, Wi Λ w3 + u2 A ub, 0) instead of xs.

(11.12)
α2 1 3s — a γ

Ϊ2

Ϊ4

0
— 2ε — 2α1

— αr1

— ε — αr Sl(2))®V(6).



PREHOMOGENEOUS VECTOR SPACES 63

Then V J̀; is spanned by υ, = (0, 0, Mj Λ M2), v2 = (0, 0, ut Λ M5), y3 = (0, 0,

«i Λ «j - «! Λ M5), υ4 = (0,0, K, Λ ϋ, - M2 Λ M8), u5 = (0,0, u2 Λ M4), u6 = (0, 0,

ut A M5), υ7 = (0, 0, κ3 Λ M5), u8 = (0, 0, u3 Λ M4) and the action dpSa of g^ on

Vjξ is given by

-,v8) = (vl9 • , y 8 ) C L

\ 0

0 0
0

where

and

ϊi 0

(C2, A2) = I — r i 2 r 8 -u ° α2i -2αr

\ 0 Ϊ2 -2Tl -Ϊ3 -a12 0

2aί2 -2an\

0

2a

,, A,) =

-γ, -3a

r2 0

ι;6 = (0, 0, Ul A

ii) (S^\ <r^ dpx(A) = — 4ε —

3a2ί 0 0

-a 2a2ί 0

2α12 a —a2:

0 - 3 α 1 2 3a:

• , y5): the discriminant of binary

cubic forms ^> LΊ + v7 = (0, 0, ̂  Λ u2 + w3 Λ ub) e S5 f 8

iii) (S?8)2 <H> dp2(A) = — βε — 37 ++f*(y) — Jι ^> ^ + 5̂ = (0, 0, ẑ  Λ w5 + ι/2

Λ M4) e Sί8 j 8

iv) —δχ= 10ε — 557 = —3dp{ + 2d|O2, trF* = 2ε — 8^ — 2dpx + jdp2.

The conormal bundle Λ8>18 is a good holonomic variety with ord^8?18/
s =

— 5s — f. The conormal vector space (GX8, pX8, V*) is a regular P.V. In fact,

for z = Σi8i=i zivi e V$8, the localization f£s(z) of f(x) is given by f£a(z) =

o ^ 2 ^ 5 ^ 6 ^ 7 ^ 3 - j- ^ 3 ^ 5 ^ 6 ^ 7 ^ 2 ^4^ 7 ^3 — Z^Z^ZQZ^ZQ Z^Z^ZJZQ ^5^7 Z^ZQZ^ ZZ^Z^ZQZJ^

and hence its Hessian is not identically zero. Now we shall show that

dim Λfy Π ΛQils = d imV— 1. From iii) above, A = G(x8, v2 + L>5) is one-

codimensional and A C yί8jl8. It is enough to show (x8, v2 + v5) = {{u2 A uz

+ ux A Uι, ux A u, + u2 A u59 0), (0, 0, ux A u, + u2 A u,)} e Λ$. Put z =

{{uλ A u2, ux A uz + u2 A u4, u2 A u3 + ux A ub), (ux A u± — u2 A u5> u3 A ub,

u3 A u$. Then z e A?} (See (10)). Then for ε>0, put

g. =

— ε

X I - ε " e G = SL(5) X GL(3).
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Then gε z = {(u2 A u3 + u, A u4, u, A u3 + u2 A u5, — ε^u, A u2), (— έ`u3 A u^

ε5u3 A u4, uλ A Us + u2 A u4)}. Since gε-ze Afy and A?} is closed, we have (x8,

v2 + v5) =lim£_0 gε-ze Λ$ and hence dim A$ (Ί Λ8,is = dim V — 1. One can see

easily that their intersection is regular and G0-prehomogeneous. We have

bΛfy(s)lbAsils(s) = (s + ί)(s + i)(s + f). Next we shall show that dim Λ8jl8 Π

AZΛ3 = dimV — 1. From ii) above, A = G(x8, υγ + vΊ) is one-codimensional and

A c ΛM8, where (x8, υt + v7) = {(u2 A u3 + ux A uki ut A uz + u2 A u*,, 0), (0, 0T

uγ A u2 + u3 A M5)} Put w = {(MJ Λ UZ, UXAU3+U2A U4, U2 A u3 + u4 A u5),

(M2 Λ w5 + u3 A uif —u3 A u^ 0)}. Then w e ^s>13 (See (5)). For ε > 0, put

ε

ε"4

e G - SL(5) x GL(3).

Then g.'W= {(u2 A u3 + ux A uA9 uιAu3 + u2A ui9 - ε10w3 Λ uA), (ε10u3 A u%y

0, ux A u2 + u3 A M5)}. Since gε-w e A3Λ3 and J 3 i l 3 is closed, we have (jc8,

î + vΊ) = limε^0^ε w; e Λfl3, i.e., Λ c Λ,i3 ΓΊ Λ,i8. Hence we have dim^3 ) 1 3

Π Λ,i8 = dimV— 1. The intersection is G0-prehomogeneous and regular,,

and hence we have 6^8,18(s)/6/l3,13(s) = (s + f)(s + \).

(13) The isotropy subalgebra qx^ at x^ is given as follows.

(11.13) flxί = ̂ A =

ε + a + β a12

a2ί ε — a + β

-A, A l

Ω
Pl2

ε — a — β

0

βn

ε + a-β

Ϊ2

n

- 4 ε

r ^ (gί(l) Θ §1(2) θ SΓ(2)) θ V(4).

