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KIRILLOV MODELS FOR DISTINGUISHED REPRESENTATIONS

COURTNEY MOEN

§ 0. Introduction

In the theory of automorphic forms on covering groups of the general
linear group, a central role is played by certain local representations
which have unique Whittaker models. A representation with this property
is called distinguished. In the case of the 2-sheeted cover of GL2, these
representations arise as the the local components of generalizations of the
classical ^-function. They have been studied thoroughly in [GPS]. The
Weil representation provides these representations with a very nice
realization, and the local factors attached to these representations can be
computed using this realization. It has been shown [KP] that only in
the case of a certain 3-sheeted cover do we find other principal series of
covering groups of GL2 which have a unique Whittaker model. It is
natural to ask if these distinguished representations also have a realiza-
tion analgous to the Weil representation.

In this paper we investigate this question by constructing explicit
Kirillov models for the distinguished principal series of the 2-sheeted and
3-sheeted covers of GL2 over a p-adie field. In the case of the 2-sheeted
cover, we find that the action of the Weyl element is given by a very
simple formula. We use this formula to give a new computation of local
L and ε-factors, the previous method in [GPS] relying heavily on the Weil
representation. For the 3-sheeted cover, we calculate the action of the
Weyl element, but it appears that the formula does not simplify, leading
us to believe that there is no local analogue of the Weil representation
in this case.

One ingredient of these calculations is the evaluation of Salie's sum
over quotient rings of the ring of integers in a p-adic field. In this paper
we carry this out by a direct calculation. It can also be shown that the
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classical evaluation of this sum is a simple consequence of the equivalence

between the Kirillov model and the Weil model of the distinguished

principal series representation of the 2-sheeted cover of GL2.

§ 1. Preliminaries

1.1. Notations
Let k be a p-adie field containing the n-th roots of unity μn. Let Θ

denote the ring of integers, & the prime ideal, and °U the units, τ will

denote a local uniformizing parameter. Let k = ΘjέP, let q be the cardi-

nality of k, and let v be the normalized valuation on k. Let 1 be an

additive character of k of conductor Θ. Let £?(k) denote the space of

locally constant, compactly supported functions on k. ( , •) will denote

the n-th order Hubert symbol on k.

1.2. The metaplectic groups
Let G = GL(2, k). Define

χ((a b\\ fe, if c φ 0
\\c rf// Id, if c = 0 ,

For 0 < c < 7i, define a cocycle on G by

/»<•>&,A) -

These define extensions G(c) of G. They are realized as the set of pairs

(g, C), with g e G and ζ e μn, with the multiplication defined by (g, ζ)(g', ζf)

= (gg',ζζ'βic)(g,g')). We will usually write G and β for G(c) and j8(c).

Further properties of the cocycle and the group G can be found in [KP].

Let ^ = N =

/exj, and Z = {(z, ζ)\ze Z, ζeμn}. Note

that β splits over JV. Let M; = ( ^ JY For Λ = ^ ^ °Y ζ ) e l , let

andJB = AiV. Let Z =

δ(h) = (a6" ! | i /2. For g e G, we will sometimes denote (g, 1) by g.

1.3. The principal series

Let μ be a genuine d-dimensional representation of Jί. Extend μ to

B by /5(d7i) = //(α). The principal series representation Hβ = Ind|/i is the

space of locally constant functions /: G-+Cd such that f(ήhg) = δ(h)fi(h)f(g),
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where heA,neN. G acts on Hβ by right translations. Since functions

in this space are determined by their restrictions to the group

{<»-•< ΰ
we define φf(x) = f((w-\l)(^ *)). For feHμ, \x\β(Jβ °M), l))^(x) is

constant for large \x\. Let kp be the space of all locally constant functions

φ on k such that I^I/^((Q -X l)φ{x) is constant for large \x\. For φ e kβ,

define the Fourier transform of φ by

φ{x) = Σ f φ(y)x(χy)dy.
n e ^ Jv(|/)=n

The mapping 0 -> φ is injective for all μ if τι > 1, since ^ = 0 implies φ

is constant, which is possible only if/ίΠf . A l j ^ l x l " 1 / for \x\ large,

which never happens if n > 1. We thus obtain a representation of G in

the space ^ = {φ \ φ e k~}. The action T^ of G on ^ is given by

(1.3.1) f,((J J),

(1.3.2) f,((« J), ψ ( x ) = lαft"1!1^* jj), (α, α

(1.3.3) f , ( ( _ J J), ψ ( x ) = I Jβ(z, x)φ(z)dz,

where

§ 2. The two-sheeted cover

We now proceed to examine the two-sheeted cover of G. To be con-

sistent with [GPS], we take the cocycle corresponding to c = 0 and denote

it simply by β. We note that /3ίL Λ9 (^ iλ\ = (α, d').

