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ON THE CENTRAL CLASS FIELD modm OF GALOIS

EXTENSIONS OF AN ALGEBRAIC NUMBER FIELD

SUSUMU SHIRAI

Introduction

Let k be the rational number field, K/k be an Abelian extension
defined mod m whose degree is some power of a prime £, and let S be
the module of K belonging to m in the sense of Frδhlich [1, p. 239].
Denote by K (resp. K*) the maximal central (resp. genus) ^-extension of
K/k contained in the ray class field mod % of K. Frδhlich [1, Theorem
3] proved that if (m, 16) Φ 8, then the Galois group of K over K* is
isomorphic to the Schur multiplicator of the Galois group of K over k,
and using this theorem, he gave a complete characterization of all fields
whose Galois groups over the rational number field are of nilpotency
class two.

In the present paper, we generalize the above result to the case
where the base field k is an arbitrary algebraic number field of finite
degree and K/k any finite Galois extension.

§§ 1,2 contain a generalization of the conductor and the Geschlechter-
modul, which, the author thinks, plays an important role in a study of
nilpotent extensions. In § 3 we define the central class field mod m of
a Galois extension and prove our main theorem which may be viewed
as a direct generalization of the principal genus theorem for a cyclic
extension (Theorem 29). In §§4,5, and 6 we apply our main theorem
to some cases.

The author wishes to express his hearty thanks to Professor Y. Furuta
for his valuable advice and encouragement.

§ 1 . The Galois conductor of a local Galois extension

Throughout this section, k is always a field complete with respect
to a discrete prime divisor p of a global field, and some basic notation
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is listed below.

kx the multiplicative group of all non-zero elements of k.

UP the group of all elements a in kx such that a = 1 modp% in

particular, Uk

0) is the unit group of k.

Let K/k be a finite Galois extension. Then:

Λ/̂/fc the Norm of K to fc.

G(K/k) the Galois group of X over k.

Fjg* the i-th ramification group of K/k with V^ = G(K/k).

rT{K/k) the last ramification number of K/k, in other words, V%k

κ/k))

Φ 1 and V£/k

κ/k)+1) = 1.

ψκ/k(ϋ the Hasse's function for K/k.

It is well-known that Hasse [9] proved that if K/k is a finite Galois

extension, then

(1) Nκ/kU$«'««-1)+1) c E7f for ΐ ^ 0

and moreover, if K/k is Abelian and μ{K/k) the p-exponent of the con-

ductor of K/k, then

(2)

and

(3) Nκ/kU^'^-1)+1) = U™ for i

In this direction we define the Galois conductor of a finite Galois

extension.

DEFINITION. Let K/k be a finite Galois extension, and let μ(K/k)

be the least integer i such that φκ/k(i — 1) ^ 'fiK/k), namely, the least

integer i such that V^fιik{i~1)+1) = 1. Then we define the Galois conductor

of K/k to be \{K/k) = pμ(K/k). Needless to say, this coincides with the

ordinary one when K/k is Abelian.

LEMMA 1. Let K/k be a finite Galois extension. Then:

( i ) // φi)k(^(K/k)) is an integer, then μ(K/k) = φκ)k(i^(K/k)) + 1,

and if not, μ(K/k) = [φϊl/k(1r(K/k))] + 2, [ ] being the Gauss symbol.

(ii) K/k is unramified if and only if μ(K/k) = 0.

(iii) K/k is tamely ramified if and only if μ(K/k) ^ 1.

Proof. Immediate from the definition.
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LEMMA 2. Let K/k be a finite Galois extension, and let ^)(K/k) be
the different of K/k. Then

\{Kjk) =

here $β denotes the prime ideal of K.

Proof. Let Nt be the order of Vψ/k. Then we have

μ(K/k) = '"^fί"'" Ni/N0 = ^NJNo +

and hence

e-μ(K/k) = Σ Ni + ψκ/k(μ(K/k) — \

— 1) + ψκ/k(μ(K/k) — 1) + 1 ,

where e = No is the ramification index of $β over p. According to
Hubert's formula, the ^-exponent of ®(Z/fc) is given by Σΐ=f/k)(Ni - D
This completes the proof.

LEMMA 3. Let L~D K Z> k be a tower of Galois extensions. Then:
(i) μ(K/k)^μ(L/k).
(ii) If μ(L/K) ^ φK/k(μ(K/k) + m — 1) + 1 with m ;> 0, then μ(L/k)

^ μ(K/k) + m.

Proof. From 7i^("(L/Λ)-1)+1) = 1, we have V%f*wv-v+» = 1 by
Herbrand's theorem on ramification groups (see Serre [17]).

(ii) Let % = μiKjk) + m, then % ̂  μ(K/k), φκ/k(iQ - 1) + 1 ^ μ(L/K),
and hence V%ψiίo~1)+1) = 1. By Herbrand's theorem, the image of
yg t̂fo-D+î  u n der the natural homomorphism of G(L/k) onto G(K/k),
is y<j*/*wo-i)+D = i. This implies 7 ^ ^ O - D + D C G(L/K). Therefore

LEMMA 4. Let L ID K 3 fc 6β α έowβr o/ Galois extensions, and
suppose that LjK is Abelian. Then:

(i) μ(L/K) ^ φκ/k(μ(L/k) - 1) + 1.
(ii) // μ(L/k) ^ μ(K/k) + m with m ^ 0, ίft<m ^(L/X) ^ φK/k(μ(K/k)

+ m - 1) + 1.

