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REMARKS ON QUASI-POLARIZED VARIETIES

TAKAO FUJITA

Dedicated to Professor Morikawa on his 60th birthday

Introduction

Let V be a variety, which means, an irreducible reduced projective

scheme over an algebraically closed field $ΐ of any characteristic. A line

bundle L on V is said to be nef if LC ^> 0 for any curve C in V. Thus,

"nef" is never an abbreviation of "numerically equivalent to an effective

divisor". L is said to be big if κ(L) = n = dim V. In case L is nef, it

is big if and only if Ln > 0 (cf. [F7; (6.5)]. When L is nef and big, the

pair (V, L) will be called a quasi-polarized variety.

We have X(V, tL) = Σ;=oX/j3/J! for some integers XQ, Xu - ., Xn where

$n = t(t + l)-"(t + j - 1) and ίco] = 1. By Riemann-Roch Theorem we have

Xn = Ln. Moreover, if V is normal, we have — 2Xn_ι = (ω + (n — l)L)Ln~ι

for a canonical divisor ω of V. We set g(V, L) = 1 — Xn_u which is

called the sectional genus of (V, L). We set J(V, L) = n + LΛ - Λ°(y, L),

which is called the J-genus of (V, L). We expect that we can describe

the structure of (V, L) if Δ and/or g are small enough. When L is ample,

we have the results in [F5], [F10], which we will generalize in this paper.

Most results were announced in [Fll].

In § 1 we show Δ >̂ 0 for any quasi-polarized variety (V, L), and

describe the structure of (V, L) with Δ = 0 precisely. In particular g — 0

in this case. We conjecture the converse:

CONJECTURE, g >̂ 0 for any quasi-polarized variety. Moreover, g — 0

implies Δ = 0 if V is normal.

This is completely unknown when char(^) > 0, even if V is non-

singular and L is ample. So, from §2 on, we assume char(ίέ) = 0. In

§ 2 we give characterizations of Pn and hyperquadrics, which establish
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our Conjecture in case Ln <L 2. In § 3 we consider the case in which L
is ample. We improve a few results in [F10], allowing V to have certain
non-Gorenstein singularities. In § 4 we show that our Conjecture follows
from the Flip Conjecture in [KMM]. Hence it is true when n <; 3 by
virtue of Mori's result [M2]. In § 5 we consider the case in which L is
spanned by global sections. We give a couple of generalizations of
Sommese's result in [S2].

Suitable generalized versions of Kodaira's vanishing theorem, due
to Kawamata, Viehweg et al., play an important role in our method.
Hironaka's desingularization theory is also indispensable. Nevertheless
it is very likely that our Conjecture is true in positive characteristic
cases too.

Notation and Convention

We use the notation in [F10], which is based on the customary one
in algebraic geometry. In particular, given a morphism X-+ Y and a line
bundle L on Y, we denote /*L by LX) or sometimes just by L when
confusion is impossible or harmless.

§ 1. Quasi-polarized varieties of J-genus zero

(1.1) The main result of this section is the following

THEOREM. Δ{V, L) >̂ 0 for any quasi-polarized variety (V, L). Moreover,

if Δ = 0, there exist a variety W, a birational morphism f: V-+ W and a

very ample line bundle H on W such that L = f*H and A(W, H) = 0.

(1.2) DEFINITION. An element of Pic(V)(χ)Q will be called a Q-
bundle on a variety V. The tensor product in Pic(V) gives the addition
and will be denoted additively. Multiplicative notation will be used for
intersection products in Chow rings. We define Q-valued intersection
numbers of Q-bundles in the natural way. A Q-bundle B is said to be
nef if BC 2> 0 for any curve C in V.

As for L-dimension of Iitaka, we have κ{mL) = κ(L) for any positive
integer m and L e Pic(F). Therefore κ(B) is well-defined for any Q-bundle
B and we have κ(mB) = κ(B) for any m > 0. B is said to be big if
κ(B) = dim V. B is said to be ample if mB = A in Pic(V)(g)Q for some
m > 0 and an ample line bundle A.

Let Div(V) (resp. Cn^(V)) be the group of Cartier (resp. Weil) divisors
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on V. An element of Div(V)(g)Q (resp. Cn^(V)®Q) will be called a

Q-dίvίsor (resp. Q-WeiUdivίsor) on V. For any Q-Weil-divisor Z, we have

Z = 2] ^ A for some m* e Q and prime Weil divisors Z .̂ Z is said to be

effective if 77̂  ^ 0 for every i. In the obvious way a Q-divisor D defines

a Q-bundle, which will be denoted by [D], or just by D by abuse of

notation. D is said to be nef (resp. big, etc.) if so is [D].

(1.3) KODAIRA'S LEMMA. A Q-bundle B is big if and only if B — D

is ample for some effective Q-divisor D.

For a proof, see, e.g., [F4, (2.8)].

(1.4) PROPOSITION. Let L be a nef big Q-bundle on a variety V and

let f: V-+S be a surjective morphίsm. Let F be a general fiber of f. Then

the restriction of L to any prime component of F is nef big.

Proof The nefness is obvious. To prove the bigness, take an effec-

tive Q-divisor D such that A = L — D is ample. Since F is general, D

is effective on any component X of F. Since Ax = Lx — Dx is ample,

Lx is big.