-2/321

Then V*s, is spanned by Ui = (u3 Λ w5, 0, 0), v2=(u2 Λ M5, 0, — M3 Λ «5), y3 =

(0, w3 Λ w5, — M2 Λ u5), u4 = (0, M2 Λ w5, 0), v, = («4 Λ u%, 0, 0), υβ = {ux Λ «5, Or

u4 Λ us), v7 = (0, u4 Λ u5, M, Λ us), va = (0, «! Λ w5, 0). We have (G^, ^ ^

Vjj,) ^ (GL(1) x SL(2) x SL(2), 5/1, ® 3^, ® >!„ V(l) <g> V(4) ® V(2)). Since

dim pxi(Gxi) = 7 < dirnF^- = 8> t h i s i s n o t a P V The dual of the orbit
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β,H is Si1 | 8 in V*, i.e., Λ,u = Λ V
(14) The isotropy subalgebra &,.» at # " is given as follows.

ε γt

0 η
0 0
0 0
0 0

Ϊ2

7s

0
0

Γ3

U
0
ξ
0

77

7B

(11.14)

Θ -

Then V,*// is spanned by LΊ = (i^ A u5 — u2 A w4, 2w3 Λ w4, w4 Λ w5), v2 = (0y

w2 Λ uh, 0), u3 = (M2 Λ W8, 0, ̂ 3 Λ w5), u4 = (ι/2 Λ ui9 — u3 A u5, 0), v5 = (0, w4 Λ

w5, 0), u6 = (u3 A Ut, 0, 0), vΊ = (u, A u,, 0, 0), v3 = (u3 A u^ 0, 0).

The action dpx>> of §x>> on V*8» is given by

, v8) = (υl9 , vs)

A,

A4

-re

-re

0

n
where Aj = ε - f, A2 = 2ε - 4η - Sξ, A3 - e + 2η + 2ξ, A4 = 2ε - η - ξ,

A5 = 2ε - 3;? - 4f, A6 - ε + 3^ + ξ, A7 - 2ε - 2ξ and A8 = 2ε + 2η + f.

i) Kί- - S * . ^ u, + u2 + v3 e S5*8

ii) (S^)! *•> φi(A) - ε - f ^>Λ*(y) - ^i(y = Σ Wi) ^ ϋ2 + ι;, + ϋ5 e S9*7

iii) (SjϊΛ ^ dp2(A) = 2e-4η- 3ξ^f2*(y) ^y.^v. + υ.e S%`

i v ) ( S ^ ) , <^ d p , ( A ) = ε + 2^ + 2ξ ++ f*(y) = y 3 ^ V l + v2e S%*

v) -δχ = 6dPl + dp2 + 2dpz, trΓ*8, = ψdp, + \dp2 + \dp%.

Since the intersection of Λ£l and Aft is G0-prehomogeneous, the

conormal bundle Λ$ is a good holonomic variety by Proposition 1-5. The

order is given by oτdΛsttf
8 = — 9s — γ We have dim Λ$ ΓΊ Λ7^ = dim Λ$>

Π ^ = dim V - 1 (ί - 1, 2), ό^CsJ/ft^s) = s + f and bΛφ)/bΛφ) =
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(s + i)(s + I). In (15), we shall prove that dimΛ$ (Ί A% Π Λ$ = di

n Λ$ n Λ™ = d i m v - 1.

(15) The isotropy subalgebra qX9 at JC9 is given as follows.

(11.15)

/

•A

1
Θ

\

=
0
0
0
0

— Si — ε 2

- f t
7%

0
ε2

0
0
0

7\ 7 ί

ft 7s
ε3 0
0 e4

0 0 - (

0

0

>, + i

0

0
—ε2-

ft
ft
7s

2 '

-ε

- (βi(D θ βt(i) 0 Br(i) θ flr(i» © u(8).

Then V*9 is spanned by v1 = (0, w2 Λ w5, 0)> 2̂ = (0, 0,1/χ Λ w5), 3̂ = (u2 Λ w5,

— uz Λ w5, 0), y4 = (ux A w5, 0, w4 Λ w5), ι;5 = (0, w4 Λ w5, 0), v6 = (0, 0, w3 Λ w5),

y7 = (M8 Λ W4, 0, 0), u8 = (uz A Us, 0, 0), v9 = (u, A u5, 0, 0).

The action dpxg of QXQ on Iζ* is given by

A,

dpX9(A)(υl9 , ι>β) -r*

A7

-2γA —γ1 -γ2 -γ8 A8

yt ___ O<y v /y> /j
/ 5 ώy 2 y 4 / 7 -̂ J

where A t = 2εj + 2ε3 + ε4, A2 = 2ε2 + ε3 + 2ε4, A3 = 2ε, + ε2 + ε3 + ε4, A4 =

εj + 2ε2 + ε3 + ε4, A5 = 2εx + ε2 + 2ε3, A6 = ε! + 2ε2 + 2ε4, A7 = εj + ε2 — ε3 —

ε4> A8 = 2εx + 2ε2 + ε4 and A9 = 2εj + 2ε2 + ε3.

i) V* - S* «-> vx + v2 + v7 = (MJ Λ M4, U2 A U5, uλ A u5) e S7*9

ϋ) (sZ)ι +* dp^A) = 2εx + 2ε3 + ε±<-> f?(y) = yx <-> v2 + vz + ι;5 + v7 e S£δ

iii) (S*)2 <-> φ 2(A) = 2ε2 + ε3 + 2ε^f2*(y) = y2 <+ v, + v, + v6 + v7 e S8*5

iv) (S*9)3 <r> dp3(A) = εx + ε2 — ε3 — ε4 *+f*(y) = y7 <^ vx + v2 + v8 + v9 e S2*,8