2.1. Representations of A
Let
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We choose the ordered set of coset representatives of AQ in A to be

β is trivial on AQ X Ao, and so AQ is abelian and its genuine characters

are of the form fio[\r\ Λ)> M ~ ΐμii^frid), where μx and μ2 are characters

of kx. Now form μ = ϊnάjoμ0 with respect to the above set of coset

representatives, μ will denote the character μφϊ1, and we will sometimes

write β(μ19 μ2) for μ to denote the dependence on μi and μ2.

2.2. Intertwining operators

Given μ1 and μ2, define a representation of A by μ(μl9 μ2)
w(a) =

fi{μ\> μ2){wάw~x). The representations T^ and Tμw are equivalent, the equi-

valence I: Hβ —> Hμw being given by

= ί φ(wng)dn ,
J N

the integral converging if μ is ramified or if μ(x) = |x|α, with Re(α) > 0.

The representations /?(#2, μ) and ^(//j, ^ 2 ) ω are also equivalent. We have

Xβ(μ2, μ,) = /2(/ij, ̂ 2)
WX, where

~yr

a o o o
0 0 (r, r) 0

0 1 0 0

0 0 0 1

With respect to the form (v, w} = Σt-i VίWt on C4, the contragradient of

β(μu μ2) is fi(μϊ\ μϊ1). If we let (v, w) = <u, X^w}, then (/J(Λ)υ, fiw(h)w) =

(υ, w) and /< and /i™ are contragredient with respect to the form (v, w).

Now form

on flp X HpW. We have the intertwining operator I: Hβ -> HβW, so we may

form, for φu φ2eHμ,

{φ»Iφd= ί AΦi(g),Iφι(g))dg.
J B\G

Switching to functions on k, this becomes
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(2.2.1)

We have

J<*K $*M< $)>*•

where /;(*) =

(2.2.3) f

But (2.2.2) equals

/i(y)

i o oo
0 (r,y) 0 0

0 0 (τ,y) 0
10 0

[(lί)=l(2)
μ(y)

0

0

0

0

\y\

0

0 ^

μ(τ)

ry) 0

r)

0

0

0

0

0

Our goal is to find the explicit intertwining operator in the Fourier

transform realization. We need to find an operator J such that (2.2.1)

equals </i,X"1j/2> Plugging (2.2.2) into (2.2.1), using (2.2.3), and assum-

ing that μxμ2X{x) = |x|r, we find an operator J on kx so that if v{y) = 0(2),

J{y) = \y\-7

For v(y) = 1(

•

2),

J(y) = bΓ r

1
1

A

V

— <7

0

0

Γ(2r)

0 (Ϊ

0 q

0

ς

\ r-i/2

0

-, y)c(τ

1 -

0

0

0 (r,

r"T(2r)

o

)gr-I/2 ςr(τ,

< Γ 2 '

0 /ί!/<2('

r)Γ(2r)

0

o

0

\ 1 — <7^'
1 /^ — 2Γ
x — ^

y)c(τ)qr-1/2

0 (

~)σϊ -l/2

0

0

1 — c r 1

1 - 9 r J

0 '

0

0

7-Tί2rt

•

Recall that for a character π of ^ x , we have the gamma function Γ(π)
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defined as in [T], p. 48. Any such π can be decomposed uniquely as π(x)
= π*(x)|x|", where π* is the character of k* given by π*(x) = π(u) if x = uτπ,
ueU. If π is ramified of conductor h > 1, then Γ(π) — ct*qh<-°"m, where
|c,.| = 1. For aeC, Γ{a) will denote Γ(\ \"), and c(τ) will denote cs», for
π(x) = (T, X). Note that c(τ)2 = (τ, — 1) = (τ, r). If π is unramified, π(x) =

|x| , aφO, then Γ(TΓ) = 1 ~ 9°"'.