(1.5) Now we prove the theorem (1.1). We may assume J(V, L) =

n + Ln - h°(V, L) <: 0, so h°(V, L) > n. Let G be the normalization of

the graph of the rational mapping defined by \L\. Then we have a bira-

tional morphism π: G -> V, a morphism p: G-+P ~ PN with N = h°(V, L)

— 1 and an effective Cartier divisor E on G such that ττ*|L| = E + p*\H\

for H = 0P(1). Set W = p(G), k = dim W and M; = deg W, and let F be a

general fiber of p. Then 0 <; J( W, Hw) ^ ft + w - (N + 1). Moreover

dimF = n - k and Z>~fc{F} > 0 by (1.4). So LnkHk = wLn-«F^ w on G.

Since L and Zf are nef and E = LG — HG is effective, we have Ln >̂

Ln"kHk. Combining these inequalities we get n + L ^ ^ z i + i ^ ^ A / ' + l

= A°( V, L), which proves J( V, L) ^ 0.

If J = 0, we must have equalities. Hence Δ(W, H) = 0, k = n, p is

birational and Lw = /Z"w on G. We will derive a contradiction assuming

Since Ln = LjHnj = i ϊ n for any j , we have HnΈ = 0. This implies

dim ô(E) < 7i — 1. Therefore, by a similar argument as in [F8; (1.5)]

using index theorem, we infer that there is a curve C such that EC<C0

and ^(C) is a point. Then LC = (E + H)C < 0, contradicting the nefness

of L.
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Thus we see E = 0. So L is spanned by global sections and \L\ gives

a morphism f: V-> W having the desired properties.

(1.6) Remark. We have a complete classification theory of polarized

varieties with Δ = 0 (see [Fl], [F5]). In particular W is normal and

locally Cohen-Macaulay, and g(W, H) = 0.

(1.7) COROLLARY. L is spanned by global sections and g(V, L) = 0

/or any quasi-polarized variety (V, L) with Δ(V, L) = 0.

Proof. The spannedness is clear since H is very ample. By (1.6),

g(V, L) = 0 follows from the lemma below.

(1.8) LEMMA. Let f: V ->W be a birational morphism onto a normal

variety W. Then g(W, H) = g(V,f*H) for any line bundle H on W.

Proof. We have f*Θv = Θw since W is normal. Moreover, since / is

birational, dim (Supp (J^)) < n — 1 for any q > 0, where J% = Rqf*Θv.

Hence Z(V, ίL) - Σ ( - 1 ) * * W ^q(tH)) - X(W, tH) modulo terms of degree

< n - 1 in t. So Xw_i( V, L) = ^ . , ( 1 ^ , /ί) and the assertion follows.

§ 2. Characterizations of projective spaces and hyperquadrics

From now on, throughout this paper, we assume char(ίϊ) = 0.

(2.1) THEOREM. Let L be a line bundle on a smooth variety M and

let K be the canonical bundle. Suppose that L — (K + D) is nef and big

for some negligible Q-dίvisor D. Then Hq(M, L) = 0 for any q > 0.

Here, D = X ^ A is said to be negligible if Supp(D) = U A has no

singularity other than normal crossings and if 0 <I mt < 1 for every ί.

For a proof of this theorem, see [K], [V],

The two theorems below are the main results of this section.

(2.2) THEOREM. Let (V, L) be a normal quasi-polarized variety and

suppose that Hn(M, —π*tL) = 0 for 1 <; t ^ n = dim V, where π: M-> V

is a desingularization of V. Then there is a birational morphism f: V -> P

~ Pn with L = f*ΰP(ΐ).

(2.3) THEOREM. Let (V, L) be a normal quasi-polarized variety and

suppose that hn(M, -πΠL) = 0 for 0 < t < n = dim V and hn(M, -nL) = 1

/or α desingularization π: M-> V. Then either

1) L« = g(V,L) = l, or
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2) there is a bίratίonal morphίsm f: V-+Q onto a (possibly singular)

hyperquadrίc Q in Pn+ι such that L = f*ΘQ(ϊ).

Remark. Case 1) does really occur when (V, L) is a scroll over an

elliptic curve.

(2.4) In order to prove these theorems, we need a few lemmas.

LEMMA. Let A and B be nef Q-bundles on a variety V and set Ia =

AaBn-a e Q for a = 0, 1, , n. Then /α_Λ+1 £ Pa for any 0 < a < n.

It is well-known that this follows from the index theorem on surfaces.

See, e.g., [F6; (1.2:4)].

(2.5) LEMMA. Let L be a nef big Q-bundle on a smooth variety M

with n = d i m M and let E be an effective Q-divisor on M such that LnlE

= 0. Suppose that L + E — F is nef for some effective Q-divisor F. Then

F — E is effective.

Proof. By (1.3), there is an effective Q-divisor D such that L — D

is ample. Then L — εD is ample for any ε with 0 < e <I 1 since L is nef.

We will derive a contradiction assuming that F — E is not effective.

Take a small enough ε > 0 such that F + εD — E is not effective

and set A = (L — εD) + (L + E — F), which is an ample Q-bundle on

M. By virtue of Hironaka's theory we can find a birational morphism

TΓ: M1-^M and effective Q-divisors Eu F1 and Eo on Mx such that π*E —

Eΰ + E19 π*(F + εD) = EQ + Fx and EίΓ\F1 = 0 . Note that π*Ex Φ 0 by

assumption.

We claim that B — Ft + Ax is nef for Ax = π*A. To see this, note

that B = L1 + E19 where Lx = 2 τr*L. Now, for any curve C in M19 we

have EtC^0 or FλC^ 0 since ElnF1 = 0. Hence BC^O because both

Lx and Ax are nef.

