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KIRILLOV MODELS FOR DISTINGUISHED REPRESENTATIONS
COURTNEY MOEN

§0. Introduction

In the theory of automorphic forms on covering groups of the general
linear group, a central role is played by certain local representations
which have unique Whittaker models. A representation with this property
is called distinguished. In the case of the 2-sheeted cover of GL,, these
representations arise as the the local components of generalizations of the
classical #-function. They have been studied thoroughly in [GPS]. The
Weil representation provides these representations with a very nice
realization, and the local factors attached to these representations can be
computed using this realization. It has been shown [KP] that only in
the case of a certain 3-sheeted cover do we find other principal series of
covering groups of GL, which have a unique Whittaker model. It is
natural to ask if these distinguished representations also have a realiza-
tion analgous to the Weil representation.

In this paper we investigate this question by constructing explicit
Kirillov models for the distinguished principal series of the 2-sheeted and
3-sheeted covers of GL, over a p-adic field. In the case of the 2-sheeted
cover, we find that the action of the Weyl element is given by a very
simple formula. We use this formula to give a new computation of local
L and e-factors, the previous method in [GPS] relying heavily on the Weil
representation. For the 3-sheeted cover, we calculate the action of the
Weyl element, but it appears that the formula does not simplify, leading
us to believe that there is no local analogue of the Weil representation
in this case.

One ingredient of these calculations is the evaluation of Salie’s sum
over quotient rings of the ring of integers in a p-adic field. In this paper
we carry this out by a direct calculation. It can also be shown that the
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classical evaluation of this sum is a simple consequence of the equivalence
between the Kirillov model and the Weil model of the distinguished
principal series representation of the 2-sheeted cover of GL,.

§1. Preliminaries

1.1. Notations

Let k be a p-adic field containing the n-th roots of unity p,. Let @
denote the ring of integers, & the prime ideal, and % the units. ¢ will
denote a local uniformizing parameter. Let k& = 0/2, let q be the cardi-
nality of &, and let v be the normalized valuation on k. Let X be an
additive character of k of conductor @. Let (k) denote the space of
locally constant, compactly supported functions on k. (., .) will denote
the n-th order Hilbert symbol on k.

1.2. The metaplectic groups
Let G = GL(2, k). Define

x<<a b)) _ {c, ife+0
c d d, ife=0,

For 0 < ¢ < n, define a cocycle on G by

(e _ ( x(g.8) x(g8) (882 ¢
B(g1, &2) ——( (2,) ’ () )(detgu m)(detgn det g;)°.

These define extensions G© of G. They are realized as the set of pairs
(8,8, with ge G and { € p,, with the multiplication defined by (g, {)(g’, {’)
= (gg’, t'p'(g, g). We will usually write G and g for G and .
Further properties of the cocycle and the group G can be found in [KP].

e A= ({5 Y)esercen) A= ((G D)feereer)

and B — AN. Let Z = {(g g)bx c kx}, and Z = {(2,0)|z€ Z, L e u,}. Note

that g splits over N. Let w = (_(1) (1)> For h = <(g 2) C)eﬁ, let
o(h) = |ab~'|"%. For ge G, we will sometimes denote (g, 1) by g.

1.3. The principal series

Let i be a genuine d-dimensional representation of A. Extend 7 to
B by f(@n) = p(@). The principal series representation H, = Indz is the
space of locally constant functions f: G — C? such that f(7hg) = s(R)aR)f(B),
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where he A, aeN. G acts on H, by right translations. Since functions
in this space are determined by their restrictions to the group

e 0((y D y)lzert

we define ¢,(x) =f((w", 1)(5 316)) For fe H,, |x|ﬂ<(§ 2_,), 1)>¢f(x) is
constant for large |x|. Let %, be the space of all locally constant functions

on k such that |x|z x 0_1 , 1)¢(x) is constant for large |x|. For ¢ek,,
¢ A(5 D). 1) sek

define the Fourier transform of ¢ by

@ =% [ ey

The mapping ¢ —¢ is injective for all 7 if n> 1, since ¢ = 0 implies ¢
is constant, which is possible only if p((S 2_1), 1) = |x|7'I for |x| large,
which never happens if n> 1. We thus obtain a representation of G in

the space k, = {¢|pek,}. The action T, of G on E, is given by

1.3.1) T(((l) ’;) 1)¢(x)———x(bx)¢(x),

(1.3.2) T((O b) )¢(x) 1ab"|‘/2ﬂ<(g 0) (a, ab))gzs\xab Yy,

(1.3.3) T"((—(l) (1)), 1)¢(x) = fJ,,(z, x)(2)dz,

= (s )+ )2

§2. The two-sheeted cover

where

We now proceed to examine the two-sheeted cover of G. To be con-
sistent with [GPS], we take the cocycle corresponding to ¢ = 0 and denote

it simply by 3. We note that ﬁ((a 0) <O d’)) = (a,d’).

