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SOME TYPES OF
REGULARITY FOR THE DIRICHLET PROBLEM

AMAR SADI

The question of whether the existence of a harmonic majorant in a relative

neighbourhood of each point of a boundary of a domain D implies the existence of

a harmonic majorant in the whole of D has received great attention in recent years

and has been dealt with by several authors in different settings. The most general

results to date have been achieved in [10] with the Martin boundary. In [9], the au-

thor arrives, by independent means, at the conclusions of [10] in the particular

case where D is a Lipschitz domain.

In this paper, we answer the question in domains with suitably regular topo-

logical frontiers. Our methods rely heavily on the possibility of obtaining an

extented-representation for nonnegative superharmonic functions defined near a

frontier point. This naturally led to the introduction and the study of new types of

regularity for the generalised Dirichlet problem. As well as their suitability in

dealing with the question of harmonic majorisation, they present an intrinsic im-

portance as natural extensions of the (classical) regularity. For simplicity reasons,

we will treat the finite boundary points and the point at infinity separately.

We start with a type of regularity which, although introduced in a new way,

will later be seen to be equivalent to Armitage's strong regularity given in [2].

We first give some conventions concerning the notations.

Unless we specify otherwise, all the sets considered are subsets of Af-dimensional

Euclidean space RN with N > 2.

Points of RN as well as singletons (i.e. sets consisting of one point) are denoted by

a single letter. However, points are, when necessary, expressed in terms of their

coordinates. The norm | • | is the Euclidean norm.

For a point y of RN and a positive reel number r, the open ball B(y, r) is the

set
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and the sphere S(y, r) is the set

^RN: \x-y\ =

If, in addition, R> r then the open annulus i4(#, r, i?) is the set

RN: r< \x-y\

For a subset £ of RN is the finite topological boundary of E. The frontier

FrE of £ is dE of £ is bounded and dE U {A} if E is unbounded, where A is the

point at infinity (i.e. the Alexandroff point). Note therefore that FrE is considered

as a subset of the compactified Euclidean space RN.

By a domain we always mean a non-empty connected open subset of RN.

The notations Hf, Hfi Hj, U/,..., are standard.

Their exact definition as well as a detailed study of the generalised Dirichlet prob-

lem can be found in [8].

Finally, Property (g) refers to the property (g) given in ([8], 1, VIII. 6).

1. //-regularity

Let Q be a Green open set in RN, f a function on Fri2 resolutive for the

Dirichlet problem and H/,Q the Dirichlet solution fo r / in Q. When there is no risk

of confusion, we may write Hf instead of Hf,Q.

We recall that a point y0 on Fr£? is regular (for Q) if and only if for each

real-continuous function / on Fr42,

(1.1) limi/^ (x) =f(yo) (x'mQ).

The following theorem is known, at least implicitly.

THEOREM A. A point y0 on dQ is regular if and only if (1.1) holds for each non-

negative real continuous function f on Fri2 such that

(1.2) / = 0 onB(y0i R) D Frii

for some positive real number R.

This theorem inspired the following

DEFINITION 1.3. A point y0 on dQ is said to be L-regular (L-for l.s.c.) if (1.1)

holds for each nonnegative, extended-real-valued, lower-semi-continuous and re-

solutive function / satisfying (1.2).
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In the sequel, all functions are supposed to be extended-real-valued unless we

specify otherwise. Our first result is a criterion for L-regularity.

THEOREM 1.4. Let Q be a Green open set and yo a point on dQ. Then z/o is Ir-

regular if for each function f on FrQ such that Hf is harmonic

(1.5) limsup Hf (x) < limsup/(z/) {x in Q, y on FrQ).

Proof Suppose that (1.5) holds and let / be a nonnegative, l.s.c, and resolu-

tive function on FrQ satisfying (1.2). Then

limsup Hf (x) < 0 (x in Q).
x^y0

Thus (1.1) holds f o r / Hence z/o is L-regular.

Now assume that z/o is L-regular and let / be a function on FrQ with Hf

harmonic in Q, and let A be the value of the right hand side of (1.5). If X = + °°,

there is nothing to prove. So assume that X < + ° ° . First, we suppose that A is

finite and let g — f — A. Then

(1.6) limsup g(Y) = limsup/(F) - X = 0
y-+v0 v-*vQ

and

(1.7) limsup Hg(X) = limsup Hf(X) - X,

By (1.6), for each £ > 0 there exists R > 0 such that

g< einB(yo, R) PI FrQ.

Now since / is upper resolutive, so is g. Thus there exists a function u > 0 in the

upper family Ug. Let

f 0 for y in B(y0, R/2) D FrQ.

~ I \I liminf u(x) for y in FrQ \ B(y0, R/2).
x-*y

Then F is resolutive since F is l.s.c, bounded below and u is in UF. Since #0 is

L-regular it follows that

lim HF (x) = 0.
x-y

On the other hand, g ^ s + F on Fr\0 whence

^ < e + HF = s + ft in fl.