The conormal bundle J 9 j 7 is a good holonomic variety with ord^9?7/
s =

- 10s - J£.
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Put p = (ux Λ u2, ux Λ u3, u2 Λ u4; ux A w5 + u3 A uif u2 A ubf u3 A u^ +

u4 A M5) Then by iii), we have p e Λ$ Π Λ $ and dim Gp= d i m ^ — 1. We

shall prove t h a t p e Aj$, i.e., d i m Λ $ Π Λ$ Π A$ = d i m V - 1. By (14),

for any ε > 0, we have (u, A u2, uλ A u3, u, A ub + u2 A u4; ux A u5 — u2 A u,

+ (l/e)w2 Λ u3 + (l/ε2)w3 Λ uif 2us A uA + u2 A u5, u, A u5 + (l/ε)w3 Λ w5) €
ε

$. Therefore, by the action of gε = X

e G = SL(5) X GL(3), we have pε = {u^ A u2, uγ A uZi εuλ A ub + u2 A u4;

UiAu, — εu2 Au, + εu2 A u, + u3 A uo 2εu3 Au,+ u2A w5, u3 A u, + u± A u,)

e Λ$. Hence, we have p = l i m , _ o Λ e Λ ^ Since Λ$ = A$\ A$ - Λ™\

A$ = Λ T and (G, p, V) ^ (G, p*, V*), we have also dim Λ$ Π ^ Π ^ i -

d i m V - 1.

(16) The isotropy subalgebra QXIQ at xί0 is given as follows.

(11.16) QX10 = J

- 4 s

0

Ϊ2 ΪZ

0 0

+ a12

a2ί ε — oc ~Ϊ2

4 ε - ;1

0

0
- 2 ε

n

ξ

= (βl(l) Φ βl(l) θ

2ε-η

Θ u(7) .

Then V̂ *o is spanned by v1 = (0, 0, u, A u3), v2 = (0, 0, ^ Λ M4), 3̂ = (0, 0,

uιAu,-u3A uA), v4 = (0, 0, u2 A u3), v5 = (0, 0, w2 Λ w4), 6̂ = (u3 A w5, 0, 0),

7̂ = (M4 Λ U5, 0, 0), u8 = (0, 0, u3 A u5), v9 = (0, 0, u4 A ub), v10 = (0, 0, u2 A u5).

vΊ = (M4 Λ W5, 0, ^ Λ u3 Λ u4) = y10.

Let Ao be an element of g ^ with a = — -g- — 5ε, 3y = f + 6ε, ξ = — -f — 2ε,

all remaining parts zero in (5.16). Then d/o(A0)Xi0 = 0 and dp*(A0)yί0 = JΊO

Since — <5χ(A0) = 10(1 + 3ε) is not definite, the conormal bundle Λ10jl0 is

not a good holonomic variety.

(17) The isotropy subalgebra $Xll at xn is given as follows.

(11.17)

A =

ε-\-η

0

0

ϊl Ϊ2

ε-\-a aί2

a21 ε — a

0

Ti

ε-η
nΰ

Ti

Te

Ts

T*
- 4 ε

f-2ε-η-a -a9:

-Ϊ1-Ϊ7 -2εt

θ βt(l) θ §t(2)) θ u(9) .
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The conormal vector space V ^ is spanned by υx = (0, ux A uz, — u2 A w5),

v2 = (wi Λ it*, 0, w3 Λ M5), ι>8 = (ih Λ w5, 0, -u4A u5), v4 = (w2 Λ w4, - w3 Λ w4,0),

v, = (0, u2 Λ uA, 0), yβ = (w8 Λ ui9 0, 0), u7 = (u2 A u5, - u3 A u5, 0), u8 = (0,

u2 A Us, 0), υ9 = (u 3 Λ w5, 0, 0), u10 = (0, u, A w5, 0), ι;π = (w4 Λ w5? 0, 0).

The action dρxχx of gXll on V ^ is given by

dpXlι(A)(υί9

A,
B, A

2

A
3

B
2
 A

6
 B

3
 A

4

B
4
 B

5
 B

6
 B

7
 A

5

} :

} :

where (β 1 } Λ) = ( - h, γ-,, 5ε + η), Bz = - γ, I3, Bk = - γs I2, A, = 5ε/2 + A',

A5 = (5β + 2η)I2 + A' with A' =

(Bs, Be, B7) =

n-'
-re n

re o
-7i -n

o
As = 2η I3 + A", A4 = (5e + rj)I3 + A" with A" = 2a21 —2oc 0 |,

\ - 2 α l t 0 2a

\ 0 r 5 - 2 r 2 - α j

Note that A6 will disappear if we take ι;3 — \vn instead of v3.

i) V*n — S*n ^> î i + υ2 + v4 = («! Λw5 + ω2Λ 4̂> u.Au. — u.A u4, u3 A u5

-u2A κ5) € SifίΓ

ii) ( S ^ ! <^ ϋ! + u4 + ϋβ = (M2 Λ W4 + w3 Λ u59 ux A ub — u3 A ui9 — u2 A w5)

e S£l <+dPl= 10ε + 2^

iii) ( S ^ ) 2 <-> y2 + ^ = (wi Λ M5, 2̂ Λ w4, 3̂ Λ M5) e S^* ^ d/?2 = 4^ <->f2*(y)

iv) - δχ = 30ε + 10^ = Sdp, + dp2, trF*n = 40ε + Uη = 4(3/̂  + f d^.

