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A CHARACTERIZATION OF LOCALLY HOMOGENEOUS
RIEMANN MANIFOLDS OF DIMENSION 3

KAZUO YAMATO

Introduction

It is classical to characterize locally homogeneous Riemann manifolds
by infinitesimal conditions. For example, [Si] asserts that the local-
homogeneity is equivalent to the existence of linear isometries between
tangent spaces which preserve the curvatures and their covariant deriva-
tives up to certain orders. It is also known that the local homogeneity is
equivalent to the existence of a certain tensor field of type (1, 2) (for this
and a further study, see [TV]).

In connection with his characterization theorem, Singer raised the
following questions:

(Ql) What are the Riemann manifolds which are completely deter-
mined by their curvatures only?

(Q2) Do there exist curvature homogeneous spaces which are not
locally homogeneous?

The purpose of the present paper is to give, in the 3-dimensional
case, an explicit characterization (i.e. in terms of Riemannian invariants)
of locally homogeneous Riemann manifolds, and to give some answers to
the questions of Singer.

Our characterization is as follows: Let Μ be a connected, compact
Riemann manifold of dimension 3 and S the Ricci tensor. Assume that
the eigenvalues pu p2j ρζ of S are constant on Μ (in other words we
assume that Μ is curvature homogeneous).

THEOREM A. Suppose that pu ρ2ί ρ3 are distinct. Then Μ is locally
homogeneous if and only if the 1-form SFS— ^a,b SabSia;b vanishes. If
that is the case, then pu ρ2, ρ3 give complete isometry invariants for the
universal covering manifold of Μ.
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THEOREM Β. Suppose that two of pu ρ2, ρΆ coincide. Then Μ is locally

homogeneous if and only if the function \\FSf = £!a,6,c Sab;cSab.c is constant.

In that case, if pt = ρ} — 0 Φ pk for some distinct i,j, k, then pk, \\VS\\ give

complete isometry invariants for the universal covering manifold, and other-

wise pu ρ2, ρ3 give those.

From the proof of Theorem Β we obtain a sufficient condition for the

local-homogeneity of Μ:

PROPOSITION 5.1. Suppose that ρί = ρ2. If ρχ > 0 or ρ3 < 0, then Μ is

locally homogeneous.

This proposition (with Theorem Β) gives an answer in the 3-dimensional

case to question (Ql). We also note that the assumption of compactness

of Μ is essential in Proposition 5.1. Indeed, on R3, there exist non-

homogeneous, complete metrics with ρχ = ρ2 = — 1, ρ% = 0 ([Se], [Τ], [KTV]).

We also give examples of non-homogeneous, complete metrics on R3

which have distinct, constant Ricci eivenvalues (§ 6). These give counter-

examples in the non-degenerate case pt Φ ρ3 (i Φ j) to question (Q2).

To obtain our result we proceed as follows. The proof of Theorem A

is rather straightforward, because the assumption of the distinctness of

the Ricci eigenvalues ensures the uniqueness of the Ricci eigenvector

fields, and hence the isometry between neighborhoods of two points, if

any, is also uniquely determined. On the other hand, if the Ricci eigen-

values are not distinct, say px = ρ2 Φ ρζ, there are two possibilities: the

one where the required isometry is uniquely determined and the other

where the isometry is not uniquely determined, in other words, the iso-

tropy group is nontrivial. In order to distinguish these cases, we introduce

an isometry invariant function δ so that for a point ρ, the nontriviality

of the isotropy group at ρ implies δ(ρ) = 0, and δ being constant yields

the local-homogeneity of Μ. The function δ is expressed by S and FS,

and hence the condition that | |FS||2 be constant as in Theorem Β means

that δ is constant. The main task in the proof of Proposition 5.1 is the

proof of δ being constant, which is done by applying the geometric version

of Ε. Hopf theorem to the function δ and some elliptic operator defined

by means of Ricci eigenvector fields.