Thus
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limsup H8(x) < + a + UmHF(Y) = a.
x-^y0 X-VQ

Using (1.7) and bearing in mind that a is arbitrary we get

limsup Hf(x) < A.
x->y0

Now, if X — — °° then / is continuous at y0. For each positive integer n, let fn —

sup (/, — n). Since / < fn for each n, and using the preceding argument for fny

we have

limsup Hf{x) < limsup Hfn(x) < limsup fn(y) — ~~n,
x-+vQ x-^y0 x^yQ

Letting n tend to infinity, we get

limsup Hf(x) < — oo = X.

COROLLARY 1.8. A point y0 on dQ is L-regular if and only if {1.1) holds for all

resolutive functions on Fri2 which are continuous (in the extended sense) at the point

Proof The "if" part is clear, using Definition 1.3. To prove the converse, l e t /

be a resolutive function on Fri2, / continuous at z/o, and assume that z/o is

L-regular. By Theorem 1.4.

liminifiy) = f(y0) < liminf Hf(x) < limsup Hf(x) < limsup/(z/) = f(yo).
V-*V0 x^y0 x^vQ y^y0

Hence

XimHf(x) =f(y0).
x-*y0

Corollary 1.8 and Theorem 1.4 show that the L-regularity, Armitage's strong

regularity in [2] and Nairn's complete regularity in [13J are all equivalent notions.

Using the last corollary, we give an example of an open set Q with point on

dQ which are regular but not L-regular. This example was first used in [4] to

show that a resolutive function/on YrQ may be bounded in a relative neighbour-

hood of a boundary point without the same holding for the function Hftg.

EXAMPLE 1.8. For each positive integer n, let

Qn= (0,1) x ( l / ( n + 1), l / » )

an = closed segment {(x, y): x=0 and l / ( « + l ) <y< ( l / » + l / ( « + l ) ) / 2 }

and

Q=\JQn.
n=l

Let
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/ = S knXn

where, for each n, Xn is the characteristic function of an. Since an is of positive

harmonic measure for Qn, hence for Q, the constant kn can be chosen so that the

Dirichlet solution Hf o f / i n Q is equal to n at the centre Pn of the rectangle Qn.

Then Hf(Pn) tends to infinity as (Pn) tends to the point P = ( 1 / 2 , 0) even

though / is identically equal to 0 in a neighbourhood of this point. Thus the

point P is not L-regular for Q. However the point P is regular for Q since R2\Q

is not thin at P.

The preceding argument shows in fact that all the points of the segment

{(x, y) : 0 < x < 1 and y = 0} are regular but not L-regular for Q.

2. B-regularity

DEFINITION 2.1. Let flbe a Green open set and y a point on dQ. Then y is

said to be B-regular for Q (B- for bounded) if for each resolutive function /

bounded in B(y,R) 0 Fri3 for some R > 0 the function H/,Q is bounded in

B (y,P) Pi & for some p > 0.

The property that H/,Q is bounded near y whenever / is bounded near y will

for brevity reasons be denoted by [PB].
Using Property (g) ([8], 1. VIII, 6) we see that if there exists a neighbourhood

(0 of y such that y is 5-regular for a> Pi Q then y is 5-regular for Q.

Note that Example 1.8 provides an example of a boundary point which is reg-

ular but not 5-regular. With few modification (see for instance [13], Section 46)

the example also shows that, unlike the set of irregular points, the set of boundary

points which are not 5-regular is neither always polar nor of zero harmonic mea-

sure.

Here we prove a simple result that shows that there are points which are

jB-regular but not regular.

PROPOSITION 2.2. Let D be a Green domain and y a point on 3D. Suppose there

exists p > 0 such that B (y, p) (~) 3D is polar. Then y is B-regular for D {but not

regular). In particular any isolated point of dD is B-regular.

Proof Let E be set B(y, p) C\ dD. Then E is polar and closed in B(y, p) so

that B(y, p)\E is connected. As B(y, p) Pi D is nonempty, it follows that

B(y,p)\EaD.

Thus
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Fr(D{JB(y,p)) U E = FrD.

Now let / be a resolutive function on FrD such that / is bounded in a neighbour-

hood of y. Since any lower bounded (resp. upper bounded) superharmonic (resp.

subharmonic) function in D has a superharmonic (resp. subharmonic) extension to

DUE ( = D U B). It is easy to deduce from the definition of Hf, D that / is re-

solutive for D U B and

Hf, D = Hf,

in D. Thus, if

[/ on FrD \ E
F =

1 Hf, DUB on E with B = B(y, p),

then F and /differ only on a polar hence negligeable subset of FrD. Hence for

any x in D.

(2.3) Hf, DUB (x) = HF, D (x) = Hf,D(x).

As y is in D U B then ///, DUB is bounded in a neighbourhood V of y and there-

fore by (2.3) we get HftD is bounded in VC\D. Thus F i s S-regular for D. Howev-

er (2.3) also shows that Hf, D does not depend on the value of / at the

point y whence y is not regular.

We now give some useful criteria S-regularity.

PROPOSITION 2.4. Let Q be a Green open set and y a point on dQ. The following

are equivalent

(i) y is B-regular.

(ii) [PB] holds for each resolutive function f, finite and continuous at y.

(iii) [ PB] holds for each nonegative, resolutive function f that vanishes in a

neighbourhood of y.

(iv) [PB] holds for each nonnegative, resolutive and l.s.c. function f that vanishes

in a neighbourhood of y.