Now suppose Γ = 1/2, the case of interest. If v(y) Ξ 0(2),

and if v(y) = 1(2),

1

0

0

0

0

0

0

0

0 μιμi(τ)(τ,y)c(τh
0

0

0

0

0

1

Ay) = 1-1/2

0

0 (τ,y)c(τ)

0

10

,1/2

γ-1/2

0

o
(τ,y)c(t) 0

0 0

2.3. The image when T = 1/2
We can realize Hβ as the space kβ of all locally constant functions

φ on k such that |* |J"((Q x-i)>l)φ(χ) ^s constant for \x\ large. For 1 <

I < 4, define

gt{x) =

10,

Here eh is the l-th. standard basis vector of C*. Suppose that for |x|

large, \x\β(lβ χ-i), l W ) = ^eC i . Write i; = Sί-iWA, and let ψ(x) =
f ° r 1*1 large,Σί-i

Σ
zi

, = Σ
zi

so for |x| large, ψ(x) = 0. Clearly, ψ(x) e ^(k). Any φ e kβ is thus of the
form φ(x) = ψ(x) + Σί=i îgi(x) for some ψ e ^(k). Taking Fourier trans-
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forms, φ(x) = ψ(x) + Σί«i*Ά(*).

A calculation shows that for v{y) = 0(2) and T = 1/2, we have

95

0

0

τ, y){τ,

and for v(y) = 1(2) and γ = 1/2,

My) =
i-g-1

0

0

0

If hΛ(y) = ^(y) - βt, then J(y)A,(y) = 0 for all y e &\

Similar calculations yield functions hτ on &x, 2 < / < 4, so that

£ι(y) = ht(y) + θj(y), where α;(y) = aιΛ if v(y) = i(2), i = 1, 2, and al}{ are

constants. For each Z, Jiyty^y) = 0 for all y ekx.

Choosing 0 6 kβ, writing φ = -ψ + XJJ.j fig ;, and applying the operator

J, we obtain Jφ = J ψ + JJ^ ^Djα,. For v(y) = i(2), write

(2.3.3)

Then for v(y) = 0(2),

8,

J(y)a(y) =

τ, y)c(τ)d0 ~\

0

0

and for u(y) ΞΞ 1(2),
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2.4. The Kirillov model

In this section we assume μ(x) = μφi\x) = \x\y\ and we undertake a

preliminary study of the Kirillov model. We already have an explicit

realization of the image of kp when 7 = 1/2 under the intertwining oper-

ator J. We denote this image by rβ.

Define an operator g on r, by */(y) = |y|1/2/2w((J °), (y,y))/(y). Let

α(y) be as in Section 2.3. Then a calculation shows that if v(y) ΞΞ 0(2),

(2.4.1) (gJaXy) = μiy)

τ, y)c(τ)δQ

0

0

τ, τ)c(τ)aQ + δo(τ,y) .

Notice that row (4) = Xΰ row(1), where XQ = μίμ2(τ'1Xτ9 τ)c(τ). If v(y) = 1(2),

we have

(2.4.2) = μi(y)
0

0

L(τ,

In this case, row (4) = Xi row(l), where Xx — μ%(τ'2)qy\τ, r)c(τ). Since

μψϊι(x) = \x\m, we have Xo = Xx. We will simply denote this quantity

by X from now on.

Define an operator <g on gJkβ by (^h)(x) = hx{x), the first component

of h(x) in C\ By the above calculations, <^~1 exists, and for a function

**)

0

0

iμiiτ-'Xτ, τ)c(τ)s(x).

and define an action ft of G onWe let ϋΓ^) =

<€β\ i.e., π{g) =

PROPOSITION 2.4.1. For φeK(rβ), nίfe ξV

Proo/. Let / = g-^φ e J^~ T h e n

via the map
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-WG
But

we °

by (1.3.2)

O ax αx
- ( i f V

0

0

l / ^ " 1 ) ^ , τ)c{τ)φ(ax).

The first component of this is just φ(ax), which completes the proof if

6 = 0. A similar argument, using (1.3.1), does the case a = 1.

The following proposition is Proposition 3.3.4 in [GPS].

PROPOSITION 2.4.2. Near 0, any ξ e K(rβ) is a linear combination of

characters (aiy)μί(y), where aekx/kx\ Sf(kx) thus has codίmension [kx: kχ2]

in K(rβ).

Proof. We apply <βgj to functions of the form (2.3.3). For ψ e £f(k)9

ΉSJψ vanishes near zero. (2.4.1) and (2.4.2) give formulas for (£Ja)(y).