Remark for calculation of dpγ. Let /x* be the relative invariant on

Vf1ΊL corresponding to dρλ. Since f*(v2 + v5) ψ 0, the restriction of dpγ to

the isotropy subalgebra of qXll at v2 + u5 should be zero. Hence dρx must

be of the form dpx — 5λε + λη for some λ. Take an element Ao in QX11

satisfying dp*(A0)x?i = xS where xg =^1 + 2̂ + ^ ^ V*^ — S*^ Then, by

the Euler's identity, we have (deg/*) /1*(xf1) = (dp*(A0)y, Dy}f*(y)\y=xίl =
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dp1(AQ)ff(xn) and hence deg/i* = dp^A^ = f Λ e 2V. Therefore φ j = (lOε

+ 2 )̂μ where μ is a natural number. Since — δχ is a linear combination

of dpi and dp2 with coefficients in Z, we have μ = 1 or 3. On the other

hand, 2trF* is also a linear combination of dρx and dp2 with coefficients

in Z, μ is a divisor of 8, and hence μ — 1, i.e., cfy?! = lOε + 2η.

(18) The isotropy subalgebra $Xl2 at x12 is given as follows.

(11.18) Qxia = •>

ε+a a12

ε — a

0

0

βl2

37 — j β

0

7s

74

f-2ε 0
0 -2η

ξ

= (βΓ(l) Θ flΓ(l) Θ Qί(l) Θ §1(2) Θ SΓ(2)) ΘV(6) .

The conormal vector space V*l2 is spanned by ι>i = (0, 0, ut A u5), v2 = (0, 0,

u2 A ub), v3 = (0, 0, u3 A us), v, = (0, 0, u4 A us), v, = (0, α, Λ uit 0), υt = (0,

u 2 Λ w5, 0), vΊ = (ws Λ M5, 0, 0), u8 = (ut A κ5, 0, 0), y9 = (0, 0, w, Λ us), υ10 =

(0, 0, Wj Λ w4), ϋn = (0, 0, M2 Λ M3), v12 = (0, 0, u2 A ut).

T h e a c t i o n dpxi2 of g I I 2 o n V^2

 i s g iven by

dpXllA){v,, , υ12) = (vu • • , vn)

B2

I 2

where B, = - γΛ, B, = - r5ί2, A, = (s + 2 7 - ξ)I2 + A', A2 = (2e + 7 - f)/,

+ B', A, = (e + 4^)72 + A', A, = (4ε + η)It + B' with A' = (

r* -n
o o - d β _/ r i o r2 oa n d Bi - \o n o r

+ v7 + v10 + ϋi, = (M3 Λ M5, U 2 Λ M5, iί, Λ «4 + «! Λ M3)

ii)

= - 2(ε

iii) (S*J2

u9 = (w4 Λ M5) W2 Λ M5, MI Λ M3) 6 S^Γ <-> φ ,

+ f) **Λ*(y) = y1Byn - y.^,,

v10 + υ n = (M3 Λ M5, W! Λ M5, M2 Λ M3 + u2 A u,)

e S%* +» dp, = 4(e + rj)-ξ++ degf*(y) = 3
iv) -δχ= 10(ε + η)-δξ = dPi + 3dp2, trΓj1 2 = 12(ε + ? ) - 8 | = 2dPl

(19) The isotropy subalgebra qXl3 at xu is given as follows.
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(11.19) β l l , = J A =

e + a

0

0

<*12

ε—a ϊz

— a,2 —

0

Ϊ2

—a2ϊ h
ϊs
2η

I -2e 0 ίή
θ ^2 — ΐi V S2

\ 0 0 ξ)
Γ s (βt(l) Θ gί(l) Θ gt(l) Θ §1(2)) Θ u(10) .

The conormal vector space V̂ *, is spanned by IΊ = (0, 0, — «4 Λ u5), v2 =

(0, 0, u3 Λ u5), u3 = (0, 0, M, Λ u5), u4 = (0, 0, u2 Λ u5), y5 = (0, 0, u3 A u,), vβ

= (0, 0, - Mi Λ M4), ^ = (0, 0, M, Λ w3 - κ2 Λ M4), y8 = (0, 0, w2 Λ u3), ye =

( - u4 Λ w5, 0, 0), ϋ10 = (w3 Λ κs, 0, 0), υn = (u8 Λ w4, 0, 0), υa = (w, Λ w5, w4 Λ

«5, 0), uJ3 = (uj Λ ιt5, - u3 Λ w5,0).

The action d^j,, of gx i3 on V*, is given by

, vn) = (υlt

Ai Bt B2 B3 Bt

A3 BB

A5 Bw Bn

Y

2 2 1 3 2 1 2

where A3 = 2ε + 2η — ξ, B8 = (JΊ, ^2 + ^3, γ,)f B9 = — δ^ A6 = 4ε + 2^, B 4 =

β 7 = - δj2, B, = δ2J2, Λ, = (e - ? - f)J2 + A ; with A' = (~a ~ a 2 \
\—#12 (X- I

o
-τj 2n-n r* \ Ai = _ ( s
"~/8 ~/l Ji — ^JZ/ η + |)72 + A', A , = (& - ^)/2

I-2a -2a,! 0 \
= (ε - 2η)It + A' and A4 = (η - ξ)I3 +\-alt 0 - α 2 1 .