2.1. Representations of A

A={(G 29

va), v(d) = 0(2)} X
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We choose the ordered set of coset representatives of A, in A to be

GG IE

B is trivial on A, X A, and so A, is abelian and its genuine characters
are of the form ﬂo((g 2), T) = Tp(a)p(d), where p, and y, are characters

of k. Now form /i = Ind4 s with respect to the above set of coset
representatives. p will denote the character p,u;', and we will sometimes
write (y, p) for i to denote the dependence on g, and u,.

2.2. Intertwining operators

Given p, and g, define a representation of A by s p2)*(@) =
M, p)(wdw"). The representations 7, and T,. are equivalent, the equi-
valence I: H, — H,. being given by

U@ = | _pwng)n,

the integral converging if p is ramified or if u(x) = |x|*, with Re(a) > 0.
The representations a(u, x) and #(w, 1)” are also equivalent. We have
X/](,UZ’ /ll) = /j(/ll) /lz)wX, Where

10 0 0
= 0 0(,0) 0 '

01 0 0

00 0 1

With respect to the form (v, w) = > ,v,w, on C*, the contragradient of
s ) s plpr’y pr). I we let (v, w) = (v, X~'w), then (a(h)v, 2*(h)w) =
(v, w) and i and j* are contragredient with respect to the form (v, w).
Now form

6. = [, 6@ #@)de

on H, X H;,. We have the intertwining operator I: H, — H,., so we may
form, for ¢,, ¢, € H,,

@, 18) = |, (&), Ieu(@)ds.

Switching to functions on k, this becomes
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an [y D) e )

We have
wsn ae) D)= (G )02
where f(x) = ¢i(w“((1) ’15)) But (2.2.2) equals
1 0 (V)
0@y O
(2.2.3) Ly)gm) ) PO Ol fe +y)l I
0 0 0 1
0 0 0 o)y, 1)
0 0 p ' (z)z, 1) dy
+ [ ) o a0 0 o |HEEIT
(e Nz, 1) 00 o

Our goal is to find the explicit intertwining operator in the Fourier
transform realization. We need to find an operator J such that (2.2.1)
equals (f, X -1Jf,>. Plugging (2.2.2) into (2.2.1), using (2.2.3), and assum-
ing that p,p;'(x) = |x[, we find an operator J on k* so that if u(y) = 0(2),

— g1 1
[ 1= 0 0 e et
1—¢q
. 0 0 (0,027 0
J(y) = |y 0 qT(2r) 0 0
-1 7-1/2 1—g¢g -t
Y2 Ca )z, ty)e(t)q 0 0 —
1—gq J
For u(y) = 1(2),
(q~'T"(2r) 0 0 0
0 (@e@a ™" ey —L a
J(y) = Iyl_r 1— g
0 T — (3, y)C(r)q" e 0
1—-gq
0 0 0 q I 2r))

Recall that for a character r of k%, we have the gamma function I'(x)
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defined as in [T], p.48. Any such z can be decomposed uniquely as z(x)
= *(x)|x|*, where n* is the character of £* given by n*(x) = n(v) if x = uz",
ueU. If n is ramified of conductor A > 1, then I'(z) = c,.q*“"V?, where
lce«] = 1. For aeC, I'(«) will denote I'(|-|*), and c¢(r) will denote c,., for
7(x) = (r, x). Note that c¢(c)* = (r, —1) = (¢, 7). If z is unramified, =(x) =

|x|*, @ # 0, then I'(x) = 1=g7
1—gq-*
Now suppose 7 = 1/2, the case of interest. If u(y) = 0(2),
1 0 0 o)z, y)ele)
J(y) = |y 0 0 0 0
y)=1\ 0 0 o o ,
tp(t Nz, wy)e(z) 0 0 1
and if »(y) = 1(2),
0 0 0 0
0 (z,ye(x) (zr,7)g”* O
J@) = [y s :
0 g (7)) 0
0 0 0 0

2.3. The image when 7 = 1/2
We can realize H, as the space k, of all locally constant functions

on k such that Iaé] x 0_1 , 1)¢(x) is constant for |x| large. For 1 <
¢ HM\o «
1 < 4, define

ax) = :lx“‘((g N e lxl=1
0 lx] < 1.