Combining these into a single formula and applying #, we have

τ, y)c(τ)δ0)

1 ( 1 -

which is the desired linear combination.

2.5. The action of in K(rP)

Recall that for any geG, feK(rp), we have
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(π(g)f)(t) =

Using (1.3.3), we see that

(2.5.1) (f (ω, lK-^-'/X*) = Γ«/,«(«,

ί /(«) 1
0
0

(Recall that X = μ^iτ^Xτ, τ)c(r).)

In order to simplify (2.5.1), we need some explicit expressions for

Jpa(u, t). Recall that for μ e kx,

du.

If we denote the matrix JfV(u, t) by Jtj(u, t), a calculation shows that

(2.5.1) equals

f(ύ)du

<Jn(u, t) + Jn(u, t)(u, τ)X

0

0

μ, t) + JJμ, t)(u, τ)X

0

Jn{u, t)μi(τ-1) + Jn(u, ήμfcXu, τ)X

J32(u, t)μ{τ'x) + J33(u, t)μι(τXu, τ)X

0

f{u)du.

Applying <gg, we see that if v(ί) = 0(2), π(ω, ί)f(t) equals

(2.5.2) A-Ur^O { (1 + (β. «))lu\-1»μι(u-%Tιι(u, t) + Z(u, T W U , t))f(u)du.

If v(ί) = 1(2), it equals

(2.5.2) 1 | trμi(tτ) J (1 - (e, w))| ul-^ίu-'XJ^B, ^ ( r " 1 )

+ JJu, t)μx(τ){u, τ)X)f(u)du.

In the next sections we will further simplify these expressions.

2.2. Salie's sum over G\SPm

In this section we evaluate some sums we need to simplify the formulas
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for π(w, 1) in the Kirillov model.

Let SI = Θl&m, m>l. Let μ be a character of M*9 the units of SI.

Let n be the conductor of μ. We will denote a coset JC + &m simply by

x. Let ψ be an additive character of 9t of conductor m, i.e., ψ is non-

trivial on &fm'1lStm.

For * e #*, let S,(x) = Σ«eW

PROPOSITION 2.6.1.

(1) If m is even, m > 2n, then Sμ(x) = qm/2[ψ(2x) + μ(-ΐ)ψ(-2x)].

(2) J/ m is odd, m > 3, cmd m > 272 — 1,

where φ is the quadratic character on F* and G(φ) is the Gauss sum on

Fϊ of φ.

Proof. Assume m is even and m > 2n. Write ^l^n = {u}, where

<%n = 1 + 0>n, and write Φn/Φm = {υ}. Then

S,(x) = Σ μ(uv)ψ(x(uv + u-'υ-1)).

Writing υ = 1 + y, with y e ^at!/^>m, it becomes

Σ /<«) Σ ΨW"(i + y) + "- '( i + y)-1)) •
U V

We have 1/(1 + y) = Σ"-"o ι(-l)y, giving

Σ M«)Ψ(«(« + a-1)) Σ

Writing 0>"/0>m'2 = {w} and 0>m'2/0>m = {2;}, we get {y} = {w + 2}. Since

ze^mβ, zι e£Pm for / > 2, so that •ψ (:πί~12ι) = 1 in these cases, giving

Σ μ(u)φ(u + u-1)) Σ Ψ(xw(u - u-O^ΛU-'ίiϋ8 - u;3 + + (-l)"-1!^-1))
u w

X Σ ψ(x(^ - u-*z(l + 2w + - + (-l^-^m - ΐ)wm-2))).

The inner sum is Σ * ψ{xu~ιz{uι - 1 + 2w; - 3w2 + + (- l) w (m - l)z^m~2)).

This is a sum over ^m/ 2/^w, and it is non-zero if and only if xu~\u2 — 1

+ 2w — + ( —l)m(m — l)κ;m~2) e &m, which is true only when w = 0

and u = ± 1 . This gives the result <?m/2|>(2x) + μ(-l)ψ(-2x)].