Proo/. ( i) From 7 ^ ( M ^ ) - D + D = lf w e h a v e yĝ c/i/w-D+D = l β
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Since L/K is Abelian, we have, by Hasse's formula (2),

φL/κ(μ(L/K) - 1) = ΠJL/K) ^ φL/k(μ(L/k) - 1) ,

and hence μ(L/K) ^ <pκ/jc(μ(L/k) - 1) + 1.
(ii) Immediate from (i).

LEMMA 5. Let K/k be a finite Galois extension, and let k'/k be an
Abelian extension. If μ(k'/k) <; m, then μ(K-k'/K) <^ φκ/k(m — 1) + 1.

Proof. Since k'/k is Abelian, we have, by Hasse's formulas (3)
and (1), NkΊkUίΨ,*'i*(m-1)+1) = Uk

m) z> Nκ/kU%*'k<m-1)+1), and hence, by the t r a n s -

lation theorem in local class field theory,

Since Kk'/K is also Abelian, this completes the proof.

LEMMA 6. Let K/k be a finite Galois extension, then

NkfuUp'*-™ = U? for ί ^ μ(K/k) .

Proof. The propf depends on the solubility of the local Galois
group G(K/k). Let ~K0 = k, Kx be the inertia field of K/k, and let K2

c c Kr = K be the distinct ramification fields of ίC/fc. Then i£///k
is Galoisian, each Kj+1/Kj Abelian, and evidently, i^iK/Kj) = ^(K/k)
for 0£j<r. Let i ^ (̂ίC/fc), then φκ/k(i - 1) ̂  ^(Z/fc) = ΠK/Kj).
Since ^(K/Kj) ;> φκ/Kj+1(^Γ(KJ+1/Kjy) by Herbrand's theorem, we have

,*„*« - 1) ̂  φiU^iΠK^/Kj)) = μiK^/Kj) - 1 .

Thus, by Hasse's formula (3),

for y = 0,1, . . . , r - 1. This shows NK/kUg*»{i-1)+1) = C/̂ .
For later use, we treat here the —1 dimensional cohomology group

of U(iκlkii~1)+1) with i ;> μ(K/k), which appears in our main theorem.
The next exact sequence on cohomology groups was proved by Furuta

[6].

PROPOSITION 7 (Furuta [6, Prop. 6]). Let G be a finite group, H be
a normal subgroup of G, and let A be a G-module. Then the sequence
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H~\H, A) -ί^> H~\G, A) -^> H-\G/H, NHA) > 0

is exact, where Inj denotes the injection map, NH the trace map, namely,
NH(ά) = ΣlσeH σa for an element a of A, and NH the corresponding
induced map.

LEMMA 8. Let K/k be a finite Galois extension, and let T be the
inertia field of K/k. If K/T is Abelian, then the sequence

H-\G{KjT), U%κi^~1)+l)) -^> H-ι(G{Kjk), U^{ί~l)+ι))

>0

is exact for ί ^ μ(K/k). In particular, if G(K/T) is cyclic, then

l*H~ι(G(K/k), U%χik«-1)+1)) = 0 for i^ μ(K/k) ,

where 1: U%Klkii~1)+1) —> Kx denotes the inclusion map and 1* the induced
cohomology map.

Proof. Let ί^μ(Kjk), then we have, by Lemma 4, μ(K/T)
^ φτ/k(i — 1) + 1. Since ψτ/k{i — 1) = i — 1, we have, by Lemma 6,
Nκ/τU%κlk(ί-1)+1) = Uψ. It is known that Uψ is cohomologically trivial
as a G(T/k)-modu\e. Then Proposition 7 leads to the exact sequence
in Lemma 8. The latter half follows from the following commutative
diagram:

U2*ι*«-»+») i^> H-\G{Kjk), U^'^~1)+1))

0 = H-KG(K/T),K*) -ί^> H-\G{Kjk),K*) .

LEMMA 9. // K/k is both totally and tamely ramified, then
with i :> μ(K/k) is cohomologically trivial as a G(K/ti)-module.

Proof. In this case, μ(K/k) =• 1 and φκ/k(i) = ei for i ^ 0, here
e = [K:k], the extension degree. For i ^ 1, take αe C7^( ί~1)+1) Π kx,
then vp(a — l ) ^ i — 1 + 1/e, vp denoting the normalized exponential val-
uation of k, and hence ae UtfK Thus

jjvκι*«-i)+D n kx c up = NK/ku%Kik«-i)+l)

This implies H\G(K/k), U%*'«{ί-1)+1)) = 0. On the other hand, it is well-
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known that the Herbrand's quotient of U{JP is one, and hence the
Herbrand's quotient of U%κlkii~1)+1) is also one. This completes the proof.

LEMMA 10. Let K/k be a finite Galois extension. If the first rami-
fication group of K/k is cyclic, then

VH-KGKK/k), tf2« (i-1)+1)) = 0 for i ^ μ(K/k) .