Proof It is clear that (i)—>(ii)—• (iii)—>(iv)(—*for implies). We only need pro-

ving that (iv) implies (i).

Let / be a nonnegative resolutive function on FrQ such that / is bounded in

B(yyR) 0 dQ by a constant M. Since / is resolutive, there exists a superharmo-

nic function v in the upper family Uf. By adding a suitable positive constant to v

we get a nonnegative function u in Uf.

Let F be the function
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(0 for Z on B(y, R/2) H dQ
= l

liminf M(X) for Z on FrQ\ B(y, R/2).
xz

Then F is nonnegative, l.s.c. and resolutive since Hp — HF and u is in UF. Thus

by (iv), there exists p > 0 and k > 0 such that

HFtQ< k in B(y, p) D O.
On the other hand,

f<M+FonFrQ.
Hence

Hfj, < M+ HF,v'm Q.

< M+ k \nB(y, p) H Q.

THEOREM 2.5. Let D be a Green domain and y a point on dD. Then y is

B-regular for D if and only if for each neighbourhood V of y, there exists a neighbour-

hood VQ of y such that for any resolutive function f on FrD bounded in V Pi FrD,
HfD is bounded in VQ f] D.

Proof The "if" part of the theorem is clear. We now prove the "only if"

part. Le t /be a resolutive function, bounded in VD FrD. It is enough to prove the

result when / is nonnegative. Then, as seen in the proof of Proposition 2.4, if W

is a neighbourhood of y with closure in V, there exist a constant M > 0 and a re-

solutive function F on FrD such that F vanishes in WP\ FrZ) and / < M + F on

FrD. Therefore it is enough to prove the result for any nonnegative and resolutive

function that vanishes in a fixed neighbourhood Vof y. We will do this by contra-

diction.

Let (Vn) be a sequence of open neighbourhoods of y such that Pi Vn — iy).

Suppose that for each Vn, there exist a nonnegative resolutive function fn and a

point yn in Vn Pi dD such that/M = 0 in VC\ FrD and

limsup/// (x) =
X-*Vn

We normalise the sequence fn by taking

HUl, (x) = l /

where XQ is a fixed point in D. Let
m

gm= Z /»
n = l

and g = lim gm.
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Since (gm) is an increasing sequence of resolutive functions, we have
_ _ m _

Hg,D = \imHgmD = lim(XHfn).
Thus """ ' """ "=1

Hg,D(Xo) = 2 1/W2< oo.

Moreover, using ([8], Theorem 1, VIII, 6, page 110) we have

Hg, D
 =z H_g, D in D

Hence g is nonnegative, resolutive for D and vanishes in V D FrZ). On the other

hand, since g > / » for each n and (yn) tends to y as n tends to °° it follows that

(2.6) limsupi/g, D (x) ^ lim (limsup Hfn (x) = °°.
x-*y n—°° x-*yn

This is now impossible since y is 5-regular and the contradiction establishes

Theorem 2.5.

Note that in the preceding proof the function g may not be bounded on FrZ)
even if each function fn is bounded. So (2.6) does not constitute a contradiction to

the regularity of y but to its 5-regularity. Thus the proof does not give the bound-

edness of H/,D in a fixed neighbourhood of y in D when the 5-regularity hypoth-

esis is replaced by a regularity one.

3. A boundary Harnack principle

Next we use Theorem 2.5 and an argument due to Armitage ([2]) to prove that

the notions of fi-regularity and L-regularity are equivalent to boundary Harnack

principle.

THEOREM 3.1. Let D be a Green domain, y a point on dD and x0 a fixed point

of D. Then y is fi-regular if and only if for each neighbourhood V of y, there

exist a positive constant k and a neighbourhood Vo of y such

(3.2) Hf>mx) <kHftD Cr0)

for all x in Vo Pi D, and every nonnegative, resolutive function / that vanishes on

VDFrD.

Proof. The "if" part follow from Proposition 2.4, (iv). To prove the "only if"

part, let L be the vector space consisting of all resolutive functions that vanish on

VO FrZ). By Theorem 2.5, there exists a neighbourhood Vo of y such that for

any / i n L, Hf>D is bounded in Vo Pi Z). For each x in Vo Pi A let
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Tx : f I > / / ( z ) dtix(M) = H/f z) Or).
FrD

Then Tx is a linear mapping of L into the real line R. Moreover, if we define for

each function / in L.

11/11 = H\f\,D (Xo)

then. || * || is a norm and L, provided with this norm, is the vector space Ll(y)

where j is the restriction of the harmonic measure fixo to FrD. Hence FrD\Vis a

Banach space. Now, for each / in L, let

£Lf — \lx\J ) . # in Ko I I L / / .

By Theorem 2.5, £ / is a bounded subset of i?. Hence Tx is pointwise (or weakly)

bounded. On the other hand, using the classical Harnack inequalities, there exists

X>0 (depending on x but not on / ) , such that

Hf,D(x)

for all / in L. Thus Tx is continuous. By the Banach-Steinhauss Theorem, the set

{Tx : x in Vo Pi D) is therefore equicontinuous so that there exists k > 0 (indepen-

dent of x and / ) such that

for all x in Vo D D and all / i n L. We now get (3.2) by taking/nonnegative in the

last inequality.