Now assume m is odd and (m + l)/2 > rc. Again let ^ / ^ w = {u},

WjWm = {̂ } We write <^/^w = {^ + z\ w e ^»/^(w+1)/2, 2 e ̂ ™+1>/2/̂ ™}.
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Proceeding as before, we find that

X Σ Ήxz(u + u'X—l + 2w - 3w2 + + (ro — l)wm-2))).
z

But the inner sum over 2 equals zero unless u2 + 2w — + (m — l)α;w~2 e

^w_ 2, which is true if and only if u2 = 1 and 2w — 3z#2 + + (m — ϊ)wm~2)

6^m-v2# Letting {u} = ^^-wj^^^9 w e have

, - u3 + + ϋ"-1))
V

+ μ(-l)ψ(-2x) Σ ψ(-*(ϋ 2 - Vs + + IT"1))]

But ue&H-™-1)'2, so ι>3, ϋ4, • , v™-1 are all in 0>m, leaving

μ(-ΐ)ψ(-2x) Σ Ψ(-xv2)].

It is easy to see that ][]„ ψ(xι;2) = G(φ)φ(x), where 0 is the unique non-

trivial character of order 2 on Fx

q and G($ is the associated Gauss sum.

Similarly, Σ« Ψ( - ^^2) = Φ(- l)φ(x)G(φ). Therefore,

Sμ(x) = q^-^G(φ)φ(x)[ψ(2x) + φ(-ΐ)μ(-ΐ)ψ(-2x)].

This result, in the special case 3t = ZjpmZ and /̂ (JC) = φ(x), was proved

recently in [I]. We also quote, without proof, the analogous result in the

case of a finite field. It is well known and appears, for example, in [E]

as Theorem 2.6.

PROPOSITION 2.6.2. Let μeF*, xeFq, and ψ a non-trivial character

of Fq. Then unless μ — 1 and x — 0,

μ(x)G(φ) weFq

If we take μ = φ, there are other proofs of Proposition 2.6.1 which

include the result for Fq as a special case, but they are more cumbersome

than the one we have given.

With the notation of Proposition 2.6.1, we also have

PROPOSITION 2.6.3. For all xe0ί*9 ΣιueR*μ(u)f(x(u + ε/u)) = 0, where

ε is non-square unit and deg(μ) = n<m.

Proof. Write %\%m = {υw \ v e <&l<&n, w e Φ J * J , Then
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Σ μ(u)ψ(x(u + -i-Y) = Σ μ(υw)ψ(x(vw + -lΛ)

Writing {w} = {1 + y\y e &nl&m}, we get

y)

Taking 1/(1 + y) = ΣΓUH-W gives

Σ

But the sum over 3/ is zero unless υ + eir^—l + y + + ( — l)"1-1^™-2)

e^m~w, which is false in all cases.

2.7. The Kirillov model (cont.)

In this section we use the results of Section 2.6 to simplify the matrix

Jpw(u, t) of Section 2.5.

Recall that for μekx, u,te kx,

For k a positive integer, let

Fμ(k,t)=\
J\x\=

The following result appears in [T, p. 69].

LEMMA 2.7.1.

(1) If μ is unramίfied, μ Φ 1, then

Jμ(u, t) = -

X / \X\

\ut\ < q

μ-\u)Fμ{p~, ut\ \ut\ = qm, m > 1, m even

0, |αί| = qm, m> 1, m odd.

(2) J/ μ is ramified, deg (μ) = /ι > 1, ί/ien

iμl \ut\<q

μ'\u)Fμ(—9 ut\ \ut\ = qm, m> 2h, m even

0, |«ί| = gm, m > 2h, m odd.

Jμ(u, t) =
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If v(t) = 0(2), we need only calculate

Jn(u, t) + X(u, τ)Ju(u, t)

when v{u) = 0(2). Assuming v(u), v{t) even and \ut\ < q, we have

and

Ju(u, t) = μιμ2(τ)c(τ)(\t\~y\τ, t) + \u\y\τ, u)q^).

In this case, therefore, we see that

(2.7.1) Jn(u, t) + X(u, τ)Ju{u, t) = |ί|~1/2(l + (r, ut)).

Now suppose v{u), v{ί) even and \ut\ > g. Then

where m = —v(^). This equals

(2.7.2) —μ(u) Σ f z(y + -̂

2 Jiiri-ί»/* V y / |y | '

Also,

1 x

(2.7.3) Ju{u, t) = —μψziτ) Σ ζ~kJe*rμ-i(u> t)

If w/2 is even, we therefore need to calculate

If wί = x2, a change of variables shows this equals

where u is a set of coset representatives for Φ/ΦTO/2. By Proposition 2.6.1,

this equals q-m/i[X(2x) + X(-2x)]. If Mi = εx\ the integral equals
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which is zero by Proposition 2.6.3. If m/2 is odd, we need to calculate

J \y\ =gm/2 \ y J y

Arguing as above, this is zero if ut — εx2. If ut = x2, this equals

q-1/2q-m/4G(φ)φ(x)[X(2x) + X(-2x)] .