Proof. Let T, V be the inertia field, the ramification field of K/k,
respectively. Since G(V/T) is cyclic, we have, by Lemmas 3 and 4,

μ(V/T) ^ φτ/k(μ(V/k) - 1) + 1 ^ Ψτ/MK/k) - 1) + 1

^ ψτ/k(i — 1) + 1 ,

and hence, by Lemma 9, H-\G(V/T), up»«*-1)+1>) = 0. Moreover it is
known that Uψ with ί ^ 0 is cohomologically trivial as a G(Γ/fc)-module.
Therefore, according to Prop. 7, we have H-\G(V/k), £/$fF/*(*-1)+1)) = 0.
Again, by Lemma 4,

μiK/V) ^ φvMKI® - 1) + 1 ^ ψv Λi - 1) + 1 ,

and hence Prop. 7 leads to that

I n j : H-KG(K/V), t7£*/*«-»+i>) -> H'KG(K/k)9 J7J?"*(<-1)+1))

is epimorphic. Then our assertion in Lemma 10 follows from the fol-
lowing commutative diagram:

H~\G(K/V),

H . I"
0 = H-\G(K/V)fK><) i ^ H-\G(K/k),K*) .

We consider more special cases which correspond to the cases
where (m,16) Φ 8 and (\(K/Q),16) = 8 in Theorem 3 of Frδhlich [1].

Let Q2 be the 2-adic number field, T/Q2 be a finite unramified ex-
tension, ζv be a primitive 2υ-th root of unity, and let Kv = T(ζv).

THEOREM 11. Let R = T(ζv + ζ;1), and let σ be a generator of the
cyclic Galois group G(R/T). Assume v ^ 3. // NM/Tε = l for
then
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The proof is elementary but slightly complicated. The details will

appear elsewhere.

Ramification groups of R/T are as follows, where V(ί) =

order

2»-3

2
1

ramification groups

yco) —. yci) — y(2)

y o ) —. y(4)

y(5) _ . . . _ y(8)

number of V(<)

3

2

4

2*-3

( 4 ^ / c ^ v )

Therefore rT(R/T) = 2V~2, and //(β/Γ) = v b y Hasse's formula (2).

LEMMA 12.

£>i2/r(ί — 1) = 2"~2(£ — v + 1) /or i^> v .

Proof. Let i ^ v. Then φ(i - 1) ^ ^ - 1) = <r(R/T). Hence

* = Σ N,/Nt = v+ Σ ^* =

here ΛΓ̂  denotes the order of Vg)τ.

LEMMA 13. // v ^ 3, ίfeew

l*H-ι(G(KJQ2), C/^w«2(i-i)+«) = 0

Proof. Let i ^ μ(KJQ2) = v. We have the following commutative

diagram in which the first row is exact by Lemma 8:

H~\G{KJT), ffg H-\G(KJQ2), ϋ$ 0

Inj
H-\G(KJQ2),Kϊ) .

Thus it is enough to show that the image of l of the left hand side

is 0 when i Φ 3. By Lemma 12,

= 2"-\i - v + 1) + 1 ^ 2-2 + 1 ^ 3 > 2 = μ{KJR) ,
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and hence, by Lemma 6,

Therefore we have the following commutative diagram in which the
rows are exact by Prop. 7:

H-\G(KJT),

0 - H-\G(KJR), K?) -> H~KG(KJT), Kf) -> H~\G(R/T), NKvfRK-) -> 0 .

We know that ΨR,QJS — 1) + 1 = 3 if and only if i = v = 3. Hence, if
i >̂ v and i ψ 3, then Theorem 11 shows that the image of 1* of the
right hand side is 0, from which it follows that the image of 1* of the
left hand side is also 0. This completes the proof.

Remark. If k is a field complete with respect to an archimedean
prime divisor, then we define, as usual,

fl when k is real and K imaginary,
μ(K/k) = \

[0 otherwise.

Artin's conductors. Let K/k be a finite Galois extension with the
Galois group G = G(K/k), and let χ be a character of G. Artin defined
the conductor of χ whose jD-exponent is given by

where ^ = Card(y^) and χ(Vψ/k) = Nr1 Σ,6F(&χ(σ) i s t h e " m e a n

value" of χ on V%)k.
It is known that if χ is of degree one and Zx the subfield of K cor-

responding to Kerχ, then p(χ) is equal to the p-exponent of the con-
ductor of ZJk as a cyclic extension:

v{χ) = μ(ZJk) .

In connection with the above result, we have, in general,

PROPOSITION 14. Let χ be the character of a representation A of
G, and let Zχ be the subfield of K corresponding to KerA. Then
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v(χ) ̂  μ(ZJk) .

Proof. In virtue of Serre [17, p. 158, Prop. 4], we may assume
that χ is faithful. Then Zχ == K. Since χ(Yψ/k) is the multiplicity of
the unit character contained in the restriction of A on Vψ/k> χ(l)
= χ(Vκ/k) if a n ( i o n ly if Ker χ z> Fg}*., and hence this is equivalent to

Vψ/k = 1, namely, r(K/k) < ί. Thus *(χ) ^ Σ ^ - . On the other hand,
i=0 iV0

since it is known that v(χ) is a non-negative integer, we have

= Σ #-•

Hence φκ/Mχ) - D ^ ^(K/k), which shows v(χ)^
We note that there exists an irreducible character χ of degree greater

than one such that v(χ) > μ(Zχ/k) by a suitable choice of K/k.