\ 0 - 2 α 1 2 2α /

i) K* - Si*. <^ v, + u,, + υa + υa e S^%

ii) (S*J, •• ϋ, + ϋ t t + ϋ,, e S6%* ̂  dp, = 4ε + 2v++f*(y) = y t l

iϋ) (sjϊλ ** ^ + vu + vn e sι% +> dP2 = % - f) **Λ*(y) = J? -
iv) (S,*), •> y7 + vn + υa e S β *> d^, = 2e - 3i? - f *> deg/2*(y)

v) — δχ = dp, + dp2 + 3dp3, t r 7 j 1 3 = fcίp, + 2dp2 + Adp3.

(20) The isotropy subalgebra QXU a t xu is given as follows.

A', A7
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(11.20) = A = 0

0

3 + ^

0

§1(3)

= (βt(l) θ βt(l) θ δί(3)) θ u(7) .

The conormal vector space V^4 is spanned by υx = (uz A w4, 0, 0), υ2 = (0,

u2 A u4, 0), u3 = (0, 0, u2 A u3), u4 = (0, M2 Λ u3, — u2 A w4), ϋ5 = (a2 Λ US, 0,

w3 Λ u4), v6 = (w2 Λ u4, — w3 Λ ^4, 0), υ7 = (u2 A u5, — u3 Λ w5, 0), u8 = (0,

w3 Λ Us, — u, Λ w5), ι;9 = (0, w2 Λ ui9 0), ι;10 = (0, 0, uB A u5), vn = (u4 A u59 0, 0),

vί2 = (w3 Λ w5, 0, 0), u13 = (0, a4 Λ M5, 0), vu = (0, 0, w2 Λ M5).

Since d i m ^ 1 4 (G^14) = 13 and dimV,*4 = 14, the conormal vector space

(Gxiv Pxio V*u) i s n o ^ a P V. Note t h a t it is also obtained from the fact t h a t

Λ8,i4 = ^S,8 is not G-prehomogeneous (See (13)).

(21) The isotropy subalgebra $Xl5 a t xί5 is given as follows.

( 2eI3+X
(11.21) flxil = \ A = ( - ^

-3εJ 2 +Y
( - 4εl3 + S-`XS); X e 31(3),

Y e 81(2), Z 6 V(6), S = - 1

θ St(3) ® §1(2)) φ V(6) .

The conormal vector space V *̂5 is spanned by IΛ = (0, 0, Uj Λ u4), u2 = (0,

u2 Λ w4, 0), y3 = (u3 Λ w4, 0, 0), vt = (0, Mi Λ uit — u2 Λ ut), v5 = (w2 Λ uif

- us A ut, 0), ve = (M, Λ w4, 0, M3 Λ w4), υ7 = (0, 0, ux A w5), ι>8 = (0, w2 Λ M5, 0),

υ9 = (w3 Λ u5, 0, 0), υ10 = (0, «! Λ u5, - u2 Λ u5), u,, = (u2 Λ u5, - u3 Λ u5, 0),

vn = (ui A us, 0, u3 A u5), ϋ l s = (0, 0, w4 Λ w5), vu = (0, u4 Λ u5, 0), ϋ15 = (u4 Λ

u5, 0, 0). Then the action d^ I I 5 of g ,̂. on V*s is given by

GL(ΐ) x SL(3) X

5/ί, (g) 2Λ* (8)
0

GL(1) x SL(3)
(vu

i) V*. - S*κ ++ Vi + v% + vΊ + v, = (u3 Λ u5, M2 Λ u4, u, Λ M4 + «i Λ u5)

ii) (S^Ji +* v, + vn + vn e S%[ •> d^t = 60ε

iii) — δχ = 60ε = dρu t r r * i 5 = 90ε = ^dpt.

(22) The isotropy subalgebra QXU at x16 is given as follows.
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(11.22)

— 2{ε + rj)

0

0

a21 ε—cίi

0 V + βi βn

βz\ y—βi

—a2

© I —a12 Tio

= (fll(l) θ βl(l) θ fll(l) θ Sl(2) © gl(2)) θ u(10) .

The conormal vector space V*u is spanned by υ1 — (0, 0, w4 Λ w5), f2 = (0,

- z/4 Λ M5, 0), υΛ = (u, A Us, 0, 0), v, = (0, 0, a2 Λ w4), f5 = (0, 0, u2 A M5), ^

= (0, 0, uz A u4), v7 = (0, 0, w3 Λ M5), v8 = (0, 0, M2 Λ M8), y9 = (0, 0, ux A M4),

Vio = (0, 0, Mi Λ M5), ϋ n = (0, - M2 Λ M4, 0), ϋ 1 2 = (Ma Λ M4, - M3 Λ M4, 0), ϋ 1 8 =

(M 8 Λ M4, 0, 0), Ϊ; U = (0, - M2 Λ M5, 0), ϋ1 5 = (w2 Λ M5J - w3 Λ M5, 0), y lβ = (M 8 Λ

M5, 0, 0).