Substituting into (2.7.2) and (2.7.3), we find that for ut = x2 and m/2 even,

Ju(u, t) + X(u, τ)Ju(u, t) = \u\1/2q'm/2[X(2x) + X(-2x)] .

If ut = x2 and m/2 is odd, it equals

+ %(-2x)].

But G(φ) = ζ?1/2c(τ) and c(τ)2 = (T, r), so this becomes \t\-1/2[X(2x) + X(~2x)].

Noting that the above formulas for the case \ut\> q give (2.7.1) if

x e Θ, we obtain

LEMMA 2.7.2. Suppose v(t) and v(ύ) are even. Then

ΓO, if ut = εx2

X(u, τ)JJu, t) = .
V uK } ]\t\-v2[X(2) + l(2)l if ut =

Now consider the case when v{t) and v(u) are odd. We need to calculate

J"22(w, t) and J2z(u, t). We simply state the results.

LEMMA 2.7.3. Suppose v(t) and v(u) are odd. If \ut\ < q, then (1) and

(2) hold. If\ut\>q, \ut\ = qm, then (3), (4), and (5) hold.

(1) Jn(u, t) = c(τ)[|ί|-1/2(τ, t) + \u[/2(τ, u)q'1].

(2) J23(u, t) = μ-\τ)(τ, τ)[\t\'^ - q^uΠ

(3) If ut = εx\ J22(u, t) = J23(u, t) = 0.

(4) Ifut = x\

(0, if m/2 even

2z{u, - j ^ u)\u\1/2q-™/2c(τ)[X(2x) + X(-2x)], if m/2 odd.

(5) Ifut = x\

Γ0, if m/2 odd
2s(W> llu\lί2q-^2μ-\τ){τ, τ)[X(2x) + X(-2x)], if m/2 even.

LEMMA 2.7.4. Let A = μι{τ~ι)J22{u, t) + μ^Xiu, τ)J23(u, t). Suppose v(t)

and v(u) are odd. Then
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(1) If \ut\<q, A = c(τ)μi(τ^)\tr/2ί(τ, t) + (τ, u)].

(2) // \ut\ > q and ut = εx2, then A — 0.

(3) If\ut\ > q and ut = x\ then A = μ£τ-χ)c(τ){u, r)|*|~1/2[X(2x) + Z(-2*)].

Now we substitute the results of Lemmas (2.7.2) and (2.7.4) in formulas

(2.5.2) and (2.5.3). For v(t) even, π(w, ΐ)ξ(t) equals

(2.7.5) W%(t) ί \u\-^μx{u-Wn{u, t) + X(u, τ)Ju(u, t)]ξ(u)du
Jv(M)sO(2)

For v(t) odd, 7f(̂ , l)f(ί) equals

(2.7.6) \t\v%(t)μι(τ) ί iMl-^iίM

+ Xμt(τ)(u9 τ)Jκ(u, t)]ζ(u)du

= μι(t)c(τ) f iMl-^ίM-^r, M)[Z(2VSί) + X(-2Vϊΰ)]ξ(u)du .

Formulas (2.7.5) and (2.7.6) can combined into a single formula.

2.8. The functional equation and local L factors

We first recall some notation from [GPS]. Let (π , V) be an irreducible

admissible genuine representation of (5. The central character ωπ of π is

defined by

z ekx. Let Ω(ωπ) denote the set of genuine characters of Z whose restric-

tion to Z2 equals ωπ. If ψ is an additive character of k and p e Ω(ωπ), SL

(ψ, ̂ )-Whittaker functional for π is a functional I on V such that

= p(z)ψ(x)l(υ),

for zeZ, xek, veV.

