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SOME TYPES OF
REGULARITY FOR THE DIRICHLET PROBLEM

AMAR SADI

The question of whether the existence of a harmonic majorant in a relative
neighbourhood of each point of a boundary of a domain D implies the existence of
a harmonic majorant in the whole of D has received great attention in recent years
and has been dealt with by several authors in different settings. The most general
results to date have been achieved in [10] with the Martin boundary. In [9], the au-
thor arrives, by independent means, at the conclusions of [10] in the particular
case where D is a Lipschitz domain.

In this paper, we answer the question in domains with suitably regular topo-
logical frontiers. Our methods rely heavily on the possibility of obtaining an
extented-representation for nonnegative superharmonic functions defined near a
frontier point. This naturally led to the introduction and the study of new types of
regularity for the generalised Dirichlet problem. As well as their suitability in
dealing with the question of harmonic majorisation, they present an intrinsic im-
portance as natural extensions of the (classical) regularity. For simplicity reasons,
we will treat the finite boundary points and the point at infinity separately.

We start with a type of regularity which, although introduced in a new way,
will later be seen to be equivalent to Armitage’s strong regularity given in [2].

We first give some conventions concerning the notations.

Unless we specify otherwise, all the sets considered are subsets of N-dimensional
Euclidean space RY with N > 2.

Points of RY as well as singletons (i.e. sets consisting of one point) are denoted by
a single letter. However, points are, when necessary, expressed in terms of their
coordinates. The norm | . l is the Euclidean norm.

For a point ¥ of RY and a positive reel number #, the open ball B(y, 7) is the
set
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[xERN3 |z—y| < r]
and the sphere S(y, 7) is the set
{xE RY:|z—y| = r].
If, in addition, R > 7 then the open annulus A(y, 7, R) is the set
{xERNIr< |x—y| <R}.

For a subset E of R¥ is the finite topological boundary of E. The frontier
FrE of E is OF of E is bounded and 0E U {A} if E is unbounded, where A is the
point at infinity (i.e. the Alexandroff point). Note therefore that FrE is considered
as a subset of the compactified Euclidean space RY,

By a domain we always mean a non-empty connected open subset of R¥.

The notations Hy, E, H;, Uy,..., are standard.

Their exact definition as well as a detailed study of the generalised Dirichlet prob-
lem can be found in [8].
Finally, Property (g) refers to the property (g) given in ([8], 1, VIIL 6).

1. L-regularity

Let £ be a Green open set in RY, f a function on Frf2 resolutive for the
Dirichlet problem and Hyq the Dirichlet solution for fin £. When there is no risk
of confusion, we may write Hy instead of Hyg.

We recall that a point g, on Frf is regular (for £) if and only if for each
real-continuous function f on Fr,

(1.1 chirzl Hio () = f(yo) (zin Q).
Yo
The following theorem is known, at least implicitly.

THEOREM A. A point Yo on 082 is vegular if and only if (1.1) holds for each non-
negative real continuous function f on Fr2 such that

(1.2) f=0o0n By, R) N FrR
Jor some positive real number R.
This theorem inspired the following

DerFiNiTION 1.3. A point yo on 082 is said to be L-regular (L-for l.s.c.) if (1.1)
holds for each nonnegative, extended-real-valued, lower-semi-continuous and re-
solutive function f satisfying (1.2).
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In the sequel, all functions are supposed to be extended-real-valued unless we
specify otherwise. Our first result is a criterion for L-regularity.

THEOREM 1.4. Let 2 be a Green open set and Yo a point on 082. Then yo is L-
regular if for each function f on FrQ such that H; is harmonic
(1.5) limsup H; (x) < limsup f(y) (xin 2,y on FrQ).

I—=Yo Z-Y,
Proof. Suppose that (1.5) holds and let f be a nonnegative, l.s.c., and resolu-
tive function on Frf satisfying (1.2). Then
limsup H; (x) <0 (z in 2).
Iy,
Thus (1.1) holds for f Hence yo is L-regular.

Now assume that yo is L-regular and let f be a function on FrR with H,
harmonic in £, and let A be the value of the right hand side of (1.5). If A = + 00,
there is nothing to prove. So assume that A < + oo First, we suppose that 4 is
finite and let g = f — A. Then

(1.6) limsup g(Y) = limsup f(¥) —21=0
Y=y, Y~

and

(1.7) limsup H,(X) = limsup H,(X) — A.
Iy, -y

By (1.6), for each ¢ > 0 there exists R > 0 such that
g<c¢in B(y, R) N FrQ.
Now since f is upper resolutive, so is g. Thus there exists a function # > 0 in the
upper family U,. Let
0 for yin B(y, R/2) N FrQ.
liminf #(z) for y in Fr2 \ B (yo, R/2).

Y

Fy) =
Then F is resolutive since F is l.s.c., bounded below and # is in Upr. Since y, is
L-regular it follows that
lim Hr (x) = 0.
r—y
On the other hand, g < ¢ + F on FrQ whence
}—Ig£6+ﬁp=E+HpinQ.

Thus
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limsup Hy(x) £ + ¢ + limHx(Y) = ¢.
Yy Z—Yy

Using (1.7) and bearing in mind that € is arbitrary we get

limsup H;(x) < A.