Here e, is the [-th standard basis vector of C* Suppose that for |x|
large, \xl/j((g 2_1>, 1>¢(x) =veC,. Write v=>,ve, and let Y (x) =
#(x) — >oi-1v,8(x). But for |x| large,

3@ = l=a((5 ), o)

- L}; vllxl"ﬂ«g_l 2), (x, x))el - lzijl v,8,(%),

so for |x| large, y(x) = 0. Clearly, y(x) e #(k). Any ¢ ek, is thus of the
form ¢(x) = (x) + >.i_,v,8/(x) for some + € (k). Taking Fourier trans-



KIRILLOV MODELS 95

forms, ¢(x) = ¥(x) + 2t v.g.(x).
A calculation shows that for u(y) = 0(2) and 7 = 1/2, we have
1 — g-emeon

i 0
&) = 0 )

tupa(T™)q™ Wz, y)(z, T)e()g

and for »(y) = 1(2) and 7 = 1/2,

1 (1— gt — g-ow+or 4 q—lq—<u<y)+a)/z)]
1—g! 0 |
0

0 )

If h(y) = 8.(y) — e, then J(»h,(y) = 0 for all ye k.

Similar calculations yield functions A, on k*, 2< 1< 4, so that
&) = h(y) + a(y), where a(y) = a,, if u(y) =i(2), i =1,2, and q,,, are
constants. For each I, J(y)h,(y) = 0 for all y e k*.

Choosing ¢ € k;, writing ¢ = + >.f_,v,8,, and applying the operator
J, we obtain J¢ = Jy» + J 3 4, v,a;. For u(y) = i(2), write

&0y =

&
B
Ty
0;

(2.3.3) a(y) =

Then for u(y) = 0(2),

oy 4 3 0(c)(z, ¥)e(z)do ]
0

J(ya(y) = |y|™"* 0 ,

ap(T™ Nz, TY)e()aty + B,
and for v(y) = 1(2),

0 |
(z, y)c(f).gl + (z, 7)g"*1,
q "By + (7, y)e(or,
0

J(ya(y) = |y
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2.4. The Kirillov model

In this section we assume p(x) = pp;'(x) = |x|"%, and we undertake a
preliminary study of the Kirillov model. We already have an explicit
realization of the image of 15,7 when 7 = 1/2 under the intertwining oper-
ator J. We denote this image by r,.

Define an operator & on r, by &f(y) = lyl‘”ﬁ’”(((l) 2), (v, y))f(y). Let

a(y) be as in Section 2.3. Then a calculation shows that if u(y) = 0(2),

a, + ﬂl,uZ(T)(T7 Y)e(z)d,
0
0

#1#2(7_1)(7’ r)e(t)a, + 3z, y)

Notice that row (4) = X,-row (1), where X, = p,u.(z ")z, 7)c(z). If v(y) = 1(2),
we have

(24.1) (6Ja)(y) = ()

ﬂz(f)q—l/zﬁl + pz('t)(‘t, y)C‘(‘L')Tl
0
0

(z, De(@)Bipalc ™) + (2, Ve~ Dg "™

(24.2) (6Ja)(y) = p(y)

In this case, row (4) = X;-row (1), where X, = u(r79q"*(z, t)c(r). Since
mpsi(x) = |x]"%, we have X, = X,. We will simply denote this quantity
by X from now on.

Define an operator € on é"Jié,; by (¥h)(x) = h,(x), the first component
of h(x) in C*. By the above calculations, ¥~' exists, and for a function
s: kX —C,

( s(x)
0
0
it~ )(z, ©)e(r)s(x)

We let K(r;) = %&Jk, and define an action # of G on K(r,) via the map
€&; ie., #(8) = CEr(8)E'E .

(€ 1s)) =

ProposiTiON 2.4.1. For ¢e K(r,), ﬁ((% I;) 1)¢(x) = X(bx)¢{ax).

Proof. Let f= &-'¢-'¢peJk,. Then
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o5 o= (on((§ oo
- (onlls Q)

But

(g e
i ((y D m)rl(§ )il

|xrﬂ~w(< g) (x, x))lal‘/"‘/}“’(((l) 2) @, a))éi““l‘f"‘ﬂax) by (1.3.2)

= laxpz*((¢ 0} (ax, an))iaxl (0 0)), (ax, a9) (@ p)(a)

(€'¢)ax)
$(ax)
0
0

sz~ Nz, T)e(z)d(ax)
The first component of this is just ¢(ax), which completes the proof if

b=0. A similar argument, using (1.3.1), does the case a = 1.
The following proposition is Proposition 3.3.4 in [GPS].