The dimension of the space WΨtP of (ψ, p)-Whittaker functionals is

at most one. Given ψ, there exists at least one p e Ω(ωπ) such that

dim W+tP > 0. Let Ω(π, ψ) = {μ e Ω(ωπ) |dim W+,p > 0}. If Ω(π, ψ) has pre-

cisely one element, π is called distinguished. It is known, at least in

odd residual characteristic, that any distinguished representation is one

of the Weil representations rx, as defined in [GPS].
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Suppose that π is distinguished representation and Ω(πf ψ) = {p}. Let

W(π, ψ) be the space of all complex-valued functions on G of the form

W(g) = l(π(g)φ), for φ in the space of π. For WeW(π, ψ), a SL quasi-

character of kx, and s e C, let

s-1/2

The following result appears in [GPS].

PROPOSITION 2.8.1.

(1) The integral defining Lw(g, a, s) converges for Re s sufficiently large

and continues analytically to a meromorphic function on C.

(2) There is a rational function Tπ(s, a, ψ), independent of W and g,

such that

Lw(wg, μ~xa~\ 1 - s) = Yπ(s, a, ψ)Lw(g, a, s).

Here, μ is a certain protective character arising from the Weil representa-

tion.

(3) γ^a(s, 1) = Yπ(s, a).

The local L factor Lπ(s, a) is the g.c.d. of the functions

Lξ(s, a) =

with ξeK(π). It is specified uniquely by writing Lπ(s, a) = P(q~s)'\ P a

polynomial with constant term one. For μ a quasi-character of kx, let

f(l — μ(τ)q~s)~\ if μ is unramified
Uβ>μ) = L .,

(1, otherwise.

Using Proposition 2.5.2, we easily get the following result, which

already appears in [GPS].

PROPOSITION 2.8.2. If μ(x) = |x|1/2, then Lrp(s, a) = L(2s - 1/2, μW\ |"1 / 2).

Proof. Since Proposition 2.4.2 describes the behavior near zero of

the functions in the Kirillov space, the proof is the same as that of

Proposition 3.6.2 of [GPS].

2.9. Local r-factors
In this section we compute the local /-factors ϊrXs, a), where a is a
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quasicharacter of kx. From the functional equation, we have

r~μS'a LW(1,1, s)

For

(* °\_ f ω_K' xe®»
Λθ l)-Ux)-\θ, xeVN,

W2

we have LW(I, a, s) = 1, so

Γ / 0 τ\

We will begin by calculating (π(w)ξ)(x), for ξ = f̂ . We choose N

large enough so that μ1 is trivial on ϋUN. Using (2.5.2), we see that

(~(ΊI\&\(*I\ )Q \X\ βι\%) I Ά*\Uf X)(tUf II V\X) =. U ( ^
yπ\W)i;)\X) — < Jw

10, if v(x) = 1(2),

where i£(u, x) = Jn(w, x) + X(u, τ)Ju(u, x). If v{x) = 0(2), Lemma 2.7.2 says

that

fO, if wx e ekx*

if WJC = y 2 .

We have ue%N<Z kx\ so uxekχ2&xe kx\ so x g ^ χ 2 implies (π(u;)f)(x) = 0.

Assume that x e &χ2. If x e Φ, K(u, x) = |x|"1/2, so

(π(w)ζ)(x) = g ^ x ) f 2 ^ = 2^(x).

If x£Θ and V"̂ " € ^"Λ we write x = s2, M = u2, υ = I + z, ze0>N. Then

Z(2Vwx) = X(2sv) = X(2s(l + «)) = Z(2s)Z(2sz). But 2s^ e Φ, so X(2s2?) = 1 and

K(u, x) = Ix|-1/V1(x)[%(2s) + X(-2s)l Therefore, (π(w)ξ)(x) = /I1(JC)[Z(2Λ/1Γ) +

X(-2VrF)]. If V"^^^"^, write x = s2, with v(x) = - M < -iV, M > 0.

Write ^ / ^ ¥ = {w,}. Then

ί l{2j~xj~u)du = Σ ί 1(2*JT j~u)du = 2 ί

For w € ^ , w = u2, write z; = 1 + z9 ze ^M. Then V(2ΛJ~X*/U^Z) — v(*J~xz)

> 0, so ϊ(2^~oc ΛjΊϊiZ) = 1, and the sum becomes

f
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But {ut} are representatives for WNI<%M, so the sum equals zero. We sum-

marize this as:

LEMMA 2.9.1.