Throughout this paper, all manifolds and functions are assumed to be

of class C°°.
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§ 1. Preliminary formulas

Let U be a 3-dimensional open ball with Riemann metric < , >. Assume

that the eigenvalues pu ρ2, ρ3 of the Ricci tensor S (viewed as a tensor of

type (1,1)) are constant on U. Let (Xu Χ2, Χ3) be the orthonormal frame

field such that each Xt is the eigenvector field belonging to pt (although

such a frame is not unique in the degenerate cases pt = pj). Introduce the

functions dk

tj = (FZiXj9 Xk} on U. Then d\, = - d{k, divX, = - Σ« dL,

and the following formulas are directly verified.

LEMMA 1.1. For each i,j, I = 1, 2, 3, we have

(i, ί) Pi = - X,(div Xt) + Σ Xa(dtt + Σ &« div Χα-Σ ditdli,
a a α,&

0 \ 0 0 = - Z , ( d i v X . ) + £ X e ( d j , ) + Σ d% d i v Ζ α - Σ d ? i < % . Ϊ Φ Ι >
a a a,b

and as BianchVs 2nd identity,

Σ (Pi - 9a)dL = 0 .
α

Ιτι particular, if ρ1 = ρ2 φ ρ3, then

Hence, in the case ρχ = ρ2 Φ pS9 every integral curve for Χ3 is a geodesic,

and the divergence div Xs of Χ3 vanishes.

LEMMA 1.2. Assume that ρχ = ρ2Φ ρ3. Define δ : U-> R by the formula

δ(χ) = det(FX3\P + (ΓΖ,|Ρ)*), χ e i7,

1Ρ denotes the restriction to Ρ = (Χ8)£ ο/ ί/ιβ Zmear mapping

FX3:TX(U)-+TX(U), and (ΡΧ3\Ρ)* its adjoint Then δ is independent of

the choice (i.e. the orientation) of Χ3, and satisfies δ < 0. Furthermore we

have Χ3(δ) = 0.

Proof. Note that

δ = - 4(d3

ny - (dl2 - d\3y = 2ρ3 - (d\2 + d\,f.

Then the former parts of our lemma are obvious. By (1,2), (2, 1) of

Lemma 1.1 we have X3(d\2 + rfj3) = 0, which implies the latter part. This

expression for δ also yields

LEMMA 1.3. Let the assumption and the notation be as in Lemma 1.2.
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If 3~0, then

d*n = d\2 = ο, d\2 = dj», Ρ* = 2(d?2)
2.

In the case where <5 < 0 on U, the following lemma gives us a

"canonical" frame (Xu Χ2, ΧΆ) for the Ricci tensor S.

LEMMA 1.4. Let the assumption and the notation be as in Lemma 1.2.

Suppose that 3(χ) < 0 for any xeU. Then we can take Χ19 Χ2 so that

d\x = d\2 — d\x = 0, d\2 > d\s at every point of U, and so that d\2 + d\\ > 0

at some point of U or d\2 + d\z = 0 αί euery point of U.

Proof. Let (Yu Υ2) be the orthonormal frame field diagonalizing the

symmetric operator ΡΧ3\Ρ + (FX3|JP)*. (Since (Yu Υ2) is uniquely deter-

mined up to permutations, they are globally defined on £7.) Rotate (Yu Υ2)

by π/4 to get (Xu Χ2). Then (Xu Χ2, Ζ3) satisfies d\x = d\2 = 0. By formulas

(1,1), (2, 2) in Lemma 1.1 we have also d\x = 0. Since d\\ — d^ Φ 0 on U,

by reversing the orientation of -Xi if necessary, we may assume d\2 — d\3

> 0 on U. Moreover, if d\2 + d\3 is negative at some point of U, then

we exchange Xl9 Χ2. Then the new vector fields satisfy the desired

properties.

§ 2 . L o c a l t h e o r y f o r t h e c a s e ρχ — ρ 2 φ ρζ

Let U be as in § 1 and we continue to consider the degenerate case

pt = ρ2 φ ρ3. Let δ be as in Lemma 1.2. The purpose of this section is

to prove

PROPOSITION 2.1. // δ is constant, then U is locally homogeneous, i.e.

for any two points ρ, q of U there exists an isometry, taking ρ to q, of α

neighborhood of ρ onto α neighborhood of q.