§2. The Galois conductor of a Galois extension of an algebraic number field

In this section, we define the Galois conductor of a Galois exten-
sion of an algebraic number field of finite degree.

From now on, k is always an algebraic number field of finite de-
gree, and a completion at a prime divisor p of k is denoted by kr

DEFINITION, (i) Let K/k be a finite Galois extension, p be a prime
divisor of k, and let ψ be a prime factor of p in K. Then μ(K%/kp)
defined in § 1 does not depend on the choice of $β over p, and μ(K%/kp)
=vθ when p is unramified in K. We set

KK/k) = π f ( * W = Π ί> M * w >

where p runs through all finite and infinite prime divisors of k, and
we call this the Galois conductor of K/k.

(ii) Let K/k be a finite Galois extension, and let m = Πpί3^ be a
module of k which may contain infinite prime divisors. Set

β*/*(πt) = Π φ'*»'*w>-1)+1,

where p denotes the restriction of β̂ on fc and $β runs through all finite
and infinite prime divisors of K. Since % = 0 for almost all p, Qκ/k(m)
is really a module of K. Putf %(K/k) = Qκ/k(KK/k)), and call it the
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generalized Geschlechtermodul of K/k, which is equal to the ordinary
one when K/k is Abelian. Furthermore, if K/k is an Abelian extension
of prime power degree, then &κ/k(m) coincides with ^StΛ(xh) in [1, p. 239].

We often omit the subscript of QK/k(κύ and write briefly g(m) or

LEMMA 15. Let K/k be a finite Galois extension, and let m be a
module of k. Then Qκ/k(rtή(K/k)) = m$(K/k).

Proof. Let m = ΓLί^ Then the ^-exponent of the left hand side
is φκ*/kpϋp + μ(K%/kp) — 1) + 1, which is, by the definition of μ(K%/kp)9

equal to ipe($/p) + φκ%,kp(μ{K%/k) — 1) + 1, e($/p) being the ramification
index of 5̂ over p, and hence this is the $β-exponent of the right hand
side.

LEMMA 16. Let L o K Z) k be a tower of Galois extensions, and

let m be a module of k. Then QL/κ(Qκ/k(™>)) = 9L/A(^)

Proof. Immediate from the fact that the Hasse's function is transi-
tive.

Next, we express some Lemmas in § 1 in terms of \{K/k) or §K/k(?κ)
By Lemma 1, we have

LEMMA 17. Let K/k be a finite Galois extension. Then p is ramified
in K if and only if p\\(K/k).

Lemma 2 gives

PROPOSITION 18. Let K/k be a finite Galois extension, and let
be the different of K/k. Then

According to Lemmas 3, 4, and 5, we have the following three
Lemmas.

LEMMA 19. Let L'DK'Dk be a tower of Galois extensions, and let
\{K/k)\m. Then:

(i) \{K/k)\\{L/k).
(ii) // f (L/K) I e*/*(m), then \{L/k) \ m. In particular, if \{L/K) \ %(K/k),

then \{L/k) = \{K/k).

LEMMA 20. Let L z> K z> k be a tower of Galois extensions, L/K
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be Abelian, and let \{Kjk)\m. Then:
(i) KL/K)\qκ/ML/k)).
(ii) // f(L/fc)|m, then \{L/K)\a>κ/k(m). In particular, if \{L/k)

= \(K/k), then \{L/K)\%(K/k).

LEMMA 21. Let K/k be a finite Galois extension, and let kr\k be
an Abelian extension. If fC^/fc)|tn, then \(K«kf /K)\Qκ/k(m).

For later use, we treat here subgroups of the group of total norm
residues.

Let K/k be a finite Galois extension, m be a module of k, and let
S(m) be the group of all numbers a in k such that a = 1 mod m, and
S(qκ(m)) is similarly defined in K.

LEMMA 22. Notation being as above, we have

Proof. Let m = Π P P ^ ^ P ^ e a n y pri^e factor of p in ίC, and let
be the ramification index of $β over p. Take a e S(m). Since

φκ%/kp(ίp — 1) + 1, the ^-exponent of a — 1 is equal to or more
than ψKψkp{\ — 1) + 1. This implies ae S($κ(m)).

Let K/k be a finite Galois extension, m = Y\pp
ip be a module of k,

and let H be the group of total norm residues of K/k. Denote by Hm the
group of all numbers a in H such that

a € NKy/kpU%ξv>k^-1)+1) for all ίp > 0 .

In virtue of Hasse's formula (1), we note Hm c S(m).

LEMMA 23.

Proof. By Lemma 22, the left hand side contains S(πt).

LEMMA 24. Le£ jfiΓ/fe &e a finite Galois extension, and let \(K/k)\m.
Then

H Π S(m) = ίί r a .

Proo/. Take aeH Γi S(m), then α = 1 modm. Thus f(X/fc)|m and
Lemma 6 give our assertion.
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§3. The central class field mod m

In this section, we define the central class field modm of a finite
Galois extension, and prove our main theorem. The following notation
will be used.
S(m),S(QK(m)),H,Hm as given in §2.
Z the ring of rational integers.
Ek the unit group of k.
k(τή) the ray class field mod m of k, K(QK(M)) similarly defined in K.
(A) the principal ideal group induced from a number group A.

Let K/k be a finite Galois extension. Then:
IQκim) the ideal group of K prime to (the finite part of) §κ(m).