Since Lx is nef and L\~xπ*E = 0, we have Lί~ 1 Y=0 for any com-

ponent Y of π*E. In particular LrlEx = 0. Therefore S L r 1 = L?. This

implies Bn ^BnίLt^ . . . ^ B L r 1 = L? by (2.4). On the other hand

Bn == #1-1(2^ + ^ ) ^ B " - ^ . Hence B"- 1 ^ = 0. So AΓιE, = 0 since B =

Fi + Ax and ^ Π F i = 0 . But A?" 1^ = A " " 1 ^ ^ > 0 since A is ample.

Thus we get a contradiction, as desired.

(2.6) COROLLARY. Let L be a nef big line bundle and let E be an

effective divisor on M such that Ln~xE = 0. Then H°(My L) ~ H°(M, L + E).
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Proof, Take a birational model π; Mί -> M such that π*\L + E\ =

F + A for some effective divisor F and a linear system A with Bs Λ = 0 .

Then F - π*E is effective by (2.5). Hence H°(MU Θ(A)) ~ ίf°(Mi, τr*L) -

(2.7) LEMMA. Lβί L be a nef big Q-bundle on a variety V and let

N be a nef Q-bundle with Ln~ιN = 0. Then N is numerically equivalent to

zero.

Proof Take an effective Q-divisor D such that A = L — D is ample.

Then Ln-W - LW"2(A + D)iV ^ LTC-2AΛ^ ̂  ^ A - W since N is nef. So

A w - W = 0 , and [F7; (3.3)] applies.

(2.8) COROLLARY. Let L be a nef big Q-bundle on a variety V and

let E be an effective Cartier divisor such that Ln~^E = 0. Then h°(V, Θ(E))

Proof. We will derive a contradiction assuming dim|U| > 0. Let G

be the graph of the rational mapping defined by \E\. Then we have a

birational morphism π: G -> V and an effective divisor F on G such that

π*\E\ = F + H for some linear system H with BsfiΓ = 0 . Since L is

nef and 0 = LnίE = Ln'\F + H) ̂  L 7 1" 1^ we have LnlH = 0. So i ϊ is

numerically trivial by (2.7). This is impossible if dim | J571 > 0.

Remark. (2.7) and (2.8) are valid in positive characteristic cases too.

(2.9) Now we prove the theorem (2.2). Let π: Af —• V be a des-

ingularization and let K be the canonical bundle of M. For the sake

of brevity π*L will be denoted just by L. Then we have hq(M, —tL) =

hn~\M, K + tL) = 0 for q < n, t> 0. Hence lit) = χ(Af, ίL) - 0 for

— 1 ;> t^> — n. So χ(ί) = d(t + 1) {t + n)ln\ for some constant d. By

Riemann-Roch Theorem we obtain d = Ln and KLnl = —d(n + 1). Since

Λ°(M, ^ + (Λ + l) i) = hn(M, -(n + 1)L) - ( - l ) n X ( - n - 1) = d > 0, we have

a member E of | ϋ Γ + ( n + l)L|. Then D^'E = 0. So d = l by (2.8).

Moreover, by (2.6), we have h°(M, L) = Λ°(M, L + E) - (-l)TC%(-τι - 2) =

τ ι + 1 . Hence Δ(M, L) = 0 and π*L is spanned by (1.1). So L is spanned

on V too since V is normal. Thus \L\ gives a mapping with the desired

property.

(2.10) Next we prove (2.3) by a similar method. This time we

have hn(M, -tL) = 0 for 1 ̂  t < n and hence X(t) = X(M, tL) =* (ί + 1) .
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(t + n — 1) (dt + a)jn\ for some constants d, a. Here d = Ln and KLnί

= d(l - n) - 2a/n. Moreover X(-n) = ( - l ) n since An(M, -rcL) == 1. So

α = (d - l)n and (K+nL)L*-1 = 2 - d. Since A°(M, i£ + ήL) = AW(M, - Λ L )

= 1, we have a member E of | JSΓ + nL|. Then Z/ 1]? = 2 - d ^ 0, so

d = 1 or 2.

When d = 1, we have (if + (rc - l)L)Ln~ι = 0. Therefore g( V, L) ==

g(M, π*L) = 1 by (1.8). Thus we are in case 1).

When d = 2, we have L"-1JB = O. So A°(Af, L) = A°(M, L + E) =

(-l)w%(~n - 1) = Λ + 2 by (2.6). Hence J(M, L) = 0. So we are in

case 2) by the same reasoning as in (2.9).

(2.11) COROLLARY. Let (V,L) be a normal quasi-polarized variety

with g(V, L) ̂  0, Ln ^ 2, n - dim V. Then Δ(V, L) = 0.

Proo/. Let π: M-> V be a desingularization. Then Δ{V, L) = J(M, L)

and g(M,L) = g(V,L)^;0 by (1.8), where L stands for ττ*L. So (K +

(n - l)L)Ln-' ^ - 2 . If Ln = 1, then /ι*(M, - ίL) = A°(M, K + *L) = 0 for

t <L n. Hence (2.2) applies.

If Ln = 2, then &n(M, — ίL) = 0 for ί ^ n. Moreover hn(M, —ήL) =

A°(Af, Z + nL) ̂  1 by (2.8). So (2.3) applies.

(2.12) By a similar method as above we obtain the following

PROPOSITION. Let (V,L) be a quasi-polarized variety of dimension n

and assume Hq(V, tL) = 0 for any q> 0, 1 — n<Lt<> 1. Then J(V, L) = 0.