We prepare some lemmas.

LEMMA 2.2. Assume that 3 = 0. Then ρζ > 0, and the eigenvector field

Ζ3 belonging to pd is a Killing vector field. Moreover, for any point ρ of

U there exist orthonormal vector fields Yu Υ2 on a neighborhood of ρ such

that

( 1 ) <7ί,Ζ3> = 0, [Yt,XA = 0 for ί = 1,2,

( 2 ) <[ Yt, Υ2], Ζ3> = ν > 3 , and hence

( 3 ) Ρί + Ρζ = Υάόβ - Y2(c\2) - (cl2f - (c\2f, where c% = <[ Υ4, Υ5], Yk).

Hence, the neighborhood of ρ is isometric to an open subset of the total
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space of a Riemann submersion over a surface Β with curvature ρί + ρζ,

whose fibers (integral curves for Χ3) are geodesies, and whose integrability

tensor is equal to V2p3 times the area form of Β.

Proof Lemma 1.3 implies ρ2 > 0. For any orthonormal vector fields

Xu Χ2 orthogonal to Χ3, by Lemmas 1.1 and 1.3 we have d\2 = d\s and

d^ = 0, dtz = 0 for any i. These show especially that VXZ is skew-

symmetric, and therefore Χζ is Killing. Since the problem is local, it is

easy to take orthonormal vector fields Yu Υ2 orthogonal to ΧΖ9 defined in

a neighborhood of ρ, so that [Yu Χ3] = [Υ2, Χ3] = 0. To apply Lemmas in § 1

to the orthonormal frame fields (Υί9 Υ2, Χ3), we may use the same notations

dij for the functions (FY.Yjy Yfe>, where Υ3 = Χζ. Then by Lemma 1.3, we

obtain ([Yu Υ2], Χ*Υ = 2ρζ. By replacing Υχ by —Υί9 if necessary, we may

assume that ([Yu Υ2], Χζ) > 0, and hence (2) is satisfied. Condition (3)

follows from (1, 1), (3, 3) of Lemma 1.1 and the fact d\2 + d\x = 0. The

latter part is an immediate consequence of (1), (2), (3) and the fact that

for a surface Β with orthonormal vector fields Yu Υ2, the curvature of Β

is given by (R(YU Υ2)Υ2, Yt> = Υ^\2) - Y2(c}2) - (c\2f - (c\2)\ where cjy =

(\Yi9 Yj], Yfe). This completes the proof of Lemma 2.2.

LEMMA 2.3. Assume that δ is negative constant. Then the vector fields

Xu Χ2, Χζ taken as in Lemma 1.4 satisfy the conditions d\5 = constant. In

fact, dia and d\3 are the constants determined by ρζ and δ, and other dl/s

vanish. Moreover we have ρχ = ρ2 = 0.

Proof. We know already that all the d*/s except d\2, d\l9 d\2, d\z are

identically zero. As for d\2, d]3, by the expression for δ in the proof of

Lemma 1.2, we have d\2 — d\^ = V— δ, d\2 + d\z = \/2ρζ — δ. Hence d\2, d\3

are the constants determined by ρζ, δ. Furthermore, by formulas (2, 3),

(1, 3) of Lemma 1.1 we observe that d\2 = 0, d2

n = 0, respectively. Hence

(1, 1) yields ρ1 = 0. Lemma 2.3 is proved.

We need two more general lemmas.

LEMMA 2.4. Let π be a submersion of an n-dimensional Riemann

manifold Μ onto an (η — l)-dimensional Riemann manifold Β with structure

tensors Τ, A (cf [Ο]). Suppose that the submersion π is induced by a

Killing vector field, that is, there exists a non-singular Killing vector field

f on Μ such that f is vertical at every point of Μ. Put ν = f/\\f\\, Ν = 7>.