(π(w)ξ)(x) =

Now we calculate

0,

0,

if x g £ χ 2

[ — Ay X j\) ίy Y Λ 6 *y

if l~v t± φ-N
l>J Y Λ tt t>^

Let a(x) = μ1(x)μ2(x) It can be easily be shown that p2 = a2. By Lemma

2.9.1,

rrβ(8,1) = f

= £ f a
X p-χτ-m+2n

X {-2τn-N\Jlc)}p-\x)dx

f α-«(

But the integral is zero if n> N9 so the sum 2~= 0 can be replaced by

Σ^Γo1. Letting m = n — N, the sum becomes

(2.9.1) Σ α-i(r«)g-»<-2.+8/2) f α -i(
m=-N Jw

On the other hand, consulting p. 170 of [GPS], we see that

'χ\-2\χn-2sdx_
1 1 \χ\

oo Λ

m=-oo J ϋ

If m > 0?or 7?2 < —N, the integral equals zero, so we have



108 COURTNEY MOEN

Σ crXτ*)q-m<-u*t/*> f cc-\x)[X(2τmx) + X(-2τmx)]dx ,

which equals (2.9.1), showing that our result agrees with that of [GPS].

§ 3, The three-sheeted cover

We will study the Kirillov model of the distinguished non-super-

cuspidal genuine representations of a 3-sheeted cover of GL2. By [KP],

such representations exist only if c = 2, so we place ourselves in this case

from now on. In this chapter, ( , ) will denote the cubic residue symbol.

3.1. Representations of A

Let

Ao is abelian. Given characters μl9 μ2 of kx, we define a genuine character

of AQ by μQ ((Q A C) = 0(ζ)μι(a)μ2(b), where θ: μz->C is a non-trivial

homomorphism defined on the third roots of unity. pQ can be extended to

N(μQ) - {((* °), c) I α e k\ b = α^ for * e £*, v(̂ ) ΞΞ 0(3)} .

The extensions are given by:

= θ(ζ)δίμφι{τί)μ1{ά)μ2{bl where ^3 = 1.

With respect to an ordered set of representatives of N(μQ) in A, we form

β = Ind^(/i0). We will write β(μi9 μ2, θ) for p.

The representations fi(μ2, μu θ) and /i^i, μ2, θ)w are equivalent.

3.2. The Kirillov model when γ = 1/3

We assume //(x) = /«1̂ 2~
1(x) = |x|r and proceed as in section 2.2 to find

an explicit intertwining operator J in the Fourier transform realization

of the principal series. For each y e kx, J(y) is a 3 X 3 complex matrix.

Let rμ be the image of kμ under the intertwining operator J when

γ = 1/3. We define operators <g and £ as in the case n = 2: (%?h)(x) = hx(x),

and {£f)(y) = |>1 i/2/r((J J ) , l)/(y). Let JSΓ(r̂ ) - ίίΛ/^. From calcula-

tions as in the proof of Proposition 2.4.1, we get
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PROPOSITION 3.2.1. For φ e K(rP), TΓ^Q *V l)φ(x) = (a, x)X(bx)φ(ax).

We also have the analogue of Proposition 2.4.2.

PROPOSITION 3.2.2. Any ξ e K(rβ) is a linear combination of characters

(a, y)μi(y), where a e kx/kx\ S?(kx) thus has codimension [kx: kχ3] in K(rβ).

3.3 The action of w in K(rβ)

For feK(rμ), (f(w,ΐ)^-^'ιf)(t) equals

(3.5.1) J Jμw(u, ί ) | u | - ^ ( ( J ° ) , ^ j y

where m' = δq-y*c(τ2)μϊ\τ\ δz = 1, and

The resulting matrix will be denoted (Jij(u, t)).

A calculation shows that

t, t) = I δfφ-Wn Jn δ2

μi(τ)J2i I,

where for aekx and Λ: a character of Ax, α;τ denotes the character (aπ)(x)

= (a, x)π(x), and

2

αδ — Z J ^ dεicτbμ-\\U, I) .

Denoting (f(w)g-l<g-lf)(t) by

and noting that (π(w)f)(t) is the first component of the function

(o 1)'
we see that

), if v(ί) ΞΞ 1(3)

{\trμι(t)(t, t)μi(τ)h2(t), if j<<) = 2(3) .
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By evaluating the entries of the matrix JβW(u, i), we may obtain more
explicit expressions for (π(w)f)(t). The final form, however, is rather
unwieldy and does not seem to reduce to a nice expression as it does in
the case of the 2-sheeted cover. It is thus unlikely that there is an
analogue of the Weil representation in this case.
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