Proo/. Setting X(t) - χ(V, ίL), we have X(-t) = 0 for 1 ̂  ί ^ τι - 1

and χ(0) = 1. From this we infer l(t) = (ί + 1) . . (ί + n - ί)(dt + n)ln\

for d = Lw. Hence A°(y, L) - χ(l) - n + Λ Thus J( V, L) = 0.

(2.13) Remark, Let (V, L) be a quasi-polarized variety such that

An(V, -tL) = 0 for 1 ̂  ί ^ 7z. Then (2.2) applies.

This follows from the lemma below. We have a similar result in

case (2.3) too.

(2.14) LEMMA. Let π: X~> V be a biratίonal morphism of varieties

of dimension n. Then hn(X,^)^hn(V,π^) for any coherent sheaf IF

on X and hn(X, π*i) ^ hn(V, £) for any locally free sheaf $ on V.

Proof. Set ^ q = Rqπ^ and let Sq be its support. Then dim Sq <

n — q for any q > 0 since d i m π " 1 ^ ) < n and dimTr"1^) ^ q for any

xeSq. So Hn~q(V,&q) = 0 for q> 0. From this we infer hn(X,^) ^
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hn(Vy^Ό) using Leray spectral sequence. As for the second assertion,
note that the natural homomorphism S —> π*π*$ is injective and
dim(Supp(^))< n for its cokernel «\ So hn(V, i) ^ hn(V, π*π*£). To-
gether with the former inequality this proves the second assertion.

§ 3. Polarized varieties having log-terminal singularities

(3.1) We review theories in [KMM] used in this paper.

Let B = 2] bίBi be a Q-Weil-divisor on a normal variety V with
0 ^ bt < 1 for each /. A birational morphism π: M —> V is called a nice
desingularization of the pair (V, B) if M is smooth and if π'^BljS) is a
divisor having no singularity other than simple normal crossings, where
S = {xe V|dimπ-1(x)> 0}.

(V, B) is said to have only log-terminal singularities if there are a
nice desingularization as above and effective Q-divisors E, D on M such
that π*E = 0, E is a usual divisor, π*D = B, D is negligible and K + D
= π*ω(V, B) + E for some Q-bundle α>( V, B) on V, where if is the canon-
ical bundle of M. In this case ω(V, B) will be called the canonical Q-
bundle of (V9B).

If B = 0, we say that V has only log-terminal singularities. In this
case ω(V, 0) corresponds to the canonical sheaf of V.

Remark. Log-terminal singularities are rational and they form a
wider class than that of canonical singularities in the sense of Reid.
Any quogient singularity by a finite group action is log-terminal. A
Gorenstein singularity is log-terminal (in fact canonical) if it is rational.

(3.2) Combining [KMM; 1-2-5] and the argument [S2; (0.2.1)], we
obtain the following

LEMMA. Let F be a finite subset of a variety V and set U — V — F.
Let B be a Q-dίvisor on V such that (U, Bv) has only log-terminal singu-
larities. Suppcse that ω(U, Bv) is the restriction of some Q-bundle ω on
V and that L — ω is nef and big for some line bundle L on V. Then
H«(VyL) = 0 for q> 0.

Proof. Let π: M-+V be a. nice desingularization of (V, B) and let
Bf be the proper transform of B on M. Then K + Bf = π*ω + Σ <*&
for some prime divisors Et with π*Et = 0, and αt > — 1 unless π{E, ) c F.
Hence there are effective divisors P, N and a negligible Q-divisor D on
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M such that π*P = 0, π(N) C F, π*D = B and K + D = π*ω + E for

E= P— N. Then, by (2.1), we have Hq(M, π*L + E) = 0 for g > 0.

Similarly ff«(M, ττ*(£ + iff) + E) = 0 for g > 0, i ^ 0 and any ample

line bundle H on V. Letting t > 0 and using Leray spectral sequence,

we infer h°(V, Rqπ*(9M(π*(L + iff) + £)) = 0, which implies Rqπ*ΘM(L + £ )

= 0 since H is ample. Using Leray spectral sequence again, we get

H<(V, π A ( L + E)) = Q for g > 0.

In view of the exact sequence 0 -• 0M(L + £?)-> 0v¥(L + P) -> ̂ ( L + P)

->0, we infer that Coker(τr^ i¥(L + E) -> π*ΘM{L + P)) is supported in

π(ΛΓ) = F. Hence /ιQ(V, L) = h*{V, π*ΘM{L + P)) ^ h«{V, π*ΘM{L + E)) = C

for g > 0. Thus we complete the proof.

(3.3) DEFINITION. A pair (V, L) of a variety V and a line bundle

L on it is called a scroll over a variety VΓ if there is a vector bundle <f

on W such that 1/~ P(#) and L = 0(1). Thus 1/ is a Pr~'-bundle over

W for r = rank((?).

(3.4) Now we state the main result of this section.

THEOREM. Let (V,L) be a polarized variety with dim V — n and let

B be a Q-dίvίsor such that (V, B) has only log-terminal singularities.

Suppose that there is a subset Y of V such that codim Y> 2 and ω(V, B)u

comes from Fic(U) for U = V — Y. Then ω(V, B) + (n — ΐ)L is nef unless

d(V, L) = 0 or (V, L) is a scroll over a smooth curve.

This is proved similarly as [F10; Theorem 2]. The following lemma

plays a key role.