T h e a c t i o n φ ^ 1 6 of g*16 o n Xζ*β i s g iven b y

dp(A)(υu ,u 1 6 ) = (υu ,u 1 6 )

Bx B2

A2

B3

B6 BΊ

A,

AJ
1 2 4 1 2

where (A, -Bi, B2) = (- 2η - ζ, γw, - γt, γt, - γs, γs, - γ,), B3 = (γt, - γ3), A4

__*_«.„._-, , + 4,» + ( I - - : ) , B. _ (f r: o -f Zr; _0),
A5 = (2e + 7 - f)78 + B with B = (_^| 2 ^ ) , A3 = - (ε + η + f)J4 +

-a2ίl2 \ " ( -βJs + A' \ -βnl3

h A ( 2 + W + \ -βj3 \JJ^A
= - ( 2 ε

W l t h A

-2ax -2a2ί 0 \

—#12 0 — α 2 l

0 -2α:1 2 2 ^ /

Γio

Γ5 - Γ 2
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i) V*9 - S*Λ «-> v8 + u9 + υn + u15 + vu = (u2 A u5 + u3 A u,,

— u2 A u, — u3 A u5, u2 A u3 + Ut A u,) e S^%

ii) (S* β )i <^ v9 + υ10 + ι;n + u l β = (u3 A ub, — u2 A u4, ux A u4 + ux A ub)

e S3%* ^dp,= - 2ε - ξ++f*(y) = y8

iii) (S* β ) 2 <^ v8 + u9 + u10 + vn + ι;15 = (u2 A u,, - u2 A u, - u3 A u,9

u2 A u3 + uγ A u4 + ux A ub) e S£% ++ dp2 = — 8e — 12^

/v v V /v v \ /v v \

^fziyj^ deti ^ -714) — 4 d e t K 1 2 ^ 1 5) det( ̀ 7 1 1 ̀ 714)
``JΊβ Jiβ^ \^y13 y1 6/ \y 1 2 y 1 5/

iv) (SΛ*β)8 <-> ̂  + Uio + ^ii + v16 = (u3 A Us, — u2 A u4, ux A u, + u2 A u3)

e S£ll <-> dp3 = — 4η — 2ξ
i ^ / \ j ./y, V12V J i/Vq ViΛ<->/3*(y) m detί J 9 J12J — d e t K 9 Jn\

(23) The isotropy subalgebra qXls at x18 is given as follows.
f

(11.23) qXlΆ ={A= ( £l*
- 4 ε

- 2 ε

Y)`
c3ί(2)}

T h e c o n o r m a l v e c t o r space V*16 is s p a n n e d by υx = (0, uλ A u.z — u, A ui9 0),

u2 = (0, M l Λ M2, 0), v3 = (0, wj Λ uk9 0), u4 - (0, u3 A uA9 0), u5 = (0, u, A uS9 0),

v6 = (0, 0, u, Auz — u2 A Ut)9 vΊ = (0, 0, ^i Λ M2), 8̂ = (0, 0, ux A M4), U9 = (0,

0, uz A uA)9 υ10 = (0, 0, a 2 Λ w3), vn = (0, MX Λ M5, 0), y12 = (0, u2 A u-0, 0), υn =

( 0 , > 3 Λ M5, 0), ι>i4 = (0, ̂ 4 Λ u,9 0), u15 - (0, 0, ux A u,)9 vί6 = (0, 0, w2 Λ a 5),

u17 = (0, 0, w3 Λ w5), î8 = (0, 0, u, A M5). T h e a c t i o n <2^1 8 of g,18 o n V*s i s

g iven by

(V» '•', Vu)

I GL(1) X GUX) X Sp(2) X SL(2)

2Λf®Λ*®Λ2®Λΐ
0

GL(1) X GL(1) X Sp(2) X SL(2)
3/1, ® J f ® .1, ® Λ*

i) V*. - S*s ++ v2 + u4 + υs + u10 + υI5 e S8*18

ii) ( S ^ i ++ Vi + u8 + ϋ 1 0 + v n e S8*18 •^dρί= — 2ε — 6^ «-> deg/Ί* = 6

iii) ( S * 8 ) 2 -ê  U! + υ7 + υ 1 7 + y18 € S8*18 +>dp2= - 8ε - 4η ^> deg/ 2 * = 4

iv) - <5χ = 3dp1 - 2dp2, t r F . = Adp, - \dp^

(24) The isotropy subalgebra g 2̂1 at x21 is given as follows.



74 TATSUO KIMURA

(11.24) Qxil = [A = p A ± *
-2β/,+ y

-6ε

s (gϊ(i) θ gί(i) θ §r(2) e §1(2) θ §r(3)) e F ( 8 ) .

Then V*n is spanned by υx = (0, u4 Λ u5, 0), u2 = (0, u3 A w5, 0), y3 = (0, u3 Λ

"4, 0), vt = (0, 0, ut Λ w5), υ5 = (0, 0, u% A u5), vs = (0, 0, u3 Λ u4), v7 = (u4 Λ

w5, 0, 0), ϋ, = (u3 A u5, 0, 0), v, = (u3 Λ M4, 0, 0), u10 = (0, w, Λ u3, 0), vn = (0,

M l Λ w4, 0), ϋ I 2 = (0, ux A w5) 0), ι?tt = (0, w2 Λ w3, 0), vu = (0, κ2 Λ u<, 0), y15 =

(0, u2 A Us, 0), ylβ = (0, 0, u, A u3), υn = (0, 0, u, A u,), vu = (0, 0, «, Λ w5),

υ19 = (0, 0, u2 A u3), v20 = (0, 0, u2 A ut), υtι = (0, 0, u2 A u5). The action dpxn

of QX21 on V4 is given by

GL(l)χGL(l)χSL(2)
XSL(3)