COROLLARY 3.3. Let D be a Green domain, y a point on dD and XQ a point in D.

Then y is B-regular if and only if given a neighbourhood V of y there exist a

constant k>0 and a neighbourhood Vo of y such that

(3.4) titan < k fi

for all y in Vof] D and any fiXQ-measurable subset E of FrD \ V.

Proof Suppose that y is B-regular let E be a //^-measurable subset of

FrD\V. Then E is /^-measurable for all x in D and (3.4) follows from (3.2) by

taking/ = XE.

Now assume that (3.4) holds and let / be a nonnegative resolutive function

vanishing in VD FrD. Then for all x in Vo H A we have

H/fD(x) = f f(z) dfix(x) < f f(z) kd»xo(z) = kHflD(xo).
FrD \V FrD \V
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Thus y is 5-regular by Theorem 3.1.

We now deal with the connection between B- and L-regularity. As seen in

Section 2, the two notions are distinct. However using Theorem 3.1 we are able to

show that the set of B-regular points and the set of L-regular points differ only by

a set of irregular points.

THEOREM 3.5. Let D be a Green domain, y a point on 3D, x0 a point in D and V

a neighbourhood of y. The following are equivalent

(i) y is L-regular

(ii) y is regular and B-regular

(iii) For each e > 0 there exists a neighbourhood VQ of y such that

(3.6) Hf>D (x) <eHf,D

for all x in Vo Pi D and all f^-O, resolutive with / = 0 in V Pi FrD.

Proof It is clear that (i) implies (ii). It is easy to prove that (iii) implies (i) as

follows. If (3.6) holds, then as e is arbitrary, it follows that HftD(x) tends to 0 as

x tends to y. Thus y is L-regular by definition.

We now prove that (ii) implies (iii). Suppose that y is irregular. By Theorem

3.1 there exist tc > 0 and a bounded neighbourhood V\ of y such that V\ ̂  V and

(3.6) holds with K instead of e and Vi instead of Vo- Let Vz be a neighbourhood

of y such that V2 c V\, g be the function equal to K on dVz Pi D and vanishing

everywhere else and finally let F be the function equal to Hft D on dV2 Pi D and to

zero everywhere else. Thus, using

d(v2 n o c ^ n 3D) u (dv2 n D)
it comes that

F<gHftD(xo) ond(V2nD).

Thus, for xinVzOD

Hf, D(x) == HF, V2DD (X) ^ Hg, 1/2(12) (x) . Hf, D (Xo) .

Now g is bounded, resolutive for V2 Pi D and g is continuous and vanishes at y.

As y is regular for D it is also regular for V2 Pi D whence

lim Hg,v2nD (x) = 0.
X-V

Thus for any £>0 there exists a neighbourhood V3 of y such that

Hg, V2nD < e in V3 D D.
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Hence, if Vo = V2 H V3 then for all x in VQ Pi A we have

Hf,D (x) <sHf,D

Note that using Theorem 3.5 we get a criterion for L-regularity in terms of

harmonic measures similar to the one given in Corollary 3.3 for the ir-

regularity.

4. Examples of L- and S-regular domains

Potentials and 5-regularity.

THEOREM B. Let D be a Green domain any y a point on dD. Suppose that for each

neighbourhood V of y there exists a neighbourhood Vo of y with the property that for

any Radon measure /u > 0 on D concentrated on D\V (i.e. fi(V) — 0), its Green poten-

tial is either identically equal to infinity in D or bounded in Vo Pi D. Then y is

B-regular.

This theorem is easily deduced from results in [6J.

Geometrical conditions.
The next result shows that if dD is "nice" near y, then y is iB-regular.

DEFINITION 4.1. Let D be a domain and y a point on dD. Then D belongs to the

class N (y) if there exists an arbitrary small neighbourhood W of y such that

(i) WC] D is a union of a finite number of domains D{.

(ii) For each domain D\ there exists a ball Bt containing y such that Bi Pi

dD c W and the inverse of Bi Pi A with respect to dBt is in A-

This is a slight generalisation of a notion that was first introduced by Brelot

in [5]. The expression "W arbitrary small" is taken in the sense that for any e > 0,

there exists a neighbourhood Wof y such that We: B(y, e).

One proves, along the same lines as Brelot, that such domains satisfy a

Harnack Principle in a neighbourhood of the point y and therefore, in particular,

y is 5-regular. More precisely we have the following

THEOREM C. Let D be a Green domain, y a point on dD such that D is in N (y),

and A a fixed point in D. Then, there exist k > 0 and an open ball B(y, R) such

that

Hf,D<kHf,D(A) in

for each nonnegative, resolutive function f with / = 0 on W Pi F xD. where W is the
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open set given in Definition 4.1. It follows, in particular, that y is B-regular.

We now give a geometrical condition for L-regularity. Essentially the same re-

sult has been proved in [2].

THEOREM D. Let Q be a Green open set and y a point on dQ. Suppose there exists

an open neighbourhood W of y such that W C\ Q is a union of a finite number of Lips-

chitz domains. Then y is L regular.

5. The Alexandroff point

We will now define the notions of B- and -B-regularity of the Alexandroff

point d. Both are introduced as extensions of their respective counterpart for the

finite boundary points.