Ty,
Now, if A = — 0 then f is continuous at ¥, For each positive integer #, let f, =
sup (f, —#n). Since f < f, for each », and using the preceding argument for f,,
we have
limsup H,(z) < limsup Hy,(z) < limsup f,(y) = —n.
-1, -y, -y,
Letting # tend to infinity, we get

limsup Hy(z) < —o = 1.

T=YQ
CorOLLARY 1.8. A point yo on 08 is L-regular if and only if (1.1) holds for all
resolutive functions on FrQ which are continuous (in the extended sewse) at the point

Yo.

Proof. The “if” part is clear, using Definition 1.3. To prove the converse, let f
be a resolutive function on Frf, f continuous at g, and assume that y is
L-regular. By Theorem 1.4.

liminf f (y) = f (o) < liminf H;(x) < limsup H,(x) < limsup f(y) = f (%o).
=Y, -1y - y—¥o
Hence
chl_{}’l Hi(x) = f(yo).

Corollary 1.8 and Theorem 1.4 show that the L-regularity, Armitage’s strong
regularity in [2] and Naim'’s complete regularity in [13] are all equivalent notions.

Using the last corollary, we give an example of an open set £ with point on
082 which are regular but not L-regular. This example was first used in [4] to
show that a resolutive function f on Fr{2 may be bounded in a relative neighbour-
hood of a boundary point without the same holding for the function Hjg.

ExampLE 1.8. For each positive integer #, let
2,=0, )X A/ (n+1),1/n)
o, = closed segment {(z, y): x=0and 1/ (n+1) <y < A/n+1/(n+1))/2}

and
2=U 2,
Let e



SOME TYPES OF REGULARITY FOR THE DIRICHLET PROBLEM 107

f= i kn Xn
n=1

where, for each %, x, is the characteristic function of a,. Since &, is of positive
harmonic measure for £2,, hence for £, the constant k, can be chosen so that the
Dirichlet solution H; of fin £ is equal to # at the centre P, of the rectangle £,.
Then H;(P,) tends to infinity as (P») tends to the point P = (1/2, 0) even
though f is identically equal to O in a neighbourhood of this point. Thus the
point P is not L-regular for £2. However the point P is regular for 2 since R*\Q
is not thin at P.

The preceding argument shows in fact that all the points of the segment
{(x,y) : 0 <x<1andy= 0} are regular but not L-regular for £2.

2. B-regularity

DerINITION 2.1, Let £2 be a Green open set and ¥ a point on 082. Then y is
said to be B-regular for £ (B- for bounded) if for each resolutive function f
bounded in B(y, R) N Frf for some R > 0 the function Hye is bounded in
B(y,) M 2 for some p > 0.

The property that Hyo is bounded near y whenever f is bounded near y will
for brevity reasons be denoted by [PB].

Using Property (g) ([8], 1. VIII, 6) we see that if there exists a neighbourhood
w of y such that y is B-regular for w () 2 then y is B-regular for 2.

Note that Example 1.8 provides an example of a boundary point which is reg-
ular but not B-regular. With few modification (see for instance [13], Section 46)
the example also shows that, unlike the set of irregular points, the set of boundary
points which are not B-regular is neither always polar nor of zero harmonic mea-
sure.

Here we prove a simple result that shows that there are points which are
B-regular but not regular.

PrOPOSITION 2.2. Let D be a Green domain and y a point on 0D. Suppose there
exists o > O such that B(y, p) () 8D is polar. Then y is B-regular for D (but not
regular). In particular any isolated point of 0D is B-regular.

Proof. Let E be set B(y, p) ( @D. Then E is polar and closed in B(y, o) so
that B(y, o)\ E is connected. As B(y, o) M D is nonempty, it follows that

B(y,p) \E C D.
Thus
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Fr(DU B(y, p)) U E = FrD.

Now let f be a resolutive function on FrD such that f is bounded in a neighbour-
hood of y. Since any lower bounded (resp. upper bounded) superharmonic (resp.
subharmonic) function in D has a superharmonic (resp. subharmonic) extension to
DUE (=DU B). It is easy to deduce from the definition of Hy p that f is re-
solutive for D U B and

H;p= Hjpus
in D. Thus, if
f on FrD\ E
F= 1 H, sus on E with B = B(y, o),

then F and f differ only on a polar hence negligeable subset of FrD. Hence for
any x in D.

(2.3) Hy, pus (x) = Hp, p (x) = Hypp(x).

As y is in DU B then Hy, pug is bounded in a neighbourhood V of y and there-
fore by (2.3) we get Hyp is bounded in V(1 D. Thus Y is B-regular for D. Howev-
er (2.3) also shows that Hy p does not depend on the value of f at the
point ¥ whence y is not regular.

We now give some useful criteria B-regularity.

PROPOSITION 2.4. Let 2 be a Green open set and y a point on 082. The following
are equivalent

(i) y is B-regular.

(ii) [PB] holds for each vesolutive function f, finite and continuous at y.

(iii) [ PB] holds for each momnegative, resolutive function f that vanishes in a
neighbourhood of y.