Consider the 2-form on Μ defined by (X, Υ)^(ΑχΥ,ν} and denote it by
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the same letter A. {Then we can regard Ν, A as the vector field, 2-form

on Β, respectively.) Let π': Μ' -> Β' be another such submersion with Tf,

A', /', Ν'. Let ρ e Μ, ρ! e Mr. Suppose that there exists an isometry φ of

Β onto Β', φ(π(ρ)) = π\ρ'), such that (X, Ν) = (φ*Χ, Ν') and ΑΧΥ =

Α'φ^χφ*Υ for any tangent vectors X, Υ of Β. Then the isometry φ can be

lifted to an isometry φ of a neighborhood of ρ onto a neighborhood of

ρ' = φ(ρ).

Proof Let peM, and ϊ(ί) a geodesic in Β with ΐ(0) = π(ρ). Let

{T,(t)} be a family of geodesies such that T0(t) = T(t), and let J(t) be the

Jacobi field along ϊ determined by {ϊε(ί)}. Let ϊ(t) be the horizontal lift

of r(t) with 7(0) = ρ, and let {?.(*)} be any horizontal lift of {T£(t)} such

that fo(i) = 7(t). Let J(t) be the Jacobi field along ϊ determined by {Γ,(ί)}

Then we have

d (J(t) ν} (f(t), N}(J(t), ν) + 2(Ant)t(t), ν) .
dt

By this formula and the usual argument using geodesies, we can verify

that the lift φ is an isometry.

LEMMA 2.5. Let Xl9 Χ2, , Χη be orthonormal vector fields on a con-

nected, simply connected Riemann manifold U of dimension η. Let ρ be a

point of U. Suppose that c\5 = ([Xt, Xj], Xk} is constant on U for each

i, j , k. Then there exists a connected, simply connected Lie group G of

dimension η, which is uniquely determined by constants c\^, such that

U C G (U = G if U is complete) and ρ is the unit element of G, and such

that Xt are the restrictions to U of the left invariant vector fields Xu Xt{p)

= Χι(ρ), on G. The metric on G defined so that Xt are orthonormal is

left invariant.

Proof This is a direct consequence of the Lie's fundamental theorem

on local groups of transformations.

Proof of Proposition 2.1. First consider the case ^ Ξ Ο , Then by

Lemma 2.2 we see that every point of U has a neighborhood which is a

total space of a submersion. Applying Lemma 2.4, since Ν = 0 in this

case, we conclude that the neighborhood is locally homogeneous, and

hence so is U. Next, consider the case δ < 0. Then by Lemma 2.3 we

can apply Lemma 2.5 to identify U with an open subset of a Lie group

with left invariant metric. Hence U is in particular locally homogeneous.
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§ 3. Proof of Theorem A

Let Μ be a 3-dimensional connected Riemann manifold, and let S,

FS be the Ricci tensor, its covariant differential. Let S-FS be the 1-form

defined by (S-FS)t = Za,b Sab Sia]b.

We have to prove a lemma.

LEMMA 3.1. Assume that the Ricci eigenvalues pu ρ2ι ρζ are constant

and distinct Moreover, assume that the 1-form S-FS vanishes. Let (Xu Χ2, Χζ)

be the orthonormal frame field on the universal covering manifold Μ of Μ

such that each Xt is the eigenvector field belonging to ρ^ Then the bracket

products [Xt, Xj] are expressed as linear combinations of Xu Χ29 Χζ, whose

coefficients are constants determined by pu ρ2, ρζ.

Proof Since (PS)(Xi9 Χ,\ Xk) = (pt - p3)dj

ki, we note that the 1-form

S-FS satisfies

where d\j = (Fx.Xj, Xk). Then by the assumption S-FS = 0 and Bianchi

2nd identity, we have d)j = 0 for each ί, j . Hence, from formula (ί, i) of

Lemma 1.1 we get pt = 2d)kd
J

ki for any even permutation i,j, k of 1, 2, 3.

Using the distinctness of pi we conclude that dja, d\^ d\x are non-zero

constants, and can be expressed as functions of pu ρ2, ρζ. Therefore the

coefficients d\j — d)i of [Xu Χ3] with respect to Xk are the constants de-

termined by pl9 p2y ρζ.