DEFINITION 5.1. Let Q be an unbounded Green open subset of RN. We say

that d is fi-regular for Q if for each resolutive function / that is bounded in

{R"\ 5 ( 0 , R)} PlFri2 for some R > 0 the function Hf,Q is bounded in

{RN\B(0, p)} 0 Q for some p> 0.

Similarly, we define the L-regularity of d. We say that d is L-regular for

Q if

lim H/t Q (x) = 0
4

for all nonnegative, extended-real-valued, lower-semi-continuous and resolutive

function / such that / = 0 in {RN\B (0, R) 0 Fr Q for some R > 0.

With basically the same proofs, we can check that most results on B- and

L-regular finite boundary points have analogues when we consider d. Of particu-

lar interest are analogues of Theorem 3.1 and Theorem 3.5.

As an example of the type of theorems we get, we give the following analogue

of Theorem 3.5.

THEOREM 5.2. Let D be an unbounded Green domain, XQ a point in D and

R > 0. The following are equivalent

(i) d is L-regular.

(ii) d is B-regular and regular.

(iii) For each e > 0, there exists p > 0 such that

Hf, D (X) < £ Hf, D (Xo)

for all x in {RN \ JB(O, p)} D D and all f>0, resolutive with / = 0

{RN\B(0, R)} flFrZ).
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Naturally the question arises as to whether the inversion preserves B- or

L-regularity.

THEOREM 5.3. Let D be a Green domain in RN and y a point on FrD, Let U

and yr be the image of D and y respectively under an inversion of centre 0.

Then

(i) y is B-regular for D if and only if yr is B-regular for D''.

(ii) When N' = 2 or y =£ d, then y is L- regular for D if and only if yf is L-regu-

lar for y\

Proof Suppose that yf is B-regular for D' and let / > 0 be a resolutive

function on FrD such that / ^ 0 in a neighbourhood V of y, V being of the form

RN\B(0,R) \iy — d. Then if/7 is the image of / under the Kelvin transform

associated with the inversion and letting f\yr) — 0, we have

On the other hand if y' is 5-regular for Df and x0' is a point in U then there ex-

ists a neighbourhood V\ of yf and X > 0 (both independent o n / ) such that

in Vi Pi Df. Thus taking the Kelvin transform we get

HftD< {XHr.v (xolY = AHf,D(x0)

in (Vi)7 Pi D. As (Vi)' is a neighbourhood of y it follows that y is S-regular

for D.

Part (ii) follows from (i) and the fact that the inversion preserves regularity

when N = 2 or y ¥= d.

When N > 2 and y — d, then the inverse of y may not be L-regular even if

y is. For instance, if D is the complement of the closed unit ball then d is

L-regular for D. However, the image 0 of d under an inversion of centre 0 is an

isolated point of FrZ)7. Thus 0 is not L-regular for Df.

Remark 5.4. A straightforward use of the definition of 5-regularity yields

the following result.

Let Q be a Green open set, y a point on dQ and x a point distinct from y. Let

Qr and yf be the image of Q and y respectively under an inversion of centre x.

Then y is 5-regular for Q if and only if y/ is 5-regular for Q'.
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6. Local /^-regularity

DEFINITION 6.1. Let Q be an open subset of RN and y a point on Fr£?. Then, y

is said to be locally B-regular (IB-regular) for Q if there exists a sequence (pn) of

positive real numbers converging to 0 such that for all n, y is B-regular for B(y,

pn)C\Q'\iy^ dQ and for

We say that Q is /B-regular if each point y of ¥vQ is /B-regular. Observe

that using Property (g), it is a simple exercise to prove that given a point

Q on ¥rQ then Q is /B-regular if and only if each point of ¥rQ is

/B-regular.

Finally, by a neighbourhood of d we mean a set of the form RN\K where K

is a compact subset of RN.

An immediate example of an /B-regular domain is the unit ball B(0, l) or the

set B(0, 1) \ {0} . In fact, for any p > 0 and any point y on S(0,l), B(y, p) Pi

B(0,l) = CD, say, is a Lipschitz domain. Hence y is B-regular for a) by Theorem

4. D. Also, it is clear that 0 is /B-regular for B(0,l)\{0}.

Now let D be a Green domain, / a resolutive function on FrZ), and y a point

on 3Z> such t h a t / is bounded in B(y,R) Pi dD for some R > 0. For each p such

0 < p <R, let

<o = B(y,p) HD

and F be a function on dw equal t o /on 9o> 0 <3Z) and to H/,D on da> Pi D. Then

(6.2) #F,M/ ~ H/f£> in a>.

Suppose that y is /B-regular for Z>. Then HFo> is bounded near y in co for some

suitable choice of p. Hence it follows from (6.2) that Hfi D is bounded near y in D.

Thus y is B-regular for D. However, we are unable to solve the converse question,

i. e. "if a point is B-regular, is it /B-regular ? "

Definition 6.1 also implies that if V is some neighbourhood of y, then y is

/B-regular for D if and only if y is /B-regular for V 0 D.

Examples of /B-regular domains.

(i) A Lipschitz domain is /B-regular.