A A ίS?`ι A ^ (Φ) A ^ rS?ὶ A

0 GL(l)χSL(3)
)

0

GL(l)χGL(l)χSL(2)
χSL(2)χSL(3)

i) y,ti - % <-> u7 + u10 + ι;u + Vie + î9 = ("4 Λ M5, Mi Λ u3 + w2 Λ M4,

U, A Us + U2 A Mg) 6 S ^ ί

ii) (S*Jχ <->v8 + v10 + vu + υ1B + v19 = (us A M5, MJ Λ M3 + u2 A u4,

Ux A u5 + u2 A Ms) € S3% <-> d/θ! = 18e — 2η <-> άegff = 4

iii) (S*Λ1)2 <+ v8 + v9 + ι;10 + vu + vιs = (M8 Λ M4 + M3 Λ M5, Mi Λ M3

+ Mz Λ w4, Mi Λ M5) 6 S2% +>dp2= — 6ε — 6η ^> deg/2* = 6

iv) — δχ = 2d/θ! + d^2, trF* g i = 3dpχ + 2d^2.

(25) The isotropy subalgebra gX30 at x30 = 0 is g itself.

This is a good holonomic variety and oτcdΛf
s = —- 15s — ^ . Thus we

obtain the holonomy diagram (Figure 11-1). From this diagram, we obtain

the 6-function b(s) = ((s + ΐ)(s + f)(s + 2))3 ((5 + f)(s + |))2.(s + |)(s + f).

Remark. Let Λo = (̂̂ 0? Jo) and Λί=G(x1,yί) be good holonomic
varieties satisfying (x0, y^ e JoΠΛ and dim G(x0, y^ = dimy — 1. Then we
can calculate β by Proposition 1-4. It is known that if β depends on the
choice of Au then (x09 yx) is not contained in other At (i Φ 0,1), i.e., there
are no three Λ/s which intersect at (x0> yd with codimension one. (If more
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-o

-1

-2

-3

-4

-5

-6

-10

-11

-12

-13

-14-

-15

Fig. 11-1. Holonomy diagram of (SL(5) X GL(3), Λ® A, 7(10) (x) 7(3)) where (]

denotes the conormal bundles of the orbit S^f in Proposition 6-1.
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than two A/s intersect with codimension one, then β — 1 and it does not

depend on Alt) All one-codimensional intersections obtained from (1)~(14)

satisfy this condition except Λ$ Π A^n and Λ$ Π A$% In general, if (x0, y:)

e G(x2, y2), then we have coάimvp(G)x0 ^ codim^G)*! and eodinv*p*(G);y1

>̂ codim7 /0*(G)y2 From this, there are no other yfs satisfying άimAΠA^f)

A[% = d i m V - 1. For A$ Γ) A™, it is enough to check A%, A?} and Ajft.

By using the duality, i.e., (G, p, V) ^ (G, p*, V*), we get all one-codimen-

sional intersections of three good holonomic varieties.

§ 12. Table of the A-functions of irreducible reduced regular P.V.'s

( 1 ) (G X GL{m\ p ® Au V(m) ® V(m)) where p: G-+ GL(V(m)) is an m-

dimensional irreducible representation of a connected semi-simple

algebraic group G (or G = {1} and m ~ 1).

b(s) = (s + ΐ)(s + 2) -(s + m) (See Figure 2-1 and 2-4).

( 2 ) (GL(Λ), 2AU V(in(n + 1))) (τι ̂  2)

(See Figure 2-2 and 2-4).

( 3 ) (GL(2m), Λ2, V(m(2m - 1))) (m ̂  3)
m

b(s) = Π (β + 2k - 1) = (s + l)(β + 3) -(a + 2m-l)

(See Figure 2-3 and 2-4).

( 4 ) (GL(2), 3Λ1; V(4))

b(s) = (β + l)2(s + I) (β + £> (See [2]).

( 5 ) (GL(6), Ait V(20))

6(β) = (s + l)(β + |)(s + I) (β + 5) (See Figure 8-1).

( 6 ) (GL(7), Λ, V(35))

6(e) = (β + l)(β + 2)(s + f)(s + i)(β + 3)(β + 4)(s + 5)

(See Figure 10-1).

( 7 ) (GL(8), Λ, V(56))

6(s) = (s+l)(s+|)2(s+VXs+2)s(s+^)(s+ί)(S+|)J(S+f)
(See [10]).

(8 ) (SL(3) X GL(2), 2Λ, ® J l 5 V(6) ® V(2))

6(s) = {(s + l)2(s + f)(s + i)(s + | ) (s + W (See [12]).

( 9 ) (SL(6) x GL(2), yl, <g> Λ, V(15) ® V(2))

6(8) = (8 + 1)2(S + ^)(8 + £)(8 + |)2(S + 2)2(S + f) 2 ( S + 1)(S + f )

(See [12]).



PREHOMOGENEOUS VECTOR SPACES 77

(10) (SL(5) x GL(3), Λ2 ® Au

b(s) = ((s + l)(s + | ) ( s + 2))3 ((s + f)(s + | ) ) 2 (s + | )(s + ί

(See Figure 11-1).

(11) (SL(5) X GL(4), Λ2 ® Λ1( 7(10) ® 7(4)) (See [11]).

(12) (SL(3) x SL(3) x GL(2), Λ, ® A, ® ΛI; 7(3) ® 7(3) ® 7(2))

6(8) = (s + iy(s + f)Xs + | ) ( s + f)(s + $)(β + I) (See [12]).