Il

ProposiTiON 2.4.2. Near 0, any &e K(r;) is a linear combination of
characters (e, ¥)p(y), where a € B*[kR**. F(k*) thus has codimension [k*: k*’]
in K(r,).

Proof. We apply €&J to functions of the form (2.3.3). For + ¢ £(k),
%&J vanishes near zero. (2.4.1) and (2.4.2) give formulas for (&Ja)(y).
Combining these into a single formula and applying ¢, we have

(wetaxy) = —;-a + (e MmO + ke, D))

+ %‘1 — (& M8y + )z, V(e g1,

which is the desired linear combination.

2.5. The action of in K(r,)
Recall that for any g€ G, fe K(r;), we have
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&) = (€eT(@)e¢ ¢ f)).
Using (1.3.3), we see that

@510  (Plo, DE-E 1)) = f Tt DEF ) u)du
f(w

_ j Tl t)|u|“‘/2ﬂ’”<(1 0), @, u))“‘ O du.
0 u 0 J
Xf(w)
(Recall that X = p,u,(z~")(z, v)c(z).)
In order to simplify (2.5.1), we need some explicit expressions for
Jau(u, ). Recall that for pe kX,

I (u, 8) = f ﬂ(z)z(ux + é_).l‘% :

If we denote the matrix Jy.(u,?) by J,(u,t), a calculation shows that
(2.5.1) equals

Ju(u, 1) + Ji(u, H(u, )X

—;— f (1 + (e w)lu|u(u™) f(wdu

0
Ju(u, t) + 9]44(u, (u, X
0
J22(u7 t)/ll(f—l) + J23(u’ t)ﬂl(f)(u’ T)X
S, Oz ™) + Jo(u, (), )X
0

+ = [ @ = @ ) fadu.

Applying #¢&, we see that if u(t) = 0(2), #(w, 1)f(f) equals
(252 L1t (® [ (L + G )lulmu ), ) + X, e, O @du.
If u(t) = 1(2), it equals

2.5.2) _;_mv"p,(tf) f (1 — (&) W) ul w1, Dpa(c=?)
+ Julu, p(e)(u, ) X)f(w)du .

In the next sections we will further simplify these expressions.

2.2. Salié’s sum over O/F"
In this section we evaluate some sums we need to simplify the formulas
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for #(w, 1) in the Kirillov model.

Let Z = 0/2™, m > 1. Let u be a character of %*, the units of Z.
Let n be the conductor of x. We will denote a coset x + 2™ simply by
x. Let ¢ be an additive character of # of conductor m, i.e., v is non-
trivial on #™-/Pp™,

For x e #*, let S(x) = 2, cap(W(x(u + 1/u)).

ProposiTION 2.6.1.
(1) If m is even, m > 2n, then S,(x) = q""*[y(2x) + p(— 1)y (—2x)].
@) If misodd, m>3, and m > 2n — 1, then

S,(x) = "GP0 (2x) + ¢(—Dp(—Dy(—2x)],

where ¢ is the quadratic character on F} and G(¢) is the Gauss sum on
FY of ¢.

Proof. Assume m is even and m > 2n. Write #/%, = {u}, where
U, =1+ #, and write %,[%, = {v}. Then

S, (x) = % pwo)r(x(uv + utv?).
Writing v = 1 + y, with y € 2#"/2™, it becomes
25 (W) 2 (@(ul +3) + w1 +9)7).

We have 1/(1 + y) = 2 7' (— 1Y, giving
3 st + u) 2 w(x(wy + w (S (- 1))

Writing 2"/#™* = {w} and P™*/P™ = {z}, we get {y} ={w + 2}. Since
ze P Zte P™ for 1 > 2, so that (xu~'2") = 1 in these cases, giving

; /J(u)llf(x(u + uY) ; J(xw(u — u'l))\p(xu‘l(w2 —w .+ (_1)m—lwm—1))
X ip(x(uz — vzl + 2w+ -+ + (=)™ '(m — Dw™-?))).

The inner sum is >, v(xu"'2(u* — 1 + 2w — 3w* + - -+ + (—=1)™(m — Dw™?)).
This is a sum over Z™?/#™, and it is non-zero if and only if xu~'(x* — 1
4+ 2w — - + (=D™(m — Dw™?) e P™, which is true only when w =20
and ¥ = +1. This gives the result ¢g™?[y(2x) + p(—1)v(—2x)].

Now assume m is odd and (m + 1)/2> n. Again let %/%, = {u},
Uo|Un, = {v}). We write Z"/P™ ={w + z|we P"[P™NE ze PMVE P,
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Proceeding as before, we find that

Sux) = 2 iy (x(u + u™) 2o p(x(u — uIwhp(eu(w* — w' 4 - - - + w™)
X 2i(xz(u 4+ (=1 + 2w — 3w* + --- + (m — Dw?))).