In fact, if D is a Lipschitz domain and y is a point on 3D, there exists an

arbitrary small neighbourhood Un of y such that Un C\ D is a Lipschitz domain

(see for example [7], page 281). Thus y is B-regular for UnOD. Hence, using

(6.2), y is B-regular for B(0, pn) Pi D, where Un
 c B(0, pn). Hence y is /B-regu-

lar for Z).
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(ii) If D is a domain and y is a point on 3D such that D is in N (y), then y is

/fi-regular for D by Theorem C.

(iii) A non-tangentially-accessible domain is /S-regular (see [11], Theorems

5.1 and 3.11).

THEOREM 6.3. Let Q be an IB-regular open subset of RN and y a point on dQ.

If 0 < p < R, and u is a nonnegative superharmonic function in B(y, R) C\Q, then

there exists a superharmonic function u* in Q such that u* = u in B(y, p) 0 Q and

u* is bounded below if Q is bounded or N > 3.

Proof Let co = B(y, R) 0 Q

W= (B(y,R)\B(yfp)) H£ ( = a)\B(y,p))

and / be the function equal to u on (JW^Pl co and to 0 everywhere else. Then u is

in the upper family £//, w since u is bounded below and liminf u > / on dW.
Moreover/ is lower semi-continuous and bounded below on dW. T h u s / i s resolu-

tive for W and u ^ Hft w in W. On the other hand, simple topological arguments

show that

= dB(y,p) Hco.

Thus each point Zo of dPFPl co is regular for M^and W \s not thin at ZQ. Hence

U(ZQ) = liminf u(x) > liminf (x) > liminf f(z) = u(z0).
x^zo(xew) x->zo(xew) z—ZQ{zGdiv)

Thus the function U\ equal to u in o A ^ a n d to Hf, w in W is superharmonic in co.

Further, since Q is /5-regular, U\ is bounded in A(y, pu p2) Pi Q where p < pi p2

< R. Let k be an upper bound of U\ on S(y, p\) 0 co and o the fundamental su-

perharmonic function with pole at y. If a and b are constants such that

ao +b = k + 1 on S(#, pi) H a)

and

ao +b = — 1 on S(z/, ^2) Pi o>,

then the function aa + 6 = v say, is such that

(6.4) v > U\ on S(|/, pi) Pi O) and

(6.5) v < Ui on H

As U\ and f are both continuous in W, it follows that for each point z oi S(y, pi)

Pi a) (resp. S(#, |02)Plo)), there exists a neighbourhood of z where V > U\

(resp. f <ux) holds.
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Thus the function w* which is equal to U\ in B(y,pi) 0 Q, to min (uuv) in

A(y, pi, p2) Pi Q and to v in Q\B(y, p2) is superharmonic in Q and clearly satis-

fies the required properties.

Remark 6.6. It is important to note that the hypothesis of /£-regularity for

Q in Theorem 6.3 can be considerably weakened. In fact, from the proof we see

that it is enough to suppose that for some p\>0 such that p < pi < R, all points

of S(y, pi) Pi dQ are /^-regular for Q so that ux be bounded on S(y, pi) (~) co.

In the sequel any reference to Theorem 6.3 should be taken in this general

context.

7. Positive harmonic majorisation

For any open set Q, let HM + (Q) be the set of subharmonic functions s in Q

such that 5 has a nonnegative harmonic majorant in Q. This class of functions was

originally for half-spaces by Solomencev in [15]. Different results concerning

HM + (Q) have been established since then (see for instance [3] and [14]).

Note that HM + (Q) is also the class of all subharmonic functions 5 in Q such

that s+ has a harmonic majorant in Q.

Before giving our main theorem of this section, we recall a definition. A fami-

ly (QX)X<EA of subsets of RN is called an open cover of Fr«Q if each set Qx is open,

each point of dQ is in some Qx and when Q is unbounded (i.e. d ^ Fri2) then at

least one set Qx is of the form R^\K where K is a compact subset of RN.

THEOREM 7.1. Let Q be an IB-regular Green open subset of i?N and s be a sub-

harmonic function in Q. Suppose there exists an open cover {QX)X&A ofFrQ such that

for each X, the function s is in HM+(Qx Pi Q).Then s belongs to HM+(Q).

Proof Suppose first that Q is bounded. Since Fri2 is compact in RN, it can

be covered by a finite number of open balls {B(yi, pi), i < n) such that for all i,

B(yif 2pi) is in some Qx. For each i, let hj be a nonnegative harmonic majorant of

5 in B(yi,2pd C\ Q. By Theorem 6.3, there exists a superharmonic function Ui

in Q such that Ui is bounded below in Q by a constant k\ ^ 0, say, and such that

Ui = hi in B(yt, pi) D Q. Let
n

u = Z (Ui — ki).

Then u is a nonnegative superharmonic in Q and in B(yi, pi) Pi i2, we have

s < hi < Ui — ki < u.

The Maximum Principle now implies that s < u in Q. But if Ghm(u, Q) is the
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greatest harmonic minorant of u in Q, then we have

Ghm(w, Q) = sup{^: g is subharmonic in Q and g < u in Q}.

Thus, using 5 < u in Q, we get

s < Ghm(u, Q).

Hence Ghm(w, £?) is a nonnegative harmonic majorant of s in Q.