(3.5) LEMMA. Let V, L, B be as above and suppose that ω + mL is

not nef for ω = ω(V, B) and some m ^ 0. Then there is a surjective mor-

phism f: V —> W onto a normal variety W and a curve R in V with the

following properties:

1) Every fiber of f is connected.

2) A curve C in V is numerically proportional to R if and only if

f(C) is a point.

3) Fe Pic(V) comes from Pic(W) if and only if FR = 0.

4) F is relatively f-ample if and only if FR > 0.

5) (ω + mL)R < 0.

This follows from the Cone Theorem in [KMM]. Such a curve R

will be called an extremal curve and f will be called the contraction

morphism of R.
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(3.6) Now we prove (3.4). Suppose that ω + (n — ΐ)L is not nef.

Take /, W, R as in (3.5) with m = n — 1. We will first prove dim W < n.

Assume that / is birational. Take a point x on W such that dimf~\x)

— k > 0. Let X be an irreducible component of f~\x) with d i m X = k,

let v: N -> X be its normalization and let M be a smooth model of JV.

For any ample line bundle H on W we have Hq(V, —tL+ IHV) — 0 for

any q > 0, ί <; n, — 1 and I > 0 by (3.2). Hence, similarly as in [F10;

(2.3) & (2.4)], we get H\M, -tLM) = 0 for t £ n - 1. By (2.2) this implies

k = n - 1, Z& = 1, J(iV, L^) = 0 and hence (JV, L^) - (Pn~\ Θ{1)) since

L^ is ample. Take a general line Z in iV. Then v ( Z ) Π Y = 0 since

dim (v'^y)) < n — 2. So coZeZ and ωZ <̂  — ^. Hence —nL — ω is /-nef

by (3.5; 4), which implies #*(7, - Λ L + IHV) = 0 for q > 0, Z > 0 by (3.2).

So #fc(iV, -nLN) = 0, which is absurd.

(3.7) Proo/ o/ (3.4), continued. Now we have dim W <n. Let ί1 be

a general fiber of /, let %: M -> F be its desingularization and set £ =

dim F. Similarly as above we get Hk(M, — tLM) — 0 for any t ^ n — 1.

So & ̂  Λ - 1.

If k = 7i — 1, we obtain (F, L^) — (Pfc, (P(l)) by (2.2), since any general

fiber is normal by Bertini's theorem. W is a curve in this case. So

every fiber X of / is a Cartier divisor with LnίX = LnlF = 1. Hence X

is irreducible and reduced since L is ample. By the lower-semicontinuity

of the J-genus we infer (X, Lx) ~ (Pk, Θ{1)). Thus (V, L) is a scroll over

W.

When k — n, W is a point. So ω is numerically equivalent to cL for

some rational number c with c < 1 — TZ. Therefore iία( V, ίL) = 0 for any

4 > 0, ί ;> 1 - rc by (3.2). So Δ(V, L) = 0 by (2.12). Thus we complete

the proof of (3.4).

(3.8) COROLLARY. Let L be an ample line bundle on a log-terminal

variety V. Suppose that g(V, L) ^ 0 and V — Y is Gorenstein for a subset

Y with codim Y > 2. T/ιβτz Δ(V, L) --= 0.

Proo/. Set ω = ω(V, 0). By (1.8) we have (ω + (n -

= 2^(V, L) - 2 < 0 for n = dim V. So ω + (τι - 1)L is not nef. By (3.4)

we may assume that (V, L) is a scroll over a curve VΓ. Then g(V, L) is

the genus of W and the assertion follows.

(3.9) COROLLARY. Let things be as above except g(V, L) — 1. Then
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ω = (1 — ή)L (hence V is Gorensteίn) and J(V, L) = 1, unless (V, L) is a

scroll over a smooth elliptic curve.

Proof. By (3.4) we may assume that F = ω + in — ΐ)L is nef.

Moreover FLnl = 2g — 2 = 0. So F is numerically trivial by (2.7). Now

we use (3.2) to get X(V, -tL) = 0 for 1 ̂  t < n - 1 and χ(V, 0) = 1. From

them and g = 1 we infer χ(V, ίL) = (J + 1) . . . (t + n - 2)(dt2 + (n - ϊ)dt

+ (n-ϊ)ή)lnl Kenceh°(V,L) = X(V,L) = n + d-lby(Z.2). So Δ(V, L)

= 1. Moreover X(V, (1 - n)L) = (~ϊ)n implies h°(V, ω + (n - 1)L) = 1 by

duality and (3.2). Hence ω = (1 — τι)L, as asserted.

§ 4. Three dimensional cases

In this section we will show that our Conjecture follows from the

Flip Conjecture. In particular, by virtue of Mori's result [M2], our

Conjecture is true in dimension <; 3.

(4.1) DEFINITION. TWO quasi-polarized varieties (Vu Lt) and (V2, L2)

are said to be birationally equivalent if there is another variety G with

birational morphisms ft: G —• V,L (i = 1, 2) such that /f Lx = /*L2

Now we state the main result in this section.

(4.2) THEOREM. Let (V, L) be a quasi-polarized variety with n =

dim V <Ξ! 3. T/ien ί/iβrβ exists α quasi-polarized variety (V7, I/) which is

birationally equivalent to (V, L), /ιαs on/y Q-factorίal terminal singularities,

and satisfies one of the following conditions.

1) ωf + in — 1)1/ is nef for the canonical Q-bundle ωf of V\

2) Δ(V\U) = 0.

3) (V, V) is a scroll over a curve.

Here, "Q-factorial" means that every Weil divisor is Q-Cartier. As

for the definition of terminal singularities, see, e.g., [KMM]. We remark

that they are much milder singularities than log-terminal ones. In

particular they are smooth in codimension two.