Jβjr<m>,*/* ^e subgroup of I8κ(m) consisting of all ideals whose norms to
k belong to (S(xή)).

Ifκim) the subgroup of /βχ(m) generated by all ideals aσ~ι such that
α 6 IQκ(m) and σ e G(K/k), in other words, D is the augmenta-
tion ideal of the group ring of G(K/k) over Z.

LEMMA 25. Let K/k be a finite Galois extension, m be a module
of k9 and let \(K/k)\m. Then

This implies that for αe/0iSΓ(m), Nκ/ka = 1 if and only if αe/^ ( m ) .

Proof. Let S be the union of the infinite primes of K and the
finite primes dividing g#(m)> Jκ be the idele group of K9 and let

yes spgs

here U% is the unit group of K$. Then we have the following exact
sequence:

1 > Js > Jκ > IQκ(m) -> 1

This gives the following exact sequence of cohomology groups:

H~\G(K/k)y Js) -^> H-\G(K/k), Jκ) — > H~KG(K/k), Iΰκim))

— > H%G(K/k), Js) - i > H%G(K/k), Jκ) .

Using semi-local theory and the fact that ψ is unramified over k when
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Vβ§S, it is easy to see that

H~\G(K/k), Js) « Σ H-KG» ffg) « H~\G(K/k), Jκ) ,

where G$ denotes the decomposition group of Sβ over A; and the sum
runs over non-conjugate primes in S. Similarly,

H\G(K/k),Js) « Σ H°(Gv,K$)

and

H\G(K/k),Jκ)

Therefore we conclude that 11 x is isomorphic and 1§ injective, which
implies H-\G(Klk),Iiκ{m)) = 0.

Let L~D K~D k be a tower of Galois extensions. Then L is called
a central extension of Kjk if G(L/K) is contained in the center of
G(L/k), and is called a genus extension of K/k if it is obtained from
K composing an Abelian extension over k.

LEMMA 26. Let m be a module of k, and let K/k be a finite Galois
extension with fCK/A0|m. // Lί9L2 are central (resp. genus) extensions
of K/k with \{Li/k)\m for i — 1,2, then the composite field LXL2 is also
a central (resp. genus) extension of K/k with \(LxL2/k)\m.

Proof. By Lemma 20, we have \(Lί/K)\g>κ(m), and hence Lt

c K(sK(m)). This shows f(L1L2/ίL)|8jf(tn). Then our assertion follows
from Lemma 19.

DEFINITION. Let K/k be a finite Galois extension with \(K/k)\m.
Then we denote by Km (resp. X*) the maximal central (resp. genus)
extension L of K/k with f(L/fc)|m, which is equal to the maximal central
(resp. genus) extension of K/k contained in the ray class field mod qκ(m)
by Lemmas 19 and 20, and call it the central class field (resp. the genus
field) mod m of K/k.

LEMMA 27. // K/k is a finite Galois extension with f(ίC/fc)|m, then

K* = K-k(m)

and so

G(K*/K) « Nκ/kIeκM/Nκ/kI)κim) Π
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Proof. By Lemma 21, we have \{K k(m)/K) | Qκ(m), If k(m) c
and hence 2£ fc(m) c X*. To prove the converse, let A be the maximal
Abelian extension contained in K(qκ(m)), then Z* = KA. By Lemma
19, f(K(8jc(m))/fc)|τn, and hence f(A/fc)|m. This shows A c fc(m). The
latter half follows from the "Abschliessungssatz" in class field theory:

GίK*/K) « G(k(m)/K Π Jfc(m))

« Nz/kI9χin)/Nx/kIΛκin) Π

LEMMA 28. // ΛΓ/fc is α ̂ mίe Galois extension with f(K/fc)|m,

Proof. By Lemma 27 and the translation theorem in class field
theory, ίC* corresponds to the ideal group hκ(m),κ/k of K. Moreover it
can be checked that Rm corresponds to the ideal group I?K(m)-(S(QK(m))).
This indicates the first isomorphism. To prove the second isomorphism,
for ael6κ(mhκ/k, set Nκ/ka = (α), a e S(m). Then αeίf, since
Conversely, take α e S Π <S(m). Since p is unramified in K when
p̂(α) is a multiple of the degree of p in ίΓ, where vp denotes the nor-

malized exponential valuation at pf and hence (a) is a norm from
Jβ*c«>.*/* Therefore N^/^ is an epimorphism of hκ(nhK/k to (# Π S(m)).
Assume Nκ/ka e (iV^^SCgirim))). Then there exists a number # e
such that Nκ/ka(a) = 1. We have, by Lemma 25, α
and the proof is complete.