Now suppose that RN ^ .0 is nonempty. By Remark 5.4 it follows that if

y e 9,0 is /U-regular for .Q then its image z/' under an inversion of centre 0 and

radius £, where 0 is a point in RN\Q is LB-regular for the inverse Q' of Q. Thus

all points of dQr < {0} are /fi-regular for i2'. Moreover, for any point y' of 9i2',

including 0, there exists a neighbourhood Q'x of z/' such that s' (sf is the image

of s the Kelvin transform corresponding to the above inversion) has a nonnegative

harmonic majorant in Q{ Pi Q. Further Qr is bounded. The first part of the proof

and Remark 6.6 now show that sr has a nonnegative harmonic majorant in Qf. By

inversion it follows that s has a nonnegative harmonic majorant in Q. Now if Q is

any /J3-regular Green open set, we let B(0, R) be a ball with closure in Q and set

Q'' = Q \B(0, R). Then Qf is also /jB-regular and there exists an open cover (wa)

of FrJ2' such that s e HM + (coa Q) so that s e HM + {Q') by the second part of

this proof. There are now several ways of concluding that s ^ HM+(Q). Without

recourse to the Riesz representation theorem, we may use

LEMMA 7.2. Let Q be a Green open set and B(0, R) a ball with closure in Q.

For each function u superharmonic in Q\ J3(0, R) and k > 0, there exist a function

v superharmonic in Q and X > 0 such that

u = v - AG(0, .)

in Q\ B(0, R + k), where G (0, •) is the Green function for Q with pole at 0.

Proof. We may assume that u is real continuous in the closed annulus

A(0, R + ftf, R + k) with 0 < kf < k. Let a be the fundamental superharmonic

function with pole at 0; ku k2 and X be real numbers and define

y* =
hio + k2inB(0, R + kf)
min (fea + k2u + Xa) in A(0, R + kf9R + k)

+ XainQ\B(0, R + k).

Then V* is superharmonic in Q provided k\, k2 and X satisfy

h a(R + k) + k2 = e + sup {M(X) + Xa(x): X e 5(0, # + ft)}

fti (7(7? + ft') + ft2 = - e + inf iu{x) + ^ ( x ) : X e S(0, i? + ft')}
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for some e > 0. From the last two equalities it comes

ki = A + [2e + (sup {u(x):x e= S(0, i? + ft)}

- inf {w(.r): x e= S(0, i? + /c/)}][a(i? + /c) - a(i? + Iff)]'1.

Thus with /( large enough, we get k\ ^ 0.

Now let h be the greatest harmonic minorant of o in Q. Then

G(0,-) = a - A

so that « = *;* - ^(A + G(0,-))

Thus the required function v is given by f = v* —Ah.

We now finish the proof of Theorem 7.1 by applying Lemma 7.2 to a positive

harmonic majorant h of s in i2. We get a positive superharmonic function u in

£ and X > 0 such that

s^h = u- AG(0,-) ^u

in Q \B(0, R + k) (k is such that B(0, R + 2k) is in Q). Thus 5 has a positive

superharmonic majorant in Q and the result follows.

Theorems of the type 7.1 play an important pole in the study of several prob-

lems in the theory of functions. In particular, extensive use of these theorems has

been made in investigating the Multiplicative Cousin problem (see for instance [1]

and [16]). Later, we will consider an application of Theorem 7.1 to a "new" type

of Dirichlet problem.

We now give an example to illustrate Theorem 7.1.

EXAMPLE 7.3. Let D be the half-space {(#, y) in R2 : y > 0} and s(x, y)
= x+. Then D is /JB-regular and 5 is a positive subharmonic function in D which

is bounded near each point of dD. However, we will show that 5 has no harmonic

majorant in D. From Theorem 7.1 we then deduce that there is no neighbourhood

Qj of {A} such that 5 has a harmonic majorant in Q, C\ D. However, if we let

D' = D\ i(x, y) : x = 0 and y> a)

where a is a constant, then 5 has a harmonic majorant in D'.

To prove that s has no harmonic majorant in Z), we use a criterion due to

Kuran ([12]). For z = (x, y) in D, let

I(y)= [S(z)/[x2+ (y + l)2]dx= [~x/ [x2 + (y + l)2]dx
J R Jo
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A simple computation shows that

I ( y) — °° for each y.

Kuran's criterion now implies the non-existence of a harmonic majorant of s in D.

Now for each point Q of dZ)'\{(0, a)} , there exists R > 0 such that for

any p > 0 with p < R, the set B(Q, p) 0 D' is either a half-ball or the union of

two half-balls. Since a half-ball is Lipschitz it follows that Q is /5-regular for D''.

Moreover, for each point Q of dDf and R > 0, 5 has a harmonic majorant in

B(Q, R) f| 19' since, in fact, 5 is bounded there. On the other hand, if R' > a
and R' > 0, then s has a harmonic majorant in (RN\B(0, R')) Pi £)' since in fact

5 is harmonic there. Thus, by Theorem 7.1, 5 has a harmonic majorant in D'.

8. A Dirichlet problem in //?-regular domains

An extention of the classical Dirichlet problem was studied on the Martin

boundary by Gauthier and Goldstein ([10]). Here we redefine it for the topological

boundary.