We make a brief review of theories in [KMM] which we use.

(4.3) Let V be an /z-dimensional variety having only terminal sin-

gularities. If the canonical Q-bundle ω is not nef, then there is an

extremal curve R and the contraction morphism /: V—> W of R as in

(3.5).

When / is birational, set S = {xe V|dim/-*(:*;) > 0} and E = f-\S).
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/ will be called a divisorial (resp. flipping) contraction if dim E = n — 1

(resp. < n — 1).

(4.4) LEMMA. // / is a divisorial contraction as above and if V has

only Q-factorial terminal singularities, then W has only Q-factorial terminal

singularities.

For a proof, see [KMM; 5-1-6].

(4.5) FLIP CONJECTURE I. If f is a flipping contraction, there exists

a bίratίonal morphism f+: V+ —> W from a variety V+ having only Q-

factorial terminal singularities such that

1) f+ is an isomorphism in codίmensίon one, and

2) the canonical Q-bundle ω+ of Vv is f+-ample.

This is in fact true when n <J 3 (cf. [M2]). / + is determined uniquely

if exists, and is called the flip of /. V+ is called the flip-flop of V with

respect to R.

A sequence of varieties {Vj} is called a flip-flop sequence if, for each

ί, Vj+1 is the flip-flop of Vά with respect to an extremal curve Rs on V r

(4.6) FLIP CONJECTURE II. There does not exist a flip-flop sequence

of infinite length.

This is true when n ^ 4 (cf. [Sh] and [KMM; 5-1-15]).

(4.7) Now we prove (4.2). Let π: Vo -> V be a desingularization of

V and set Lo = π*L. If ω0 + (n — 1)LO is nef for the canonical bundle ω0

of Vo, then we finish by setting (V, I/) — (Vo, Lo). So we may assume

that ωQ + (n — 1)LO is not nef. Take an extremal curve i?0 with (ωQ +

(n — l)L0)i?0 < 0 and let fQ: Vo —> W be the contraction morphism of it.

Suppose that /0 is not birational. If LQRQ = 0, then Lo comes from

Pic(W), but this contradicts (1.4). Hence L0RQ> 0 and Lo is relatively

/o-ample. Therefore, similarly as in (3.7), we infer that J(V0, L0) = 0 or

(Vo, Lo) is a scroll over a curve. So we finish by setting (V',L') =

(Vo,Lo).

Suppose that /0 is birational. If Lol?o > 0, we get a contradiction as

in (3.6). So L0R0 = 0 and Lo = ffLw for some line bundle Lw on W. If /0

is a divisorial contraction, we set (VΊ, Lt) = (W, Lw). If fQ is a flipping con-

traction, we take the flip / + : V+ -> W of /0 and set (T^, LJ = (V+, (f+)*Lw).

In either case Vί has only Q-factorial terminal singularities and hence
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is smooth in codimension two. Clearly (V^L^ is birationally equivalent
to(V,L).

We repeat the above argument replacing (Fo, Lo) by (VΊ, Lj). Then
we can finish by setting (V, L') — (Vu Lx), or we get another pair (V2, L2).
In this case we again apply the above argument to (V2, L2). Thus, we
continue until we finish.

We obtain (Vj+1,Lj+1) either by a divisorial contraction or by a flip-
flop as in (4.5). By (4.6), we must have a divisorial contraction after
finite steps. Then the Picard number of Vs decreases by one, while it
does not change in case of flip-flop. Since the Picard number is finite,
such a process cannot continue infinitely. Thus we can find (V, Z/)
with the desired property after finite steps.

(4.8) COROLLARY. Let L be a nef big line bundle on a normal variety
V of dimension n<*3. Then g(V, L) ̂  0. Moreover, if g(V, L) = 0, then
Δ(V,L) = 0.

Proof. Take (V, L') as in (4.2) and use the argument in (3.8). Note
that g(V, L) = g(V, V) by (1.8) and A(V, L) = A(V, ΊJ) by the normality
of V.

(4.9) COROLLARY. Let (V, L) be as above and suppose g(V, L) = 1.
Then the pair (V\L() as in (4.2) is either a scroll over an elliptic curve
or a locally Gorenstein variety with ωf = (1 — n)U and J(V\ U) = 1.

For a proof, use the argument in (3.9).

§ 5. The case L is spanned by global sections

(5.2) When Θ{L) is spanned by global sections, our conjecture is
easily verified. Indeed, taking general members of \L\ successively, we
get a sequence V = Vn z> Vn_x 3 Z> Vx of subvarieties Vj of V such
that Vj is a member of \LVj\. Then g(V, L) is equal to the arithmetic
genus of the curve Vί and hence non-negative. Moreover, by Bertini
theorem, V/s are normal if so is V. Thus, the following theorem applies
if g = 0.

(5.2) THEOREM. Let (V,L) be a quasi-polarized variety with g(V, L)
= 0. Suppose that there is a sequence {Vj} as above such that each V$

is normal. Then A(V, L) = 0.
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Proof. We will show Δ( Vp L) = 0 by induction on j : This is clear

for j = 1. When j > 1, we infer Kί(Vj, -L) = 0 from (2.1) by Mumford's

argument. On the other hand Δ( V3_λ, L) = 0 by the induction hypothesis.

So h}(V3_x,Θ) = 0 by (1.1) and by the classification theory of polarized

varieties of J-genus zero. Combining them we get h1(Vj,Φ) = 0. This

implies Δ(Vj9 L) = Δ(Vj_1,L). Thus we complete the proof.