Proof of Theorem A. Suppose that S-FS = 0. Then by Lemmas 2.5

and 3.1, we can regard the universal covering manifold M a s a Lie group

with left invariant metric. Hence Μ is itself locally homogeneous. The

latter part of Theorem A also follows from Lemmas 2.5, 3.1. In order to

prove the necessity of the condition S-FS = 0, suppose that Μ is locally

homogeneous. By considering a suitable finite covering manifold, we may

assume that the Ricci eigenvector fields Xu Χ2, Χζ are defined globally

on Μ. Then clearly div Xt are constant. By the compactness of Μ we

get div Xi = 0. These and Bianchi 2nd identity yield ά)Ί = 0 for each

i, j , and hence S-FS = 0. This completes the proof of Theorem A.

In the noncompact case, we have the following criterion for the

homogeneity of Μ.

THEOREM 3.2. Assume that the Ricci eigenvalues pu ρ2, ρζ are constant



84 KAZUO YAMATO

and distinct. Then Μ is locally homogeneous if and only if the symmetric

tensor Τ = (S-FS)(g)(S-FS) satisfies the conditions tr ϊ 7 = constant and

[S, Τ] = 0, where [S, Τ] denotes the 2-form ^ ( S ? ? ^ - T<tSaj).

Proof Note that the condition [S, Τ] = 0 means that at least two of

div Xt vanish, and recall the following fact. For any 3-dimensional non-

unimodular Lie group G with left invariant metric, if the Ricci eigenvalues

are distinct, then two of dive/s of the eigenvector fields et vanish ([Μ,

p. 321]). Then the similar argument as before proves our theorem.

§ 4. Proof of Theorem Β

We now discuss the degenerate case ρι — ριΦρζ Theorem Β is an

immediate consequence of the following assertion (If ρί = ρ2 = ρ3, then

Theorem Β holds clearly, because in that case Μ is a space of constant

curvature).

THEOREM 4.1. Let Μ be a ^dimensional, connected, complete Riemann

manifold. Assume that pu ρ2, ρ3 are constant, and now assume that ρχ =

ρ2 φ ρζ. Define δ : Μ—> R by the formula

where \\FS\\2 = 2 a , 6 , c Sab>cSab.c. Then δ<0, and the necessary and sufficient

condition for Μ to be locally homogeneous is that δ is constant If δ = 0,

then ρ3 > 0, and the isometry class of the universal covering manifold Μ of

Μ is determined by ρχ, ρ3. If δ is negative constant, then pi = ρ2 = 0, the

manifold Μ is a Lie group with left invariant metric, and the isometry

class of Μ is determined by ρ3, δ.

Proof Clearly, if Μ is locally homogeneous, then δ is constant. To

prove the converse, note that the function δ is nothing but the function

defined in Lemma 1.2. Then by Proposition 2.1 we see that the constancy

of δ ensures the local homogeneity of Μ. To prove the latter parts,

suppose that δ — 0. Then Lemmas 2.2 and 2.4 imply that the isometry

class of Μ is determined by pu ρζ. In the case δ = negative constant,

Lemmas 2.3 and 2.5 prove our assertion.

§ 5. G l o b a l t h e o r y f o r t h e c a s e ρχ — ρ 2 φ ρ ζ

There are some cases in which only the constancy of pu ρ2, ρ3 ensures
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the local homogeneity of Μ. Indeed, we shall prove

PROPOSITION 5.1. Let Μ be a ^-dimensional, connected, compact Rie-

mann manifold with constant Ricci eigenvalues pu ρ2, ρ3. // ft = ρ2, and

if ρ\ > 0 or ρ3 < 0, then Μ is locally homogeneous.

In order to prove this proposition we may assume that ρχ = ρ2ψ ρζ.

Then we have the function δ: M->R defined in Theorem 4.1, which coin-

cides locally with the function δ in Lemma 1.2. Thus, to prove the local

homogeneity of Μ it suffices to show the constancy of δ. This comes

from

LEMMA 5.2. Let Μ be as in Proposition 5.1, and assume that ρχ = ρ2

=£ft.

( 1 ) // ρζ < 0, then δ = negative constant, and ρχ = ρ2 = 0.

( 2) If ρ, = 0, then δ ΞΞ 0.

( 3) If ρ, > 0, ίΛβη δ = 0,

( 4) If ρχ = 0, then δ = constant.