(13) (Sp(ή) X GL(2m), Ax ® ^ 1 ( V(2n) ® V(2m)) (n^2m^ 2)
m m - 1

6(s) = Π (β + 2k - 1) Π (s + 2n - 24)

= (s + l)(s + 3) -(s + 2m - l)(s + 2n)(s + 2n - 2)

(s + 2n - 2TO + 2) (See Figure 3-1 and 3-2).

(14) (GL(1) x Sp(3), Π ® At, V(l) ® V(14))

b(s) = (s + l)(β + 2)(s + | ) ( s + I) (See Figure 9-1).

(15) (SO(ή) X GL(m), /I, ® Au V(n) ® V(m)) (n > 3, ^ ^ m ^

(See [2]).

(16) (GL(1) x Spin (7), Π ® spin rep., V(1)®V(8))

b(s) = (s + l)(s + 4) (See Remark in § 5).

(17) Spin (7) X GL(2), spin rep. ® Au V(8) ® V(2))

b(s) = (s + ϊ)(s + f)(s + 4)(s + D (See Remark in § 5).

(18) (Spin(7) x GL(3), spin rep. ® Au 7(8) ® V(3))

b(s) = (s + ΐ)(s + | ) ( s + 2)(s + 4)(s + | )(s + 3) (See Remark in § 5).

(19) (GL(ΐ) x Spin (9), D ® spin rep., V(l) <8> V(16))

6(s) = (s + ϊ)(s + 8) (See Remark in § 5).

(20) (Spin (10) X GL(2), half-spin rep. <g> Au 7(16) ®F(2))

b(s) = (β + l)(s + 4)(s + 5)(s + 8) (See Figure 4-1).

(21) (Spin (10) X GL(3), half-spin rep. ® Λu 7(16) ® 7(3))

6(β) = (s + l)(s + f)(s + 2)(β + 3)(s + l)(s + 4)(s + | )(s + |)(β + f) X

X (s + | ) ( s + |)(β + Λ )̂ (See [15]).

(22) (GL(1) X Spin (11), Π ® spin rep., 7(1)® 7(32))

b(s) = (s + l)(s + f)(s + Y)(s + 8) (See Remark in § 5).

(23) (GL(1) X Spin (12), • ® half-spin rep., 7(1)® 7(32))

b(s) = (s + l)(s + | )(s + Y)(s + 8) (See Figure 5-1).
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(24) (GL(1) X Spin (14), Q ® half-spin rep., V(1)®V(64))

b(s) = (s + l)(s + f)(s + f)(s + 4)(β + 5)(β + JgL)(s + γ ) ( β + 8)

(See Appendix).

(25) (GL(1) x (G2), D ® Λ, V(l) ® V(7))

6(s) = (s + l)(s + | ) (See Remark in § 5).

(26) ((G2) X GL(2), Λ2 ® 4 , V(7) ® V(2))

b(s) = (s + l)(s + f)(s + I) (5 + 3) (See Remark in § 5).

(27) (GL(1) X 4 D ® Λ V(l) ® V(27))

b(s) = (s + ϊ)(s + 5)(s + 9) (See Figure 6-1).

(28) (E6 X GL(2), Λx ® Λ, V(27) ® V(2))

6(5) = (s + l)2(s + |)(s + J)(s + f)2(s + 3)2(s + f)2(s + ψ){s + -^
(See [12]).

(29) (GL(1) x E7, • (8) Λ, V(l) ® V(56))

= (s + l)(s + -V-)(s + γ ) ( s + 14) (See Figure 7-1).

We can obtain the 6-functions of all irreducible regular P.V.'s, except

for those in the castling class of (11), from the Table above and the following

theorem due to T. Shintani.

THEOREM (T. Shintani). Let (G\ pf, V) be a castling transform of an

irreducible regular P.V. (G, p, V), i.e., there exists a triplet (G, fi, V(m)) and

a positive number n with m > n >̂ 1 such that

(G, p9 V) s (G X GL(n), β ® Λu V(m)®V(n))

(G', p', V) ^ (G X GL(ττz - 72), ̂ * ® Λu V(m)* ®V(m - n)) .

Then the b-functions b(s) and b'(s) of them satisfy

b(s) Π (ds - i)(ds - i + 1) (ds - ί + m - n - 1)

- 6r(s) f[ (ds - ί)(ds - i + 1). .(ds - ί + n - ΐ)
i = l

where άegf— dm and άegf — d(m — ή). Here f and f are the basic relative

invariants of (G, p, V) and (G\ p\ V) respectively.

Appendix with I. Ozeki

Here we consider the regular irreducible P.V. (GL(1) X Spin (14),

• ® half-spin rep., V(l) ® V(64)). The orbital decomposition of this space

has been done by the author and I. Ozeki ([7]), by Popov ([9]), by V. Gatti

and E. Viniberghi ([10]). There exist ten orbits, and the conormal bundle
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of each orbit is a good Lagrangian variety. The relative invariant of this

space is of degree eight ([1]), and its 6-function is given by b(s) = (s + 1)

(s + f)(s + l)(s + 4)(s + 5)(s + ΛΛXs + ψ)(s + 8). Its holonomy diagram

is given by Figure A, where we denote by (m ) the conormal bundle A

of the m-codimensional orbit.

Figure A. Holonomy``diag ram of (GL(ΐ) X Spin(14),
Π(ghalf-spin rep., V(l) (x) V(64))
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