Remark. If we have a sequence V = Vw 13 Z) Vd down to dimen-

sion d and if Δ(Vd,L) = 0, then we obtain J(V, L) = 0 by the above

argument. In particular, if d = 3, this method works by virtue of (4.8).

(5.3) Before proceeding further, we make the following remark.

When L is assumed to be spanned by global sections, it is not bad

to assume further that L is ample. Indeed, the rational mapping defined

by IL\ is a morphism in this case. Taking the Stein factorization of it,

we get a birational morphism f: V~>W onto a variety W such that L = /*A

for some ample line bundle A on W. Thus (V, L) is birationally equiva-

lent to (W, A), and its structure is described via (VF, A). We may assume

that W is normal if so is V. But we must sacrifice the smoothness of

W even if V is smooth.

(5.4) As for the case g = 1, we have the following

THEOREM. Let L be an ample line bundle on a normal variety V

with n = dim V and suppose that g(V, L) = 1 and L is spanned by global

sections. Then one of the following conditions are satisfied:

1) V has only rational Gorensteίn singularities, Δ( V, L) = 1 and

ω = (1 — ή)L in Pic(V) for the canonical sheaf ω.

2) (V, L) is a scroll over an elliptic curve, or a generalized cone over

such a scroll.

(5.5) By "generalized cone" we mean the following: Let $# be an

ample vector bundle on an elliptic curve C and set S = Θψ@stf, M == PC{S)

and H = ΘM{1). The surjection δ -* 0®* defines a submanifold N oί M

such that JV- P ( ^ ) ^ C χ P M with HN being the pull-back of (0(1) of

P*"1. The linear system \mH\ has no base point for m > 0 and gives a

birational morphism π: M-> W onto a normal variety W such that i ϊ =

7r*A for some ample line bundle A on Ψ. Moreover M — N a W — π(N)

and πN: N-+π(N) is the second projection of N onto P*"1. If (V, L) is

isomorphic to such a polarized variety (PF, A), it is called a generalized
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cone over (P(stf), Θ(l)). We remark that W has irrational singularities

along π(N). They are not even Cohen Macaulay in general.

(5.6) We prove (5.4) by induction on n. The assertion is obvious

when n = 1, and is known when n = 2 (cf. [Sa]). So we assume n J> 3.

But the present method works also for n = 2.

Let π: M-> V be a desingularization of V, let Z) be a general member

of \L\ and set S = π*De|L M | . Then £) is normal and S is smooth by

Bertini type theorems. Since g(D, LD) = 1, we can apply induction hy-

pothesis to (D, LD). If (D, LD) is of the type 1), then hι(D, Θ) = h^S, Θ) = 0

by (3.2), since rational Gorenstein singularities are canonical. We have

h^S, Θ) = 1 if (A L^) is of the type 2).

Suppose that hι{M, Θ) = 0. Then ^(S, 0) = 0 since /ι2(M, -£,*) = ()

by duality and (2.1). So (Z>, L J is of the type 1). Hence h\S, Ks +

(n - 2)L5) > 0 for the canonical bundle Ks of S. This implies h°(M, K +

(n — ΐ)LM) > 0 for the canonical bundle K of M, since /^(M, if + (n — 2)LM)

= 0 by (2.1). Let £ be a member of |if + (n - ΐ)LM\. Then L ^ Έ = 0

since g(M, LM) --= g(V, L) = 1 by (1.8). So dimπ(E) < n - 1. Since if -

(1 — n)LM + i? in Pic(M), this implies that V has only canonical singu-

larities and ωv = (1 — n)L. We have also Δ(V, L) = J(M, LM) = J(S, L5)

= J(Z), L D ) = 1. Thus (V, L) is of the type 1).

Suppose that h\M, &) > 0. We have h\M, Θ) £ fΐiS, Θ) since

hx(M, ~LM) = 0. So 1 = h\M, Θ) = h'iS, Θ) and (A LD) is of the type 2).

Let α:: M —> C be the Albanese map. Clearly C is an elliptic curve.

Moreover, using the Stein factorization and the universality of the

Albanese map, we infer that any general fiber X of a is connected (cf.

[U; p. 112]). Since Lx is nef and big, Xf] S is connected too. This implies

Alb(S) ^ C and the restriction σ of a to S is the Albanese map of S.

Recall that (S, Ls) is birationally equivalent to a scroll over C. So ^ =

σ*Θs(Ls) is locally free and the natural homomorphism σ * ^ —> &S(LS) is

surjective. On the other hand, hι(X, Θ) <: hι(XΠ S,Θ) = 0 since hx(X, —Lx)

= 0 by (2.1). So J^j = i ? 1 ^ ^ is supported in a finite subset of C.

Moreover, using Leray spectral sequence, we infer h°(C, «^Ί) = 0 since

h\M, Θ) = A^C, Φ). So &x = 0. Now, taking α # of 0 -> ̂  -> ̂ ^(L^) -•

^(L^) -> 0, we get an exact sequence O - ^ - ^ - ^ - ^ O f o r ^ ^ a*ΘM{LM).

So g is locally free. Moreover, we easily see that a*£ -> ΘM(LM) is

surjective. Hence there is a morphism /: M —> P = P(< )̂ such that L^ =
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Suppose in addition that a factors through V. Let β: V—*C be the

morphism such that a = β © π. Then £ = β*Θv(L) since V is normal.