But the inner sum over z equals zero unless «* + 2w —-- -+ (m — Dw™*e

U5 which is true if and only if &’ = 1 and 2w — 3w’ +- - - 4+ (m — Dw™?)
e ™% Letting {v} = PV} [Pmb/2 we have

Sx) = g™ @) TS — 0 o 0m )
+ = D(=22) 2 (=2 — V' A+ -+ 0T
But ve Z™-Y2 g0 %, v, ..., v™"! are all in ™, leaving
g™ 22) 20 9 (x0) + (=D (—22) 25 y(— )] -

It is easy to see that >, y/(xv") = G(¢)é(x), where ¢ is the unique non-
trivial character of order 2 on FZ and G(g) is the associated Gauss sum.
Similarly, >, ¥(—xv*) = ¢(—1)¢(x)G(4). Therefore,

Sx) = ¢" P GPHR)[(2x) + $(—Dp(— Dy —2x)] .

This result, in the special case Z = Z[p™Z and u(x) = ¢(x), was proved
recently in [I]. We also quote, without proof, the analogous result in the
case of a finite field. It is well known and appears, for example, in [E]
as Theorem 2.6.

PROPOSITION 2.6.2. Let uc F%, xeF,, and v a non-trivial character
of F,. Then unless y =1 and x =0,

— G(pgﬁ) 2
S, (%) = W w;q pp(w Dy(Cwx) .

If we take ¢ = ¢, there are other proofs of Proposition 2.6.1 which
include the result for F, as a special case, but they are more cumbersome
than the one we have given.

With the notation of Proposition 2.6.1, we also have

ProrosiTiON 2.6.3. For all x € #*, 3, cpp(W(x(u + ¢/u)) = 0, where
¢ is non-square unit and deg(y) = n <m.

Proof. Write %|%,, = {vw|ve %|U,, weU,|%,}, Then
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2 (x{u ) = Tt (s{ow + )
~p B ol + )
Writing {w} = {1 + y{y e #*/2™}, we get

IOPS w(x(v(l + 3 + m» .

Taking 1/(1 + y) = 257 (—1)'y" gives
So(ee + 2)3 ool + o o).

But the sum over y is zero unless v + ev (=14 y + .-+ + (=" y»-?)
e #™-", which is false in all cases.

2.7. The Kirillov model (cont.)
In this section we use the results of Section 2.6 to simplify the matrix

Ja(u, t) of Section 2.5.
Recall that for pe Be, u, te ke,

J(u, t) = fy(x)%(ux + é)—l‘% .

For %k a positive integer, let

Fy(k, §) = j . y(x)Z(x + %)%’T .

The following result appears in [T, p. 69].

LEmma 2.7.1.
(1) If p is unramified, p + 1, then

sOT () + @I, |ut] < q
J(u, t) = p"(u)F,,(’—;—, ut), lut| = g™, m > 1, m even
0, |lut| = q™, m>1, m odd.
(2) If p is ramified, deg(p) = h > 1, then
O (™) + p' T, lut| < q
J(u, t) = ;r‘(u)F,,(%, ut). |ut] = q™, m > 2h, m even
0, |ut| = q™, m > 2h, m odd.
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If u(t) = 0(2), we need only calculate
Ju(u; t) + X(u: 7:)°]14(u" t)
when u(u) = 0(2). Assuming v(w), v(f) even and |ut| < g, we have

Ju(u, t) = ((¢7" — q~'|u|”)
and
Ju(u, 1) = mpe)e(e)(t] Xz, t) + |u|"Xz, wg).

In this case, therefore, we see that
2.7.1) Ju(u, t) + X(u, 0)d(u, t) = |t|"*1 + (z, ut)) .
Now suppose u(u), v(t) even and |ut| > q. Then

T ) = 130 . L s (o m
ll(u’ ) - E“ IcZ=O eky—l(u) t) = ‘§‘ k[g‘o(s y #)/—‘(u)Fsky—l('z‘y ut) ’

where m = —y(ut). This equals

¥ it. ek -1 _iil
X(y+ y )( s Ve () N

— g2y -miA 7 l‘_{ g_.}i
2 g jly(=qml4 X(y t y >(1 + () lyl

1
CE N |
E=0J [yl =qmn
1
Also,

@7.3)  Juy, ) = —é-ﬂlpxr) IS AN

— 1 1/2,y-m/4 5 ut — (e _d:)_’_
= G et [ oy + B0~ @

If m/2 is even, we therefore need to calculate

[ afyem)dr
1yl =qmi y /|yl
If ut = &%, a change of variables shows this equals
e )
g™t > M xlu+ =)),
% u

where u is a set of coset representatives for %/%,,,. By Proposition 2.6.1,
this equals ¢ ™*[1(2x) + X(—2x)]. If ut = ex*, the integral equals

e Sx{u+ 1))
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which is zero by Proposition 2.6.3. If m/2 is odd, we need to calculate