(iv) [PB] holds for each nonnegative, resolutive and L.s.c. function f that vanishes
m a neighbourhood of y.

Proof. 1t is clear that (i) — (ii) — (iii) — (iv)(— for implies). We only need pro-
ving that (iv) implies (i).

Let f be a nonnegative resolutive function on Fr® such that f is bounded in
B(y,R) (N 82 by a constant M. Since f is resolutive, there exists a superharmo-
nic function v in the upper family U;. By adding a suitable positive constant to v
we get a nonnegative function # in Uy.

Let F be the function
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0 for Zon B(y, R/2) 08

F@) = iminf u(@) tor Z on Fr2 \ By, R/2).

Then F is nonnegative, l.s.c. and resolutive since Hp = Hp and u is in Up. Thus
hy (iv), there exists o > 0 and k > 0 such that

Hro < kinB(y, 0) N 2.
On the other hand,

fE<M+ FonFrf.
Hence

H/,g §M+Hp9 in .Q
<SM+k inB(yp NAQ.

TuroreM 2.5. Let D be a Green domain and y a point on 0D. Then y is
B-regular for D if and only if for each neighbourhood V of y, theve exists a neighbour-
hood Vi of y such that for any resolutive function f on FrD bounded in V() FrD,
H;p is bounded in Vo (N D.

Proof. The “if” part of the theorem is clear. We now prove the “only if”
part. Let fbe a resolutive function, bounded in V() FrD. It is enough to prove the
result when f is nonnegative. Then, as seen in the proof of Proposition 2.4, if W
is a neighbourhood of y with closure in V, there exist a constant M = 0 and a re-
solutive function F on FrD such that F vanishes in W FrD and f< M + F on
FrD. Therefore it is enough to prove the result for any nonnegative and resolutive
function that vanishes in a fixed neighbourhood V of y. We will do this by contra-
diction.

Let (Vi) be a sequence of open neighbourhoods of y such that MV, = {y}.
Suppose that for each V,, there exist a nonnegative resolutive function f, and a

point yn in V,, () @D such that f, = 0in V() FrD and
limsup Hy,  (x) = +0.
I—Yy '
We normalise the sequence f, by taking

H,,, (x)=1/n

where o is a fixed point in D. Let

and g = lim gy.

m=— oo
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Since (gn) is an increasing sequence of resolutive functions, we have

By =lm H,, , =lim (> H,).
== M= n=1

Thus
Hop (@) = 2 1/mw2 < oo,
n=1

Moreover, using ([8], Theorem 1, VIII, 6, page 110) we have
Hg,D :gg,DinD

Hence g is nonnegative, resolutive for D and vanishes in V () FrD. On the other
hand, since g = f, for each # and (y,) tends to ¥ as # tends to o it follows that

(2.6) limsup H,, p (r) 2 lim (limsup Hy, , (r) = oo.
=y n—oo T—=Yn

This is now impossible since y is B-regular and the contradiction establishes
Theorem 2.5.

Note that in the preceding proof the function g may not be bounded on FrD
even if each function f, is bounded. So (2.6) does not constitute a contradiction to
the regularity of ¥ but to its B-regularity. Thus the proof does not give the bound-
edness of Hyp in a fixed neighbourhood of y in D when the B-regularity hypoth-
esis is replaced by a regularity one.

3. A boundary Harnack principle

Next we use Theorem 2.5 and an argument due to Armitage ([2]) to prove that
the notions of B-regularity and L-regularity are equivalent to boundary Harnack
principle.

TueorEM 3.1. Let D be a Green domain, ¥ a point on 8D and x, a fixed point
of D. Then y is B-regular if and only if for each neighbourhood V of y, there
exist a positive constant k£ and a neighbourhood V; of y such

(3.2) Hipo < kHyp (1)

for all x in Vo) D, and every nonnegative, resolutive function f that vanishes on

VN FrD.

Proof. The “if” part follow from Proposition 2.4, (iv). To prove the “only if”
part, let L be the vector space consisting of all resolutive functions that vanish on
V) Fr D. By Theorem 2.5, there exists a neighbourhood V, of y such that for
any fin L, H;p is bounded in V5 [\ D. For each zin V, () D, let
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T.:i— [ £@) duew = Hyp @),

FrD

Then T is a linear mapping of L into the real line R. Moreover, if we define for
each function f in L.

Il = Hp (z0)

then. || - || is a norm and L, provided with this norm, is the vector space L'(y)
where 7 is the restriction of the harmonic measure ftz to FrD. Hence FrD\Vis a
Banach space. Now, for each f in L, let

E={T.(f):xzin Vi(\ D}.

By Theorem 2.5, E; is a bounded subset of R. Hence T is pointwise (or weakly)
bounded. On the other hand, using the classical Harnack inequalities, there exists
A>0 (depending on . but not on f), such that

H, »(@) | < AHigp (20

for all f in L. Thus T, is continuous. By the Banach-Steinhauss Theorem, the set
(Ty : x in Vo (N D) is therefore equicontinuous so that there exists £ > 0 (indepen-
dent of x and f) such that

| () | < Kl f

for all zin Vo D and all fin L. We now get (3.2) by taking f nonnegative in the
last inequality.