Moreover β*£ —>ΘV(L) is surjective. So we have φ: V->P such that

L = φ*ΘP(ϊ). φ is finite since L is ample. Hence it is an isomorphism

by Zariski's Main Theorem. Thus (V, L) is a scroll over C.

If a does not factor, then there is a curve Y in M such that y = π( Y)

is a point while a(Y) = C. We may assume y&D since D is a general

member of |L|. By construction of /, there is a divisor H in P such that

f*H = S and H ~ P(jT). Since y g D and FΠ S = 0 , we have f(Y) Π i/

= 0 . Therefore, the pull-back of the exact sequence 0-^(9c->£^^-+0

via the map Y —> C splits on Y. So this sequence splits on C since

W(C, J Γ V ) -• H\Y, !Fy) is injective. By the induction hypothesis we have

j r ^ ®̂fc 0 ^ for s o m e /j ^ 0 and an ample vector bundle j / on C. So

^ ^ 0©(fc+i) 0 j / t From this we infer that (V, L) is birationally equivalent

to a generalized cone over C But they must be isomorphic since L is

ample.

(5.7) In order to proceed further, we want to study ω + mL for

general m > 0. The result [S2; (2.1)] is very useful for this purpose.

The following theorem improves upon this result slightly.

THEOREM. Let (V, L) be a polarized variety and let A be an irreduc-

ible reduced member of \L\. Suppose that

1) the double dual ωr of the r-th tensor product of the canonical sheaf

ω of V is ίnvertίble for some r > 0, and ωm is ίnvertίble in a neighborhood

of A for a possibly smaller positive integer m,

2) U = V — Y has only log-terminal singularities (for B = 0) for

some finite set Y, and

3) (ω + tL)A is a nef Q-bundle on A for some rational number t with

t ^ 2 - m~\

Then ω + tL is nef on V unless n = dim V = 2 and (V, L) is a scroll

over a curve isomorphic to A.

Proof Set σ = inf {s e Q\ω + sL is nef on V}. We study the case

σ>t.

By [F7; (6.10)], there exists k> 0 such that the restriction of J^(α, b)

— ωam (x) Θ(bL) to A is very ample for any positive integers α, b with

b > amt + k. We claim that there is such a pair (α, b) with b < amσ

and b — 1 2> (α/n — l)σ.
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Indeed, if a > 0 and b is the largest integer with b < amσ, then

b > amt + k since σ > t. Moreover, if a & Q, then amσ — b can become

arbitrarily small for a suitable α, so we have b — 1 >̂ (am — l)σ too.

When σ e Q, we set mσ = q/p for some mutually coprime integers p, q.

Then amσ — b = 1/p for a suitable a > 0. Since <; > 2 — m"1, we have

σ ^> I + 1/p, which implies b — 1 >̂ (am — l)α as desired.

Set J^ = ^ ( α , 6) for α, δ as above. Similarly as in (3.2), we have

Hι(V, J^(-L)) = 0 unless b - 1 = (am - ϊ)σ and ω + σL is not big. The

vanishing of H1 implies that H°(V, &) -> £Γ°(A, ^ A) is surjective. So ^

is spanned by global sections in a neighborhood of A, hence so is J^ r,

which is invertible on V. Therefore BslJ^I is finite since A is ample.

Then J^ is nef, which contradicts b < amσ.

Now we conclude that b — 1 = (am — l)σ and ω + σL is not big.

Take a large integer / such that lσ e Z, Iσ > It + k and ωι is invertible

on V. Then, similarly as above, B s | F | is finite for F = ωι(lσL). By

[F7; (1.14)] F is semiample. So there is a surjective morphism /: V-> W

onto a normal variety W such that F = f*H for some ample Q-bundle

if on W. Note that dim W < n = dim V since ω + σL is not big.

We claim that the restriction fA: A -> W of / is a finite morphism.

Indeed, otherwise, there is a curve C in A such that (ω + σL)C = 0. But

(ω + ί£)C ̂ > 0 since C c A . This contradicts σ > t.

This claim implies dim W = n — 1. Moreover any general fiber Z of

/ i s a normal curve with (ω + σL)Z = 0. So ωZ < 0 and Z ~ P1. Hence

ωZ = — 2, LZ = 1 and σ = 2 since σ > 2 — m"1 ^ 1. Therefore fA is

birational. So A ~ W by Zariski's Main Theorem.

Now we claim n = 2. Indeed, otherwise, the restriction map Pic(V)

->Pic(A) is injective by [F2; (2.6)]. This implies L = / * ( / l 1 ) * ^ , yielding

a contradiction as in [Si].

Thus W is a curve and every fiber X of / is a Cartier divisor with

LX — LZ — 1. From this we infer that (V, L) is a scroll over W by an

argument in (3.7). Q.E.D.

Remark. [S2; (2.1)] takes care the case m — 1 and t :> 2.

(5.8) Using the above theorem, we can generalize many results

which follow from [S2; (2.1)]. We have also the following

COROLLARY. Let things be as above and suppose that A is locally

Gorenstein and that the canonical sheaf of A is nef Then ω + L is nef
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on V unless A is a curve and (V, L) is a scroll over A.

Proof. Apply (5.7) for m = t = 1.

Note added in proof. After this paper was written, I found that

(2.6) was proved by T. Luo in Amer. J. Math., I l l (1989), 457-487;

Theorem 2.1 by a very different method. Further, very recently, he gave

a new simpler proof which works in positive characteristic cases too

(A Note on the Hodge Index Theorem, preprint, 1989).
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