_ d
j X(y + —%)(r, L.
1yl =qm2 ¥ ¥

Arguing as above, this is zero if ut = ex’. If wt = x?, this equals
q 2 G(PP(X)[X(2x) + I(—2x)] .
Substituting into (2.7.2) and (2.7.3), we find that for ut = x* and m/2 even,
Ju(u, t) + X(u, 0)J(u, t) = |u]"*q ™ [X(2x) + I(—2x)] .
If ut = x* and m/2 is odd, it equals

(7, D)) |ul* g~ g G(P)P(®)[X(2x) + 2(—2%)] .

But G(¢) = g"*c(zr) and c(z)? = (z, 7), so this becomes |¢|-*[¥(2x) + ¥(—2x)].
Noting that the above formulas for the case |ut| > g give (2.7.1) if
x e @, we obtain

Lemma 2.7.2. Suppose v(t) and v(u) are even. Then

0, if ut = ex*
Ju(u, 1) + X(u, o)d(u, t) = _ - .
u(w, ) + (u, 7) W(u, t) {it|“/2[x(2x) + U(—2%)], if ut =xt.
Now consider the case when v(t) and (i) are odd. We need to calculate
Jo(u, t) and Jy(u,t). We simply state the results.

Lemma 2.7.3. Suppose u(t) and v(u) are odd. If |ut| < q, then (1) and
(2) hold. 1If |ut| > q, |ut| = q™, then (3), (4), and (5) hold.

(V) In(w, 1) = @]z, 1) + [u](z, w)q'].

@ Juu, D) = p7'@)(, DL — g7 ul”].

B) If ut = ex?, Jy(u, t) = Jy(u, t) = 0.

4) If ut =«

ey 0, if m|2 even
wlts 8) = {@, u)|uliq " e()X(2x) + W(—2x)],  if m/2 odd.

G) If ut = 2,

T, ) = 0, if m/2 odd
M P = {lulm(f"" 22z, O[A(2x) + UW—2%)], if m/2 even.

LEmMMA 2.74. Let A = p(z )y, t) + p(t)X(u, t)Jy(u, t). Suppose u(t)
and v(u) are odd. Then
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O Iflut|<q, A = ()l )Nt (e, D) + (z, W]
(2) If |ut| > q and ut = ex*, then A = 0.
3) Iflut|> q and ut = x*, then A = p,(z ")c(t)(u, )|t [X(2x) + X(—2x)].

Now we substitute the results of Lemmas (2.7.2) and (2.7.4) in formulas
(2.5.2) and (2.5.3). For u(t) even, #(w, 1)&(t) equals

2.75)  |t["2u(®) Lmsmlul"”;zl(u'l)[Ju(u, t) + X(u, 1) (u, ))s(w)du
= [ el YD) + K- 2.

For u(t) odd, #(w, 1)&(¢) equals

@76) [ mOm@ [l ) Wl 0
+ Xp(2)(w, )y, 1)6(w)du
= pu(t)c(z) Lemm || ()7, w2V ut) + U(—2/ut)le(w)du .

Formulas (2.7.5) and (2.7.6) can combined into a single formula.

2.8. The functional equation and local L factors

We first recall some notation from [GPS]. Let (z, V) be an irreducible
admissible genuine representation of G. The central character o, of r is
defined by

2 0
71'(0 22) = wn(zz)I>
ze kX, Let (w,) denote the set of genuine characters of Z whose restric-
tion to Z* equals w,. If ¢ is an additive character of 2 and pe 2(w,), a
(y, p)-Whittaker functional for = is a functional / on V such that

l(;r(é(é ’lc)v)) = p(A(®)(v),

for éeZ, xek, veV.

The dimension of the space W, , of (v, p)-Whittaker functionals is
at most one. Given +, there exists at least one pe 2(w,) such that
dim W,,, > 0. Let 2r, ) = {¢ € Xo,)|dim W, ,> 0}. If Q(z,+) has pre-
cisely one element, r is called distinguished. It is known, at least in
odd residual characteristic, that any distinguished representation is one
of the Weil representations r,, as defined in [GPS].
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Suppose that z is distinguished representation and Q(z, ) = {p}. Let
W(z, ¥) be the space of all complex-valued functions on G of the form
W(g) = l(n(g)¢$), for ¢ in the space of n. For We W(x, ), @« a quasi-
character of k%, and sc C, let

L@ a9 = [ W((5 Dg)e@rarr iz,

The following result appears in [GPS].
ProrosiTioN 2.8.1.