To prove Lemma 5.2 we prepare a lemma.

LEMMA 5.3. Under the same hypothesis as in Lemma 5.2, if δ(χ) < 0

/or all xe Μ, then we have pt = ρ2 = 0.

Proof Let Xl5 Χ2, Χζ be the orthonormal vector fields on some finite

covering manifold Μ of Μ such that Χ3 is the eigenvector field belonging

to ρζ and Xu Χ2 are locally as in Lemma 1.4. Then by the choice of Χί9 Χ2

the functions dk

tj = (FZiXj} Xk} : M->R satisfy

d\, = dl = djx = d t = rf3

2x = 0, ft = 2 d ^ 3 ,

3 = - (d;a - dJa)*, d ? 2 > ^ 3 ,

and satisfy

du + d\3 > 0 at some point of Μ or dja + d\3 = 0.

Hence (1,1) in Lemma 1.1 becomes ft = Xx(d\2) - (d\2f + X2(d2

n) - (d\x)\

By integrating this formula over Μ we obtain ρλ = 0, because the right

hand side can be written as div(dl2X1 + ά\λΧ2).

Proof of (1), Lemma 5.2. Assume ρζ < 0. From the expression for δ

in the proof of Lemma 1.2, we see that K O o n M . Let Χ1? Χ2> -Xi, dfy

be as in the proof of Lemma 5.3. Then the functions d\5 satisfy the same
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properties as before. We contend that d\2, d\s are constant. This and

Lemma 5.3 will prove (1). Now, since ρζ = 2d\2d\z and Χ%(δ) = 0, we see

that c?i2, c?23 are X3-invariant. Hence by (3,1), (3, 2) we see that the function

d\2 satisfies the differential equation (X^f(d\2) + (p3/2)d\2 = 0. Hence, for

each integral curve c(t) of Χ3, the function d\2{c{t)) is of the form constant

e^-p^t + constant β-^-η^κ Therefore, since Μ is assumed to be compact,

the bounded function d\2 has to be identically zero. Similarly, d\x = 0.

Using (1, 3), (2, 3) we conclude that d3

12, d\3 are constant, as desired.

Proof of (2), Lemma 5.2. Assume that ρ3 = 0, and assume on the

contrary that δ ^ 0. Now, consider the open submanifold Μο = {ρ e Μ\δ(ρ)

< 0} and the vector fields Xu Χ2, Χ% on some finite covering manifold Μο

of MQ as in the proof of Lemma 5.3. Then we have the functions d\s =

(VXiXj9 Xky : Μο -> R satisfying the same properties as before. By the

assumption ρό = 0, using the latter part of the properties in Lemma 1.4,

we get d\2 > 0 and d\z == 0. Then (2, 3) of Lemma 1.1 yields d\2 = 0, and

hence by (1,1) we get ρχ = X2(dn) — (dn)2- Furthermore, by (1, 3) we have

-̂ 2(̂ 12) — d\xd\2 — 0. We contend that ρχ < 0. In fact, let ρ be the point

where δ takes its minimum. Then d\2 is maximal at ρ, and hence X2(d\2){p)

= 0, and {X2)\d\2){p) < 0. Therefore d2

n(p) = 0, X2(d2

n)(p) < 0, and hence

ρί < 0. Recalling the assumption ρί Φ ρζ, we get ρχ < 0. Thus we can

consider the non-empty open set V = {ρ e Μο\(dn)2(p) < — p j . We shall

show that the volume of V is infinite. This contradiction will prove our

assertion (2). To estimate the volume of V, we denote by p(t) the integral

curve for Χ2 through a point p. We contend that for any point ρ e V,

the curve p(t) is defined for all t e R, and that p(t) e V for all t. In fact,

from the differential equation ργ = X2(dlx) — (d^f and the initial condition

\du(p)\ < V— pu

 w e observe that \d2

n(p(t))\ < V— pi as far as p(t) is defined.

Hence, from the differential equation X2(d3

12) — d2

nd
3

12 = 0 we see that the

function dl2(p(t)) = V— $(p(t)) does not accumulate to zero in finite t.