CoroLLARY 3.3. Let D be a Green domain, Y a point on 0D and xy a point in D.
Then y is B-regular if and only if given a neighbourhood V of y there exist a
constant k=0 and a neighbourhood Vy of y such that

(3.4) Uawy S K pny(E)
for all y in Vo (\ D and any ftz, measurable subset E of FrD\ V.

Proof. Suppose that y is B-regular let E be a p,-measurable subset of
FrD\V. Then E is gs-measurable for all x in D and (3.4) follows from (3.2) by
taking f = xe.

Now assume that (3.4) holds and let f be a nonnegative resolutive function
vanishing in V() FrD. Then for all zin Vo () D, we have

Ho@ = [ f@du@ < [ f@ kdas) =k H, o).

FrD \V FrD \V
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Thus y is B-regular by Theorem 3.1.

We now deal with the connection between B- and L-regularity. As seen in
Section 2, the two notions are distinct. However using Theorem 3.1 we are able to
show that the set of B-regular points and the set of L-regular points differ only by
a set of irregular points.

TueorReM 3.5.  Let D be a Green domain, y a point on 0D, x, a point in D and V
a neighbourhood of y. The following are equivalent

(i) y is L-regular

(i) @ is regular and B-vegular

(iii) For each € > Q there exists a neighbourhood Vy of y such that

(3.6) H;p (x) <eHjp (x0)
for all x in Vo () D and all f = o, resolutive with f = 0 in V(\ FrD.

Proof. 1t is clear that (i) implies (ii). It is easy to prove that (iii) implies (i) as
follows. If (3.6) holds, then as € is arbitrary, it follows that Hy, p(x) tends to O as
x tends to y. Thus y is L-regular by definition.

We now prove that (ii) implies (iii). Suppose that y is B-regular. By Theorem
3.1 there exist £ > 0 and a bounded neighbourhood V; of y such that ¥; € V and
(3.6) holds with & instead of € and V) instead of Vi. Let V., be a neighbourhood
of y such that ¥, € Vi, g be the function equal to £ on @V, () D and vanishing
everywhere else and finally let F be the function equal to Hy, p on 8V2 () D and to
zero everywhere else. Thus, using

a(V,N\ D) < (V,NaD) U (aV, N D)
it comes that

F<gH;p(x) ond(Va(1D).
Thus, for zin Vo (D
Hy, pw = Hr, vanp () < Hg, varp (). Hy, p (20).

Now g is bounded, resolutive for ¥, () D and g is continuous and vanishes at y.
As y is regular for D it is also regular for V, {1\ D whence

IIiI_II} Hgv,op (x) = 0.
Thus for any >0 there exists a neighbourhood V; of y such that
Hg' VanD <ein V3 ﬂ D.
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Hence, if Vo = Vo (" Vs then for all x in Vi, () D, we have
H;p (xr) < e Hy, p (x0).

Note that using Theorem 3.5 we get a criterion for L-regularity in terms of
harmonic measures similar to the one given in Corollary 3.3 for the B-
regularity.

4. Examples of L- and B-regular domains
Potentials and B-regularity.

THEOREM B. Let D be a Green domain any y a point on 0D. Suppose that for each
neighbourhood V of y there exists a neighbourhood Vo of y with the property that for
any Radon measure t > 0 on D concentrated on D\V (i.e. (V) = 0), its Green poten-
tial is either identically equal to infinity in D or bounded in Vo () D. Then y is
B-regular.

This theorem is easily deduced from results in [6].

Geometrical conditions.

The next result shows that if 8D is “nice” near y, then y is B-regular.

DeriviTioN 4.1. Let D be a domain and y a point on dD. Then D belongs to the
class IV (y) if there exists an arbitrary small neighbourhood W of y such that

(i) W D is a union of a finite number of domains D;.

(i) For each domain D; there exists a ball B, containing ¥ such that B; M
0D C W and the inverse of B; N D; with respect to 8B, is in D;.

This is a slight generalisation of a notion that was first introduced by Brelot
in [5]). The expression “W arbitrary small’ is taken in the sense that for any ¢ > 0,
there exists a neighbourhood W of y such that W C B (y, ¢).

One proves, along the same lines as Brelot, that such domains satisfy a
Harnack Principle in a neighbourhood of the point y and therefore, in particular,
y is B-regular. More precisely we have the following

TueoREM C. Let D be a Green domain, y a point on 0D such that D is in N (y),
and A a fixed point in D. Then, there exist k > 0 and an open ball B(y, R) such
that

H/,D < kaD(A) Zﬂ B(y,R) m D,

for each nonnegative, resolutive function f with f= 0 on W\ F rD. where W is the
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open set given in Defimition 4.1. It follows, in particular, that y is B-regular.
We now give a geometrical condition for L-regularity. Essentially the same re-
sult has been proved in [2].

THEOREM D. Let 82 be a Green open set and y a point on 08. Suppose there exists
an open neighbourhood W of y such that W\ 2 is a union of a finite number of Lips-
chitz domains. Then y is L-regular.