Furthermore we have

(HΠS(m))/(Nκ/kS(qκ(m))) πHΠ S(rή)/[H Π S(m) Π E

« i ϊ Π S(m)/[S(m) Π ̂ J iV

and hence the sequence

l-+Ek Π S(m)/ί7fc Π ̂ % ( m ) ) ->g Π

is exact, because Nκ/kS(Qκ(m)) c S(m) by Hasse's formula (1).
Continuously we give a relationship between H Π

and the Schur multiplicator of G = G(K/k). Let
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m = Π Ph >

Jκ be the idele group of K, and let

Jκ(Q(m))= Π ί Π

here we wrote Uψ instead of Uψ% and f]' denotes the restricted direct
product of K$ with respect to C7̂ 0). Then we have, by the approxima-
tion theorem, Jκ = Kx-Jκ($(m)), and S(fl(m)) = ULxΠ/^(g(m)). Thus the
sequence

1 • S(fl(τn)) - U /^(m)) - U C x • 1

is exact, where Cκ is the idele class group of K. Passing to cohomology,
we have the following exact sequence:

^ KG, Cκ)

Π ^

Using semi-local theory, we have

Σ
$β |

where G$ is the decomposition group of φ over k and the sums run
over non-conjugate primes in K. Therefore we obtain, by Lemmas 23
and 24,

Kerΐ* = S(8(m)) Π fcx Π HJNx/kS(s(m)) - HJNκ/kS(s(m))

= H Π

Similarly,

Denoting by Proj^ the projection of H-\G,Jκ(Q(m))) to
we have the following commutative diagram:
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ρ r o i 4

where 1: U$& —* K% denotes the inclusion map and ψ, ψ% are the Tate
isomorphisms in class field theory. From this, we obtain

Thus we have proved the following main

THEOREM 29. Let m = Πpf*11 be a module of k, and let K/k be a
finite Galois extension with \(K/k)\m. Denote by Rm the central class
field modm and by K* the genus field modm of Klk. Then we have
the following exact sequence

l^Ek(λ S(m)/Ek Π

-* H-\G(K/k), Z)/F(K/k). - GitjK*) ^ 1 ,

where

F(K/k)m =
|tn

the μ%-th unit group of K%,
G% the decomposition group of Sβ over k,
1* the cohomology map induced from the inclusion map 1: Ϊ7^*)

ψ¥ the Tate isomorphism of H~\G%,Z) to H-ι(G%,K$),

and the sum runs over non-conjugate prime factors of m in K.

COROLLARY 30. // K/k is a cyclic extension with \(K/k)\m9 then we
have

H n S(m) = Nκ/kS($κ(m))

and
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Ek Π S(m) = EkΠ Nκ/kS(qκ(m)) .

Lemma 10 gives

THEOREM 31. Let K/k be a finite Galois extension with
( i ) // all first ramification groups of K/k are cyclic, then the

sequence

l-*EkΠ S(m)/Ek ΓΊ Nκ/kS(qκ(m)) ->H~%G(K/k),Z)

-> G(KJK*) ->1

is exact.
(ii) // K/k is tamely ramified, then the above sequence is exact.

(iii) // K/k is unramified, then the above sequence is exact even

if xciφl.

From Lemmas 10 and 13, we obtain

THEOREM 32. Let m be a positive integer such that (m, 16) Φ 8,
and let K be the m-th cyclotomic field of the rational number field Q.
Then

G(KmpJK)*H-\G(K/Q),Z),

where p^ denotes the real prime divisor of Q.

This is a generalization of Frohlich [1, Theorem 3] to a cyclotomic

field of the rational number field.

Remark, (i) Hasse [8] proved the so-called principal genus theorem
as follows: Let K/k be a cyclic extension with \(K/k)\m, and let σ be
a generator of G{K/k). If Nκ/ka e (S(m)), namely, α e IQκ{m)tK/ic> then there
exists an ideal 6 in 7fljr(m) such that α E>w e (S($κ(m)))9 namely, αe/&(m)

(S(qκ(m))). Thus our main Theorem 29 combined with Lemma 28 may
be viewed as a direct generalization of the principal genus theorem to
a Galois extension. For other generalizations of this theorem, see
Herbrand [10], Iyanaga [11], Kuniyoshi and Takahashi [12], Noether [14],
and Terada [19], [20].

(ii) For a finite extension K/k, Frohlich [2], [3] defined the genus
field 1£* of K/k to be the maximal unramified extension of K which is
obtained from K by composing an Abelian extension of k, and studied
the genus number [K*: K] in the case where the base field k is the
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rational number field. Furuta [4] gave an explicit formula for the genus
number in number fields. Masuda [13] treated an EL-Abelian and
central extension of a Galois extension K/k, and expressed its Galois
group over K in idele language. Using this result, Furuta [5] obtained
an explicit formula for the central class number of K which is the ex-
tension degree of the maximal unramified central extension of K/k over
K. Moreover Furuta [6] gave a cohomological expression of the Galois
group of the maximal EL-Abelian and central extension contained in an
Abelian extension M of K over the maximal genus extension contained
in My and determined the reduction formula for the central class field
tower contained in an EL-Abelian extension of K/k. Frδhlich [1]
studied fields of class two over the rational number field as in Intro-
duction, and in its conclusion, he stated, "The methods used in this
paper can be generalized, so as to become applicable to a study of fields
at most (C2) over an arbitrary algebraic number field. But they be-
come extremely cumbersome, and it is desirable to replace them by less
elementary, but more powerful, tools."

§4. The -̂class field modm

DEFINITION. Let (, be a rational prime, m be a module of an al-
gebraic field number field k of finite degree, and let K/k be a finite ^-exten-
sion with \{K/k) |m. Denote by KmJ (resp. K*ti) the maximal central (resp.
genus) ^-extension L of K/k with f(L/fc)|m, which is equal to the max-
imal central (resp. genus) ^-extension of K/k contained in the ray class
field mod Qκ(m) of K by Lemmas 19 and 20, and call it the £-class field
(resp. the ί-genus field) modm of K/k.