Consequently, the curve p(t) is defined for all t and lies in V, The above

argument also shows that Χ2 is transversal to the 2-dimensional sub-

manifold Vo = {peMQ\d2

n(p) = 0}, and each curve p(t) in V intersects

with Vo once and only once. Furthermore, for any curve p(t) starting

at ρ e Vo, we have (div X2)(p(i)) = - ά2

η(ρ(ί)) > 0 for any t > 0. Thus we

have to conclude that the volume of V is infinite, as desired. Assertion

(2) is proved.
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Proof of (3) and (4), Lemma 5.2. Assume that ρχ > 0. By (1), (2), in

order to prove (3), (4), we may assume that ρζ > 0. Now, suppose that

δ ^ 0. Then we can consider the submanifold Μ_ = {pe Μ\δ(ρ) < — ε}

with some small ε > 0 and the vector fields Xu Χ2, Χζ on some finite

covering manifolds Μ_ as in the proof of Lemma 5.3. Noting that the

functions d% = (VXiXjy Xk} : Μ_ -+ R satisfy the same properties as in the

proof of Lemma 5.3, we see that the assumption ρ3 > 0 yields d\2, d\3 > 0,

and from (2, 3), (1, 3) of Lemma 1.1 we have Xx(d\^ = - d\2(d\2 - d\3)y

X2{d\2) = d2

n(d\2 — d\3). We contend that the inner product of the vector

field d\2Xx + d2

nX2 and the vector field gradd is given by

(d\2Xx + d\xX2, grad δy = 4(di2 + ^23)1— — ———I 8 ,

which is clearly nonpositive at every point, and which is zero if and only

if d\2 = d2

n = 0. In fact, applying Xu Χ2 to ρζ = 2dl2dl3, we have Χχ(ά\2)

= {d\2jd\3)d\2{d\2 — d\3), X2(d\3) = — (dl3/dl2)d2

n(dl2 — dl

23). Then our con-

tention is easily verified. Now we can prove assertion (3). Since pt =

diw(d1

22Xi + d\xX2), integrating ρλ over Μ_ and using the integral formula,

we get

~ Γ 1

A vol(M_) = {d\2Xx + d2

nX2, grad δ) — .
JdM- II grad 5II

Since the integrand of the right hand side is nonpositive as proved above,

we obtain ρχ < 0. This contradiction proves (3). In order to prove (4), it

suffices to verify that d\2, d\3 are constant and hence that d\2 = d2

n = 0.

This also follows from the above integral expression. Indeed, if ργ = 0,

then the integrand has to be zero identically on the boundary, and hence

d\2 — d\x = 0. This proves (4) and completes the proof of Lemma 5.2.

Lemma 5.2, (1) has the following corollary:

PROPOSITION 5.4. Let Μ be a compact Riemann manifold with constant

Ricci eigenvalues pu ρ2, ρ3. If ρχ = ρ2ψ ρζ and ρζ < 0, then ρχ = ρ2 = 0.

Remark. Proposition 5.1 still holds for non-compact but comlete Μ

with pi = ρ2> 0, ^3 = 0. This fact is essentially proved in [Se]. In our

notation in the proof of Lemma 5.2, (2), this is verified as follows: It

suffices to prove δ = 0. Let ρ e Μο, if any. By (1,1), (1, 3) we observe

that the function d\2(p(t)) is of the form
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const

cos(V/0i t + const) '

where p(t) is the integral curve for Χ2 through p. This expression shows,

on the one hand, that the curve p(t) does not approach the boundary of

MQ, and hence that p(t) is defined for all t9 and on the other hand, that

the function d\2{p(t)) is not defined for some t. This contradicts to the fact

that d\2 is defined on the whole Μο. Consequently Μο — 0, i.e. 5 = 0, as

desired.