5. The Alexandroff point

We will now define the notions of B- and B-regularity of the Alexandroff
point 4. Both are introduced as extensions of their respective counterpart for the
finite boundary points.

DerFNITION 5.1. Let £ be an unbounded Green open subset of RY. We say
that o is B-regular for £ if for each resolutive function f that is bounded in
(RV\ B0, R)} N Frf for some R >0 the function Hy ¢ tis bounded in
{R™\B(0, p)} N 2 for some p> O.

Similarly, we define the L-regularity of &. We say that o is L-regular for
2 if
lim H; o (x) =0
z—~d

for all nonnegative, extended-real-valued, lower-semi-continuous and resolutive
function f such that f = 0 in {R™\B (0, R) N Fr £ for some R > 0.

With basically the same proofs, we can check that most results on B- and
L-regular finite boundary points have analogues when we consider &. Of particu-
lar interest are analogues of Theorem 3.1 and Theorem 3.5.

As an example of the type of theorems we get, we give the following analogue
of Theorem 3.5.

THEOREM 5.2. Let D be an unbounded Green domain, Xo a point in D and
R > 0. The following are equivalent

(i) 4 is L-regular.

(ii) o is B-regular and regular.

(iii) For each € > 0, there exists p>0 such that

H; p (x) < e Hy, p (x0)
for all x in {R¥ \ B(0,0)} D and all f=0, resolutive with f=0 in
{R™\B (0, R)} N FrD.
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Naturally the question arises as to whether the inversion preserves B- or
L-regularity.

TueoreM 5.3. Let D be a Green domain in RY and y a point on FrD, Let D’
and Y’ be the image of D and y respectively under an imversion of centre 0.
Then

(i) o is B-regular for D if and only if y is B-regular for D’

(il) When N =2 ory # oA, then y is L-vegular for D if and only if y” is L-regu-
lar for y'.

Proof. Suppose that y” is B-regular for D’ and let f =0 be a resolutive
function on FrD such that f € 0 in a neighbourhood V of y, V being of the form
F’\B(O,R) if y=4. Then if f is the image of f under the Kelvin transform
associated with the inversion and letting f'(y") = 0, we have

H p = (Hp p).

On the other hand if ¥’ is B-regular for D’ and x,’ is a point in D’ then there ex-
ists a neighbourhood V; of " and A > 0 (both independent on f) such that

Hy p < 2 Hp p(x0)
in Vi M D’. Thus taking the Kelvin transform we get
Hyp < (A Hy,p (x)) = A Hy, p(x0)

in (Vi) V' D. As (V))’ is a neighbourhood of y it follows that y is B-regular
for D.

Part (ii) follows from (i) and the fact that the inversion preserves regularity
when N=2o0ry# 4.

When N > 2 and y = 4, then the inverse of ¥y may not be L-regular even if
y is. For instance, if D is the complement of the closed unit ball then 4 is
L-regular for D. However, the image 0 of & under an inversion of centre 0 is an
isolated point of FrD’. Thus O is not L-regular for D’.

Remark 5.4. A straightforward use of the definition of B-regularity yields
the following result.

Let £ be a Green open set, ¥ a point on 08 and x a point distinct from y. Let
£2” and y’ be the image of £ and y respectively under an inversion of centre x.
Then y is B-regular for £ if and only if " is B-regular for £’.
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6. Local B-regularity

DerFINITION 6.1.  Let £ be an open subset of RY and y a point on Fr. Then, y
is said to be locally B-regular (IB-regular) for £ if there exists a sequence (0,) of
positive real numbers converging to 0 such that for all n, y is B-regular for B (y,
on) N Qif y € 82 and for {RMBO, o)} N Qify = d.

We say that @ is [B-regular if each point y of Fr@Q is [B-regular. Observe
that using Property (g), it is a simple exercise to prove that given a point
Q on Fr2 then £ is [B-regular if and only if each point of Frf is
IB-regular.

Finally, by a neighbourhood of & we mean a set of the form k—N\K where K
is a compact subset of R¥.

An immediate example of an [B-regular domain is the unit ball B(0,1) or the
set B(0, 1)\ {0} . In fact, for any p > 0 and any point ¥ on S(0,1), B(y, o) N
B(0,1) = w, say, is a Lipschitz domain. Hence y is B-regular for @ by Theorem
4.D. Also, it is clear that 0 is [B-regular for B(0,1)\{0}.

Now let D be a Green domain, f a resolutive function on FrD, and y a point
on @D such that f is bounded in B(y,R) N 0D for some R > 0. For each p such
0<p <R, let

w=By,0 ND
and F be a function on 0w equal to fon dw () 0D and to Hyp on 0w (M D. Then
(6.2) Hp_w = H/_D n w.

Suppose that y is [B-regular for D. Then Hg, is bounded near y in w for some
suitable choice of p. Hence it follows from (6.2) that H, p is bounded near y in D.
Thus y is B-regular for D. However, we are unable to solve the converse question,
i. e. “if a point is B-regular, is it [B-regular ?”

Definition 6.1 also implies that if V is some neighbourhood of y, then y is
IB-regular for D if and only if y is IB-regular for V() D.

Examples of /B-regular domains.

(i) A Lipschitz domain is [B-regular.