In the case where k is the rational number field and K/k an Abelian
^-extension, Frδhlich [1, Theorem 3] treated the Galois group of the l-
class field mod m of K/k over the ^-genus field mod m. In this section,
we generalize this result to the case where k is an arbitrary algebraic
number field and K/k a finite ^-extension.

LEMMA 33. Let K/k be a finite ί-extension with \{K/k)\τa, and let
k(nί)e be the maximal ^-extension contained in the ray class field k(xή).
Then
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Proof. Similar to the proof of Lemma 27.

LEMMA 34. Notation being as above, we have

κm,s nκ* = κ*,t, κaJ κ* = κa,

and so

Proof. By Lemmas 27 and 33, we have

K* = KΉxa) = K'k(m)rk(m) = Ktrk(m) .

Thus [if*: K*ti] divides [ft(τπ): fc(m)J and hence is prime to I. Since
K* => £„,, n Z * D X* „ we have ^m,, n K* = K*,. Next, since G(KJK*)
is a homomorphic image of the Schur multiplicator H~\G(K/k),Z),
[Km:K*] is some power of ί9 and hence [̂ "m: βmti-K*] is so. On the
other hand, since [Km:KmJ is prime to £, [βm:βWtrK*] is also prime
to /. LC

From the above Lemma and Theorem 29, we obtain

THEOREM 35. Let K/k be a finite ^-extension with f(ϋΓ/fc)|m. Then
the sequence

l-*Ek Π S(m)jEk Π

-> H~XG(K/k), Z)/F(K/k)m

is exact, where F(K/k)m is as in Theorem 29.

COROLLARY 36 (Frδhlich [1, Theorem 3]). Let K be a finite Abelian
S-extensίon of the rational number field Q, and let m be a rational module
such that ϊ(K/Q)\m and (m,16) Φ 8 when (f(#/Q),16) = 8. Then

G(KmJK*>£) « H~\G{KIQ)9Z) .

Proof. When £ Φ 2, all inertia groups of 2£ are cyclic. Then
Lemma 8 gives F(K/Q)m = 0. When ^ = 2, Lemmas 8 and 13 show
F(K/Q)m = 0 under the hypotheses.

§ 5 . The ^-class field tower mod in

Let m be a module of an algebraic number field k = KQ of finite
degree, Zx be the maximal ^-extension contained in the ray class field
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k(m), and let Kn be the ̂ -class field mod m of Kn_Jk. Then the sequence

of fields

Jc = Kod K.cz . . . c Kn_, c Kn(Z . . .

will be called the S-class field tower mod m of k. It is obvious that

\{Knjk)\xti for n ;> 0. Conversely,

LEMMA 37. Let fym) = U ; β O ϊ n , αmZ Zeί J5L'/& &e α finite ^-extension

with \{Kf jk)\m. Then fcim) ZD K'y in other words, fym) is the composite

field of all finite ί-extensions over k whose Galois conductors divide m.

Proof. Let k = K'Q c K[ c c Z ; = K' be the subfields corres-

ponding to the lower central series of G(K'jk). Clearly KίciK^ Sup-

pose K't^cKi^. From fCK2/λO|m, we obtain f(iί/-Kί.!) | fljr{-i(m) by

Lemma 20. Since K'JK^ is Abelian and QX^/X'^SSK^KO) = βz*-^)*

we have, by Lemma 21, f(2ίΓί .K<._1/2ίΓ<_.1)|βjr<._1(m). It can be easily checked

that GiK'i'K^JKi^) is contained in the center of GiK^K^Jk). Therefore

K\ c K'i Ki^ c CK"i_i)m = ifΐ, which completes the proof.

Continuously we generalize a famous result of Golod-Safarevic [7]

on the unramified ^-class field towers to the case of the tamely ramified

^-class field towers. The following notation will be used.

d£(M) the ^-rank of a module M.

Im the ideal group of k prime to m.

kf the number group of k prime to m.

V the subgroup of kr consisting of all numbers a such that (α) e Vm9

where ( ) denotes the principal ideal.

p the ^-rank of the ideal class group of fe.

r = rx + r2.— 1, where rλ is the number of real and r2 the number of

complex prime divisors of k.

δ is equal to 1 if k contains an ^-th root of unity and to 0 if not.

LEMMA 38. (fcO Π /£ (S(m)) = (

Proof. Immediate.

LEMMA 39. Let m = p1 pt, Nk/Qpi = 1 mod I for i = 1 , . . . , ί,

Zeί J?Ί be the maximal ^-extension contained in the ray class field k(m)

Then
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X J ) = t + p- dlVjV Π fc

In particular,

d^GCKJk)) ^ t - (r + δ) .

Proof. In the exact sequence

all groups are elementary. Thus

= d£IJPm (k>))

By Lemma 38, we have

and hence the exact sequence in which all groups are elementary:

1 _, γ/γ n W'.S(m) « y.S(m)/^.S(m) -^ k'/k" S(m) -+ W/V-S(m) -

Since d£(k'/k" - S(m)) is equal to the ̂ -rank of the group of prime residue
classes modm, we have

t = d4(W/V S(my) + de(V/V Π k" S(m))

and hence

= t + p - d/F/y n fc^.