Note that Proposition 5.1 does not hold generally in the noncompact

case. In fact, there exist examples of non-homogeneous, complete metric

on R3 with ρχ = ρ2 = — 1, ρζ = 0 ([Se], also [Τ]). Κ. Sekigawa found these

examples in his study of Nomizu conjecture in dimension 3. Moreover,

the recent result by 0. Kowalski, F. Tricerri and L. Vanhecke ([KTV])

asserts that the set ^ ( R 3 ; — 1, — 1,0) of isometry classes of complete

metrics on R3 with Ricci eigenvalues ρί = ρ2 = — 1, ρζ = 0 is infinite

dimensional. On the other hand, Proposition 5.1 (with Theorem Β) implies

that the set ^ ( S 3 ; ρί9 pi91), 0 < ρί = ρ2 Φ 1, for example, is just one point

(the isometry class of some left invariant metric on SU(2)). We will also

see that the set Jt(M\ pup2, — 1) for compact Μ is empty if 0 Φ ρχ = ρ2

Φ — 1 (Proposition 5.4). Much yet remains to be studied about the set

Jt(M\ pu ρ2, ρζ).

§ 6. Some curvature homogeneous metrics on R3

We give 3-dimensional, complete Riemann manifolds (diffeomorphic to

R3) which are not homogeneous, but have distinct, constant Ricci eigen-

values. To give such examples, let pu ρ2, ρ3 be three distinct real numbers

such that the numbers

A — Pi + Ρζ — Ρζ Ώ — Pi ~~ fo Γ — — (pi + Ρζ)(ρ* — pit
Λ ? j_, 9 ^ _ ,

Δ Ρζ — pi \p2 — Pi)

satisfy the inequalities A > 0, C> 0, A + BC> 0. Then there exists a

complete, non-homogeneous Riemann metric g on R3 with constant Ricci

eigenvalues pu ρ2, ρ3. In fact, consider the vector fields Xu Χ2, Χζ on R3

defined by

•y Ο γ 3
1 ~lx' 2 = ly'
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X. = - | - + (χφ(ζ) + yfiz))^- + (xg(z) + Βγφ{ζ))^
dz dx dy

where φ(ζ) is a solution of the differential equation

& + (1 + Β)(φ2 - C) = 0 satisfying φ2 < C,
dz

and /, g are the functions chosen so that

P-g> = 2(Pl + (l + B)C), (/+£)2 = 4(Α + Β#), f+g>0.

Specifically, if Pl = - 5/6, ρ2 = 7/12, ρζ = - 9/4, then

Let g be the Riemann metric on R3 such that Xu Χ2, Χ3 are orthonormal.

Then the Riemann manifold (R3, g) is complete and non-homogeneous, but

has constant Ricci eigenvalues pl9 ρ2, ρ3. The completeness follows from

the fact that there exist constants Κ, L such that

for any tangent vector Υ = ud/dx + vdjdy + wd/dz at (χ, y, ζ) satisfying

g( Υ, Υ) = 1. Since div Χ3 = (1 + Β)φ is nonconstant, the non-homogeneity

is obvious.

Finally, we should mention the following

PROBLEM. Give a compact connected Riemann manifold of dimension

3 which is not locally homogeneous, but has constant Ricci eigenvalues.

This seems to be difficult, but is interesting as a problem of global

analysis on manifolds.

REFERENCES

[KTV] 0. Kowalski, F. Tricerri and L. Vanhecke, Curvature homogeneous Riemannian
manifolds, preprint.

[Μ] J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in
Math., 21 (1976), 293-329.

[0] Β. O'Neill, The fundamental equations of a submersion, Michigan Math. J., 13
(1966), 459-469.

[Se] Κ. Sekigawa, On some 3-dimensional Riemannian manifolds, Hokkaido Math.
J., 2 (1973), 259-270.

[Si] I. Μ. Singer, Infinitesimally homogeneous spaces, Comm. Pure Appl. Math., 13
(1960), 685-697.



90 Κ. YAMATO

[Τ] Η. Takagi, On curvature homogeneity of Riemannian manifolds, Tohoku Math.
J., 26 (1974), 581-585.

[TV] F. Tricerri and L. Vanhecke, Curvature homogeneous Riemannian manifolds,
Ann. Sci. 6cole Norm. Sup., 2,2 (1989), 535-554.

Department of Mathematics
College of General Education
Nagoya University
Chikusa-ku, Nagoya Ι^β^-ΟΙ
Japan