Let D be a Green domain in RN, N > 2 and / a continuous extended real-

valued function on FrD. A harmonic function h in D is aids to be an

inner {Dirichlet) solution for / in D if h(x) has limit f(y) at all points y of FrZ).
Any such a function h will be denoted by //, D.

This is a natural extension of the classical Dirichlet problem. Thus the reg-

ularity (in the generalised Dirichlet problem (or PWB) sense) of D is necessary for

the existence of an inner Dirichlet solution for each continuous function / Howev-

er, unlike the classical Dirichlet problem, the regularity of D is not sufficient here.

Note also that when an inner Dirichlet solution exists, it is not necessarily

unique. For instance, if D is the unit ball £(0,1) , Q is a point on S(0.1), / = OQ is

the fundamental superharmonic function with pole at Q, and KQ is the Poisson

kernel at Q, then OQ + X KQ is an inner solution for f in D for all A > 0.

THEOREM 8.1. Let D be an IB-regular domain such that RN\D is not empty

and D is regular for the Generalised Dirichlet problem. Let f be a continuous extended-

real-valued function on FrD. Then an inner Dirichlet solution If, D exists if and only

if the PWB solution H/, D exists.

Proof Since D is irregular and regular, D is L-regular by Theorem. Thus if

HftD exists, then for all y on FrD

\imHfiD(x) =f(y) (xinD)
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as x tends to y. Hence Hf, D is an inner Dirichlet solution for /

Conversely, suppose that an inner Dirichlet solution //, D exists. I f / > 0, then

//, D is in Uft D' Further if fn — min(/ , n), where n is a positive integer, then fn

is real-continuous hence resolutive. Thus, using ([8], Theorem 1. VIII, 6, (e)) it

comes

Hence the PWB exists.

Suppose now t h a t / is of any sign. Since, //, D(x) tends to f(y) when x tends

to y on FrZ), the function |Z/(z>|has a harmonic majorant in some WO D

where W is a neighbourhood of y. For, if f{y) is finite then | Ift D | is bounded in

WC\ D and if | IftD | = + °° , then | IffD \ = ± If, D in WC\ D. Furthermore,

\I/,D\ is subharmonic in D. Thus, by Theorem 7.1, \I/,D\ has a harmonic ma-

jorant H in D. Hence, as x tends to a point y on FrZ)

(8.2) liminf ZZ (x) > liminf | //, D(x) \

Hence H ^ U/+, D and since / + is continuous, it follows that / + is resolutive (see

case / > 0). As (8.2) also holds when f+(y) is replaced by f~(y), it follows that

/ " is also resolutive. Thus / is resolutive i.e. a PWB solution exists.

Note that the "if" part of the theorem only uses the L-regularity of D.

We now show that //, D and Hf, D only differ by a singular harmonic function.

THEOREM 8.3. Let D be an L-regular domain and f a continuous function on

FrZ). Suppose that the PWB and an inner Dirichlet solution for f exist Then for any

inner solution If, D such that I/, D ^ Z/+, D for some Z/+, D the function Ift D — HftD is

singular in D.

Proof Suppose first that / > 0. Then Ift D is in Uf> D so that Ift D — Hfi D — 5,

say, is nonnegative in D. Moreover, as D is L-regular s vanishes at all points

of FrZ) where / is finite. Since / is resolutive the complement of this set in FrZ) is
of zero harmonic measure. Thus, if g is a nonnegative bounded harmonic minorant

of 5 in D then g = 0 in Z). Hence 5 is singular.

Again, if / is of any sign we work with / + and / " . Since / i s resolutive, then

PWB solutions for / + and / " exist. Thus, as / + and / " are continuous and D is

L-regular, it follows that Hf+, D and Hf-, D are inner Dirichlet solutions for / + and

/ " , respectively. Let hi be an inner solution for / + such that hx > Ift D. We will

now prove that the function
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(8.4) hi - If, D- Hf-, D = si, say.

is singular in D. First, note that lim (hi — //, />) = / " except at points where / —

+ °° . As hi — I/, D is bounded below, it follows that hi — If, D > Hf-, D. Thus

Si > 0 in D. Hence, as seen above, to show that 5i is singular, it is enough to

prove that 5i vanishes on FrZ)\E, where E is of zero harmonic measure. But, if

E = {y € FrD :\ f(y) \ = °°) , then it is easy to check that Si vanishes on

FrD\E. As E is of zero harmonic measure the result follows. Also, by the first

part of the proof, there exists a singular harmonic function s2 ^ 0 in D such that

hi = Hf*, D + s2

in D. Thus, using (8.4)

If, D ~ (Hf+, D "I" S2) Hf-t D Si

= Hf,D+ (52 - Si)

whence

s = If, D — Hf> D = s2 — 5i.

But

I 5 I < I 5i I + I S2 I = Si + 52.

Hence the least harmonic majorant 5* of | 5 | in D exists. Further,

5* < Si + s2

and 5i and 52 are singular. Hence Si + s2 is also singular whence 5* is singular.

This completes the proof of Theorem 8.4.

At this stage we must point out that we do not know whether any inner solu-

tion //, D satisfies the condition of Theorem 8.3. What is certain and easy to estab-

lish is that the inequality //, D < //+, D does not hold for arbitrary //, D and //+, D-
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