In fact, if D is a Lipschitz domain and y is a point on 0D, there exists an
arbitrary small neighbourhood U, of y such that U, () D is a Lipschitz domain
(see for example [7], page 281). Thus y is B-regular for U, () D. Hence, using
(6.2), y is B-regular for B(0, p,) (D, where U, € B(0, p,). Hence y is [B-regu-
lar for D.
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(it) If D is a domain and y is a point on 0D such that D is in N (y), then y is
IB-regular for D by Theorem C.

(iti) A non-tangentially-accessible domain is [B-regular (see [11], Theorems
5.1 and 3.11).

THEOREM 6.3, Let 8 be an IB-regular open subset of RY and y a point on 08.
I[f0<p <R, and u is a nonnegative superharmonic function in B (y, R) ( 2, then
theve exists a superharmonic function u® in 2 such that u* = u in By, p) () £ and
u* is bounded below if 2 is bounded or N = 3.

Proof. Letw = By, R) N L
W= (B(y, R)\B(y,0)} N2 (=w\B(y, )

and f be the function equal to # on dW () w and to 0 everywhere else. Then u is
in the upper family U , since # is bounded below and liminf # = f on 0W.
Moreover f is lower semi-continuous and bounded below on @W. Thus fis resolu-
tive for Wand u = H, , in W. On the other hand, simple topological arguments
show that

oWNw=0By,p) Nuw.
Thus each point zo of 3W () w is regular for Wand W is not thin at z,. Hence

u(z) = lminf w(x) = liminf (x) = liminf f(z) = u(z).

I—20(xreW) T—2z0(XEW) z2—20(z2€0w)

Thus the function #, equal to # in w\W and to H;, w in W is superharmonic in .
Further, since 2 is IB-regular, u, is bounded in A(y, o1, 02) [ 2 where o < p; 02
< R. Let k be an upper bound of #; on S(y, 01) () @ and o the fundamental su-
perharmonic function with pole at y. If a and b are constants such that

ac+b=k+1onSy, o0) Nw

and
ac+b=—1onS(y, 02 N w,

then the function @ao +b = v say, is such that
(6.4) v > wuon Sy, o) N wand
(6.5) v<u onSy, ) N w.

As u; and v are both continuous in W, it follows that for each point z of S(y, 01)
N w (resp. S(y, 02) () w), there exists a neighbourhood of z where v > u,
(resp. v <wu,) holds.
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Thus the function #* which is equal to #;, in B(y, 01) () 2, to min (#,,v) in
Ay, 01, 02) N £ and to v in 2\B(y, ) is superharmonic in £ and clearly satis-
fies the required properties.

Remark 6.6. It is important to note that the hypothesis of IB-regularity for
£ in Theorem 6.3 can be considerably weakened. In fact, from the proof we see
that it is enough to suppose that for some 0;>0 such that p < p; < R, all points
of S(y, p1) (N 0L are IB-regular for £ so that #; be bounded on S (y, 01) () w.

In the sequel any reference to Theorem 6.3 should be taken in this general
context.

7. Positive harmonic majorisation

For any open set £, let HM *(£2) be the set of subharmonic functions s in £
such that s has a nonnegative harmonic majorant in £. This class of functions was
originally for half-spaces by Solomencev in [15]. Different results concerning
HM * () have been established since then (see for instance [3] and [14]).

Note that HM *(£2) is also the class of all subharmonic functions s in £2 such
that s* has a harmonic majorant in £.

Before giving our main theorem of this section, we recall a definition. A fami-
ly (82)1ea of subsets of RY is called an open cover of FrQ if each set £, is open,
each point of 02 is in some £; and when £ is unbounded (i.e. & € Frf2) then at
least one set £2; is of the form RN\ K where K is a compact subset of R”.

THEOREM 7.1. Let £ be an IB-vegular Green open subset of RN and s be a sub-
harmowic function in Q. Suppose therve exists an open cover (§2)i1ea of Fr such that
for each A, the function s is in HM*(82; (N 2).Then s belongs to HM*(£2).

Proof. Suppose first that £ is bounded. Since Frf is compact in R¥, it can
be covered by a finite number of open balls {B (y;, 0:), ¢ < #} such that for all i,
B (y;, 20;) is in some £;. For each ¢, let &; be a nonnegative harmonic majorant of
sin B(y, 20:) () Q. By Theorem 6.3, there exists a superharmonic function #;
in £2 such that #; is bounded below in £ by a constant k1 < 0, say, and such that
u; = h; in B(yt, P:) m 2. Let

M

(u; — ki)

|

1

Then u is a nonnegative superharmonic in £ and in B (y;, ;) () £, we have
sSh,-Su;—k;Su.

The Maximum Principle now implies that s < # in £. But if Ghm(%, £) is the
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greatest harmonic minorant of # in £, then we have
Ghm(u, 2) = sup{g: g is subharmonic in 2 and g < u in 2}.
Thus, using s < u in £, we get

s < Ghm(x, 2).

Hence Ghm(u, ) is a nonnegative harmonic majorant of s in &2.