(1) The integral defining L, (g, a, s) converges for Re s sufficiently large
and continues analytically to a meromorphic function on C.

(2) There is a rational function 7.(s, a, V), independent of W and g,
such that

L!V(wg’ #—16(—1, 1 - s) = rn(sa a’ '\!/‘)LW(ga a, S) .

Here, p is a certain projective character arising from the Weil representa-
tion.
(3 T.eus, 1) = 7(s, @).

The local L factor L.(s, «) is the g.c.d. of the functions

Lo, o) = [ saela 22,
x
with &€ K(x). It is specified uniquely by writing L.(s, «) = P(q~*)"', P a
polynomial with constant term one. For p a quasi-character of &, let

A — p(d)g=), if 4 is unramified
L) = |,

otherwise.

b

Using Proposition 2.5.2, we easily get the following result, which
already appears in [GPS].

ProposiTiON 2.8.2. If u(x) = |x|"*, then L, (s, a) = L(2s — 1/2, 2| - |~2).

Proof. Since Proposition 2.4.2 describes the behavior near zero of
the functions in the Kirillov space, the proof is the same as that of
Proposition 3.6.2 of [GPS].

2.9. Local 7-factors
In this section we compute the local 7-factors T,ﬁ(s, o), where « is a
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quasicharacter of k. From the functional equation, we have

LW(w7 ‘0-1’ 1 - S)
LW(I9 1, 3)

Trﬁ(s’ a’) =

For

x 0)_ _fat, xeuy
WN(O 1) = 6@ = {o, xed,,

we have L,(I, @, s) = 1, so

0 x\ _, s X » v dx
oo D= [W(_] Bl &~ fwn@e i@l L.

We will begin by calculating (z(w)é)(x), for & = &,. We choose N
large enough so that g, is trivial on #,. Using (2.5.2), we see that

¢lx @ | K, odu, i o) = 02)

(=(W)E)(x) = { :
0, if u(x) = 1(2),

where K(u, x) = Jy,(u, x) + X(u, 7)J,,(u, x). If v(x) = 0(2), Lemma 2.7.2 says
that

0, if ux € ek**
K(u, x) = _ _ .
[x|"X2y) + X(—2y)],  if ux = y".
We have u e %, C k**, so ux e k** & x € k%, so x ¢ k** implies (z(w)&)(x) = 0.
Assume that xe 2*°. If xe 0, K(u, x) = ||, so

=) = ") [ 2du = 2u(x).

If x¢0 and /x e 2", we write x =8, u =1V, v=1+4 2 zeZ". Then
X(2y/ux) = 1(2sv) = X(2s(1 + 2)) = X(25)X(2sz). But 2sz e 0, so X(2sz) = 1 and
K(u, ) = |x|"(x)[%(25) + 1(—25)]. Therefore, (z(@)e)x) = @AY F) +
X(—=24/%)]. If yxeP ¥, write x =5% with v(x) = —-M < —N, M > 0.
Write %y/%, = {u,;}. Then

f 12Ty WA =3 [ ey Ey/@)du =3 f W2 TV T)du .

2 ULUM

For ue %y, u=1% write v=1+ 2, ze #¥. Then v(2¢/ % V/u;2) = v(y/x2)
> 0, so X(24/x 4/u;2) = 1, and the sum becomes

) f 1o T Vaddu = ¢ S IV F ) -
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But {u;} are representatives for #,/%,, so the sum equals zero. We sum-
marize this as:

LemMma 2.9.1.
0, if xek*®
(@(W)e)(x) = L m(DAR2Y X)) + W(—2/X)),  if yx PP
0, if JyxeP "V,

Now we calculate

dx
||

s, D) = [ @@ @e @l

Let a(x) = u(x)px). It can be easily be shown that p’ = «’. By Lemma
2.9.1,

oD = [V E) + 22y Bl

= %jﬂ “(‘/7—2N+2n)‘)\/1_—2N+2n‘1/2[2(2\/m}) + 76(——2~/?-2T""@)]

>< p—l(T—ZN+2nx)|,Z_—2N+2nxl—3+1/zld_xl:
X

“(Tn—N)q(N—n)(—Zs+3/2)p—1(r2n—2N)

I
Ms

0

X I a(y D)UY F) + U(—2c"V T)p~ (x)dx

S
[

I

i a—l(rn—N)q(N—n)(—Zs+3/2)f ae“(x)[)'((2r"'”x) 4 7((—2-:"‘”x)]dx
n=0 L3

But the integral is zero if n > N, so the sum >, can be replaced by
y-t  Letting m = n — N, the sum becomes

(2.9.1) 3 ari(emgnete f @ (O2e"%) + U(—2cmx0)]dx .