The latter half follows from d£V/V Π ̂  S(m)) ̂  di(y/kfi) = p + r + δ,
for which see Safarevic [16, p. 131].

THEOREM 40. Let m = pι ^, Nt/Qpί = 1 mod ̂  /or ί = 1, , ί.

ί + P ̂  ^ ( F / F Π k".S(m)) + 2 + 2Vr + ί + 1 ,

then the S-class field tower k[m) which is tamely ramified is infinite. In
particular, ift^r + δ + 2 + 2vV + 5 + 1, then fcjm) is infinite.

Proof. In virtue of Lemma 1, Kn/k is tamely ramified. Thus we
have, by Lemma 8 and Theorem 35, the exact sequence



82 SUSUMU SHIRAI

l-»Ek Π S(m)/Ek Π

-> H-\G(KJk\ Z) -> G(Kn+1/Kn) -> 1 .

It is clear that

d£(Ek Π S(m)/Ek ΓΊ tf*/fcS(β*(m))) ̂  d/#* Π S(m)) ^ dt(Ek) = r + δ,

and it is well-known that (see, Roquette [15])

d£H-3(G(Kn/k),Z)) > \d2 - d , where d = d£(G(KJk)) .

By Lemma 39, d ^ 2 + 2vV + 3 + 1, and hence \d2 - d ^ r + δ. There-
fore

\G(Kn+ί/Kn)\ = 0 mod ^ for n ^ 0 ,

here | | denotes the number of elements.

Remark. If t = 0, then 7 = 7 f l λ^S(m). Thus the condition in
Theorem 40 coincides with Roquette [15, Remark to Theorem 3] in case
of the unramified ^-class field towers.

§6. The central class field tower modrn

Let m be a module of an algebraic number field k = Ko of finite
degree, Kt = k(m) be the ray class field mod m of k, and let Kn be the
central class field mod m of Kn_Jk. Then the sequence of fields

k = Ko c Kx c c Kn^ aKncz . . .

will be called the central class field tower mod m of k. The extension
degree zn — [Kn+1: Kn] will be called the central class number mod m of
Kn over k. It is obvious that ^(Kn/k)\xa for n ^ 0, and the same pro-
cedure as the proof of Lemma 37 yields

LEMMA 41. Let kim) = \J™=QKn, and let K'/k be a finite nilpotent
extension with \(K'/k)\m. Then fc(m) D K', in other words, ¥m) is the
composite field of all finite nilpotent extensions over k whose Galois con-
ductors divide m.

Finally we generalize a result of our previous paper [18] to the
case of the central class field tower mod m.

It follows from [18, Lemma 4] the following

LEMMA 42. Let G be a finite nilpotent group of class n > 1, and let
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( 4 ) G = Go D Gx 3 D Gw_x D G n = 1

Zower central series of G. Then

-1 = 0 mod |ff-3(G,£)| ,

where d(M) denotes the rank of a module M, that is, the minimal number
of generators of M.

Now, let k(m) == (Jn=o Kn be the central class field tower mod m. We
denote by G the Galois group of Kn over k. Suppose zn_x Φ 1. Then
G is a finite nilpotent group of class n, and the lower central series
(4) of G corresponds to the sequence of fields

k = Ko c Kx c c Kn_λ c Kn .

Thus |Gn_χ| = [Kn: Xn_J = zn_λ. By Theorem 29, we have

\H~\G,Z)\ = «n.[S4 Π S(m):#, Π ^ n / ^ ( g i Γ

and

\H-\G/Gn_19Z)\ = zn_AEk Π S(m):^A Π N

\F(Kn_Jk)m\.

Therefore, if n > 1, then we have, by Lemma 42,

^ / ί ? ι ) |^(^-i/fc)J ΞΞ 0 mod^-IFίX,/*).! ,

where G/G1 is isomorphic to the ideal class group modm of k.

Next, set n — 1. Then G is an Abelian group of order z0. Hence
it follows from [18, p. 392] that

> = o mod\H-%G,Z)\.

Therefore, by Theorem 29,

ôW(G)-i) = o mod zrlF^KJkU .

Thus we have proved the following

THEOREM 43. Let zn be the central class number mod m of Kn over
k, and let dbe the rank of the ideal class group modm of k. Then

Z8o(d-Dd*-i Ξ o mod zn for n^>l .

COROLLARY 44. Let zo = St1 £γy et > 0 for i = 1, , t be the
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factorization of z0 in Z. Then

K — KH Kit >

where fyf is the £rclass field tower modm of k in §5.

Proof. z> : Immediate from Lemma 41.

c : Let fc(m) = {Jζ=0Kn. According to Theorem 43, the distinct prime

factors of [Kn : k] = zQzλ . zn_x are ^ , £29 , ̂ , and a finite nilpotent

group is a direct product of all its Sylow subgroups. Thus we have, by

Lemma 37, Kn c fy? . fc<«>.

Furthermore by the same procedure as the proof of [18, Theorem 5],

we obtain

THEOREM 45. Notation being as above, we have

d(G(Kn+1/Kn)) ^(d + l).d{G{KnIKn_λ)) + Σ d d ff-W,, CTgV)) + rx + r2

/or % > 1

and

d{G{K2IKι))^d^zQ for n = l ,

where the sum runs over non-conjugate prime factors of m in K.
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