Now suppose that RY = £ is nonempty. By Remark 5.4 it follows that if
y € 082 is [B-regular for £ then its image ¥’ under an inversion of centre 0 and
radius €, where 0 is a point in RM\ is IB-regular for the inverse £ of 2. Thus
all points of 82’ <{0} are [B-regular for £’. Moreover, for any point y’ of 082’,
including 0, there exists a neighbourhood £’; of ¥’ such that s” (s” is the image
of s the Kelvin transform corresponding to the above inversion) has a nonnegative
harmonic majorant in &2y () 2. Further £’ is bounded. The first part of the proof
and Remark 6.6 now show that s” has a nonnegative harmonic majorant in £2’. By
inversion it follows that s has a nonnegative harmonic majorant in 2. Now if £ is
any IB-regular Green open set, we let B(0, R) be a ball with closure in £ and set
2 =02\B(0, R). Then £ is also IB-regular and there exists an open cover (W)
of Fr@’ such that s € HM *(w, £2) so that s € HM*(£’) by the second part of
this proof. There are now several ways of concluding that s € HM *(£2). Without
recourse to the Riesz representation theorem, we may use

LEMMA 7.2. Let £2 be a Green open set and B (0, R) a ball with closure in 8.
For each function u superharmonic in 2\ B (0, R) and k > 0, there exist a function
v superharmonic in 2 and A > 0 such that

u=v— AG(Q, .)
in 2\ B, R+ k), where G(0,*) is the Green function for Q with pole at 0.
Proof. We may assume that # is real continuous in the closed annulus

AQ©, R+ kK, R+ k) with 0 <k < k. Let ¢ be the fundamental superharmonic
function with pole at 0; ki, k; and A be real numbers and define

kio+ k;in B(O, R+ k)
V¥*=1{min (kyo + k,u+ o) in AO, R+ K,R+ k)
u+ Acin 2\ B, R+ k).

Then V* is superharmonic in £ provided ki, k, and A satisfy
ki=0
kyo(R+ k) +k,=¢+sup {u(x) + Ac(x): X € S, R+ k)}
kio(R+FK)+ k= —¢+inf{u(x) + ic(x): X € S, R + k)}



120 AMAR SADI

for some € > 0. From the last two equalities it comes
ky=2+[2e+ (sup {u(x):x € SO, R+ k)}
—influ@):xz€ SO, R+ ]cR+k) —c(R+E)]N

Thus with A large enough, we get k; = 0.
Now let & be the greatest harmonic minorant of ¢ in £. Then

GO,))=0—h

so that # = v* — A(h + G(0,-))
=yp* — Ah+ AG(0,").

Thus the required function v is given by v = v* —Ah.

We now finish the proof of Theorem 7.1 by applying Lemma 7.2 to a positive
harmonic majorant /2 of s in 2. We get a positive superharmonic function # in
£2 and A > 0 such that

ssh=u—2G0,")su

in 2\B(0, R + k) (k is such that B(0, R + 2k) is in £). Thus s has a positive
superharmonic majorant in £ and the result follows.

Theorems of the type 7.1 play an important pole in the study of several prob-
lems in the theory of functions. In particular, extensive use of these theorems has
been made in investigating the Multiplicative Cousin problem (see for instance [1]
and [16]). Later, we will consider an application of Theorem 7.1 to a “new” type
of Dirichlet problem.

We now give an example to illustrate Theorem 7.1.

ExampLe 7.3. Let D be the half-space {(x, y) in R? : y > 0} and s(z, y)
= x* Then D is [B-regular and s is a positive subharmonic function in D which
is bounded near each point of 8D. However, we will show that s has no harmonic
majorant in D. From Theorem 7.1 we then deduce that there is no neighbourhood
£; of {A} such that s has a harmonic majorant in £2; () D. However, if we let

D=D\{(x,y) :x=0andy = a}

where « is a constant, then s has a harmonic majorant in D’
To prove that s has no harmonic majorant in D, we use a criterion due to
Kuran ([12]). For z = (x, y) in D, let

1= [ S@/lz*+ @+ Dde= o/l + ¢+ Dds
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A simple computation shows that
I(y) = oo for each y.

Kuran's criterion now implies the non-existence of a harmonic majorant of s in D.

Now for each point @ of dD’\{(0, @)}, there exists R > 0 such that for
any o > 0 with p < R, the set B(Q, p) () D’ is either a half-ball or the union of
two half-balls. Since a half-ball is Lipschitz it follows that @ is [B-regular for D’.
Moreover, for each point @ of dD" and R > 0, s has a harmonic majorant in
B(Q, R) M D’ since, in fact, s is bounded there. On the other hand, if R’ > «
and R’ > 0, then s has a harmonic majorant in (RY\B (0, R")) (N D’ since in fact
s is harmonic there. Thus, by Theorem 7.1, s has a harmonic majorant in D’.

8. A Dirichlet problem in /B-regular domains

An extention of the classical Dirichlet problem was studied on the Martin
boundary by Gauthier and Goldstein ([10]). Here we redefine it for the topological
boundary.

Let D be a Green domain in RY, N = 2 and f a continuous extended real-
valued function on FrD. A harmonic function % in D is aids to be an
inner (Dirichlet) solution for fin D if h(x) has limit f (y) at all points y of FrD.
Any such a function 2 will be denoted by Iy, p.