On the other hand, consulting p. 170 of [GPS], we see that

dx

Trs, 1) = Lx a(x) || [X(2x) + X(— 2) ()~ o[- E

— 3 ai(em)gmt-u fua-*(x)[z(zfmx)+2(—2fmx)]dx.

Mm=—0c0

If m> 07or m < —N, the integral equals zero, so we have
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5 aemg e [ @ee) + H(—2emldx,

m=-~-N

which equals (2.9.1), showing that our result agrees with that of [GPS].

§3, The three-sheeted cover

We will study the Kirillov model of the distinguished non-super-
cuspidal genuine representations of a 3-sheeted cover of GL,. By [KP],
such representations exist only if ¢ = 2, so we place ourselves in this case
from now on. In this chapter, (-, -) will denote the cubic residue symbol.

3.1. Representations of A

4={(G b9

A, is abelian. Given characters sz, g, of k%, we define a genuine character
of A, by f ((g g), C) = Q) (@) ps(b), where 6: py, — C is a non-trivial

homomorphism defined on the third roots of unity. j, can be extended to

(@), u(b) = 0(3)} .

N,) = {((g 2), C)la e kX, b =az for ze kX, v(z) = 0(3)} .

The extensions are given by:

ﬁ0<si(<g Z), C)) = 0(0)d popro(t) pra(@) p1o(B), where §° = 1.

With respect to an ordered set of representatives of N(j,) in A, we form
g =1Indi,, We will write #(u, p, 6) for .
The representations [y, p;, 8) and Ay, m, 6)° are equivalent.

3.2. The Kirillov model when 7 = 1/3

We assume p(x) = ppy(x) = |x|" and proceed as in section 2.2 to find
an explicit intertwining operator J in the Fourier transform realization
of the principal series. For each ye kX, J(y) is a 3 X 3 complex matrix.

Let r, be the image of 13,,1 under the intertwining operator J when
7 = 1/3. We define operators ¥ and & as in the case n = 2: (¥h)(x) = h(x),

and (6H0) = y1#e*((§ 5)-1)70). Let K@) = 467k, From caleula-

tions as in the proof of Proposition 2.4.1, we get
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ProposiTiON 3.2.1. For ¢e K(ry), # a b , 1)é(x) = (a, 0)x(bx)d(ax).
0 1

We also have the analogue of Proposition 2.4.2.

ProposITION 3.2.2. Any &€ K(r;) is a linear combination of characters
(et, Y)i(y), where o € B*[k*°. F(k*) thus has codimension [k*: B*°] in K(r,).

3.3 The action of w in K(r;)
For fe K(ry), (’.f‘(w, DE - )(t) equals
f(w)

(35.1) fJﬁw(u, t)|u|“/2/j”’(((1) 2) 1)“(m',;(u))du ,

where m’ = dq~"°c(c)y;(z), 6* = 1, and

—xt 0 S t dx
o= [ (s
pelr 1) # 0 -—x x tu | x|
The resulting matrix will be denoted (J;,(u, ?)).
A calculation shows that

Joo 52#1(T)J21 5#1(TZ)J12
Jﬁw(u, ) = 5#1(1'_1)']11 Jos 52/«‘1(7)J22 s
Fu(e Dy (e Iy

where for a € k* and r a character of k%, ar denotes the character (ax)(x)
= (a, x)r(x), and

Jop = Z gox Ekrb#—1(u, t).
k=0
Denoting (’f"(w)é“"‘(f 1)) by
hy(2)
h(@) = | (D) |,
hy(?)
and noting that (7Z(w)f)(¢) is the first component of the function

(¢ 9) ) dese-pw,

we see that
|21 (D Pa(D), if »(2) = 0(3)
@@ = It m@C, OpEh®), i ot) = 1(3)
|21 (D), Dpa()ha(D), if u(f) = 2(3).
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By evaluating the entries of the matrix J,.(u,?), we may obtain more
explicit expressions for (#(w)f)(f). The final form, however, is rather
unwieldy and does not seem to reduce to a nice expression as it does in
the case of the 2-sheeted cover. It is thus unlikely that there is an
analogue of the Weil representation in this case.
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