This is a natural extension of the classical Dirichlet problem. Thus the reg-
ularity (in the generalised Dirichlet problem (or PWB) sense) of D is necessary for
the existence of an inner Dirichlet solution for each continuous function f. Howev-
er, unlike the classical Dirichlet problem, the regularity of D is not sufficient here.

Note also that when an inner Dirichlet solution exists, it is not necessarily
unique. For instance, if D is the unit ball B(0,1) , @ is a point on S(0.1), f = gy is
the fundamental superharmonic function with pole at 2, and Kg is the Poisson
kernel at £, then g¢ + A Kg is an inner solution for fin D for all A = 0.

THEOREM 8.1. Let D be an IB-regular domain such that RN\ D is not empty
and D is regular for the Generalised Dirichlet problem. Let f be a continuous extended-
real-valued function on FrD. Then an inner Dirichlet solution Iy, p exists if and only
if the PWB solution Hy, p exists.

Proof. Since D is B-regular and regular, D is L-regular by Theorem. Thus if
H;p exists, then for all y on FrD

lim Hy, p (x) = f(y) (xin D)
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as X tends to y. Hence H;, p is an inner Dirichlet solution for f.

Conversely, suppose that an inner Dirichlet solution Iy, p exists. If f = 0, then
I; pis in Uy, p. Further if f, = min(f, n), where # is a positive integer, then f,
is real-continuous hence resolutive. Thus, using ([8], Theorem 1. VIII, 6, (e)) it

comes
Osﬁf'l)zgf,l)< +o0,

Hence the PWB exists.

Suppose now that f is of any sign. Since, I;, p(x) tends to f (y) when x tends
to y on FrD, the function |I; p|has a harmonic majorant in some W(\ D
where W is a neighbourhood of y. For, if f(y) is finite then | I; p| is bounded in
WD and if |I;,p| =+ oo, then |I;p| = %= I, p in W) D. Furthermore,
| I; p| is subharmonic in D. Thus, by Theorem 7.1, | I p| has a harmonic ma-
jorant H in D. Hence, as x tends to a point y on FrD

(8.2) liminf H (x) > liminf | I, 5(x)|
-y Famd’)

> limin | I p(@)| = | fw)| = ).

Hence H € Uy+, p and since f7 is continuous, it follows that f* is resolutive (see
case f = 0). As (8.2) also holds when f*(y) is replaced by f~(y), it follows that
f~ is also resolutive. Thus f is resolutive i.e. a PWB solution exists.

Note that the “if” part of the theorem only uses the L-regularity of D.

We now show that Ir, p and Hy, p only differ by a singular harmonic function.

TueoreM 8.3. Let D be an L-regular domain and f a continuous function on
FrD. Suppose that the PWB and an inner Dirichlet solution for f exist. Then for any
inner solution I, p such that Ir, p < I+, p for some Ip+, p the function Iy, p — Hy p is
singular in D.

Proof. Suppose first that f = 0. Then Iy, p is in Uy, p so that Iy, p —Hy p = s,
say, is nonnegative in D. Moreover, as D is L-regular s vanishes at all points
of FrD where f is finite. Since f is resolutive the complement of this set in FrD is
of zero harmonic measure. Thus, if g is a nonnegative bounded harmonic minorant
of s in D then g = 0 in D. Hence s is singular.

Again, if f is of any sign we work with f* and f~. Since fis resolutive, then
PWB solutions for'f+ and f~ exist. Thus, as f* and f~ are continuous and D is
L-regular, it follows that Hy+ p and Hy- p are inner Dirichlet solutions for f* and
f~, respectively. Let k;, be an inner solution for f* such that 2, = I; ;. We will
now prove that the function
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(84) hl - If, D — Hf—, p — §1, say.

is singular in D. First, note that lim (4; — Iy p) = f~ except at points where f =
+ o, As hy — I, p is bounded below, it follows that #; — I, p = Hs- p. Thus
s1 = 0 in D. Hence, as seen above, to show that s; is singular, it is enough to
prove that s; vanishes on FrD\E, where E is of zero harmonic measure. But, if
E=1{y € FrD:|f(y)| = o}, then it is easy to check that s; vanishes on
FrD\E. As E is of zero harmonic measure the result follows. Also, by the first
part of the proof, there exists a singular harmonic function s, = 0 in D such that

hi=Hsp p+s,
in D. Thus, using (8.4)
I; p = (Hpe,p+ 82) — Hp-,p — 5
=H;p+ (52— s1)

whence
S=If,D—Hf,D:SZ_Sl.
But

|3|—<—|31’+|52|=31+52-
Hence the least harmonic majorant s* ofl S | in D exists. Further,
s* < S1 + Sa

and $; and s are singular. Hence §; + s; is also singular whence s* is singular.
This completes the proof of Theorem 8.4.

At this stage we must point out that we do not know whether any inner solu-
tion Iy, p satisfies the condition of Theorem 8.3. What is certain and easy to estab-
lish is that the inequality I, p < Is+ p does not hold for arbitrary I, p and I+, p.
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