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THE POSSIBLE COHOMOLOGY OF CERTAIN TYPES

OF TAUT SUBMANIFOLDS

JAMES J. HEBDA

Introduction

The first purpose of this paper is to exhibit several families of compact
manifolds that do not ad nit taut embeddings into any sphere. The second
is to enumerate ths possible Z2-cohomology rings of those compact mani-
folds which do admit a taut embedding and whose cohomology rings
satisfy certain degeneracy conditions. The first purpose is easily attained
once the second has been accomplished, for it is a simple matter to present
families of spaces whose cohomology rings satisfy the required degeneracy
conditions, but are not on the list of those admitting a taut embedding.

A key ingredient in the creation of this list (Theorem 9) is Proposition
5. This proposition provides a criterion under which the cohomology ring
of a taut submanifold M is expressed as a subring of the cohomology
ring of some sphere-bundle P over another submanifold A. It turns out
that all possible cohomology rings for A, and hence for P, (and thus even-
tually for M), can be determined when M satisfies the degeneracy con-
ditions. Indeed, the determination of the possible cohomology for A relies
upon Mϋnzner's work on isoparametric hypersurfaces and enters in the
proof of Theorem 6.

Recall that an embedding of a compact, connected manifold M into
the unit ^-dimensional sphere Sn is said to be taut if for every closed
metric ball B in Sn, tha inclusion map j:Mf] B-+M induces injective
homomorphisms j * : H*(M Π B) -> H*(M) of Cech homology groups with
Z2 coefficients [3], [9].

Every homology and cohomology group occuring in this paper is as-
sumed to have coefficients in the field Z2.
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§1. The multiplicity function and links

Let M be a compact, connected, m-dimensional manifold admitting a
taut embedding into some sphere. Throughout this section we will be
working with a fixed taut embedding of M into Sn. In order to facilitate
the following study of links, it will be convenient to suppose further that
this embedding is substantial, which is to say that M is not contained
in any round hypersphere of Sn. This presents no lack of generality be-
cause every taut submanifold is substantial and taut in the smallest round
subsphere containing it. We will also temporarily eliminate from study
the cases when M is either a sphere or a point. This also is no important
restriction because the taut embeddings of spheres are well-known. They
are precisely the round subspheres in S\ However, this restriction to-
gether with substantiality clearly allows us to assume m < n. This as-
sumption is implicit in the discussion that follows.

Let JVX be the total space of the unit normal sphere bundle of the
embedding of M into S\ and let π: Nx -> M be the projection map. The
multiplicity function is an upper semi-continuous, positive integer-valued
function on Nx defined by setting mult(Z) equal to the multiplicity of
the first focal point along the M-geodesic whoss initial tangent vector is
XeNu This in turn is equal to the multiplicity of the largest eigenvalue
of the shape operator Ax. Thus mult(Z) + mult(—X) < m, because the
multiplicity of the largest eigenvalue of A_x is equal to the multiplicity
of the smallest eigenvalue of Ax (and the smallest and largest eigenvalues
of Ax are not equal because M is taut and substantial). The element X
in Nλ is said to be regular if mult is continuous at X and singular other-
wise. The set of regular points is an open and dense subset of Nx [8].

It is well known that tautness implies that mult can only take values
equal to the dimensions in which the homology of M does not vanish.
Adding substantiality prevents mult from attaining the value m = dim (M)
by Proposition 3.2 of [8].

Let C(M) be the cut locus of M in Sn. For each q e C(M), define
the link Λ(q) C Nx to the collection of all initial tangent vectors to the
Λf-geodesics that minimize distance from M to q. In [8], it is proved that
the restriction π\Λ(q) is a homeomorphism of Λ(q) onto its image, and
that the image π(Λ(q)) is a spherical top-set. Since spherical top-sets are
a particular kind of connected critical set of a distance function, Ozawa's
Theorem [12] implies that π(Λ(q)) is a smooth taut submanifold in Sn.
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Thus π\A(q) gives a taut embedding of Λ(q) into Sn. Ozawa's Theorem

also implies mult (X) = dim (Λ(q)) for all X in Λ(q). This affirmatively

answers a question raised in [8],

LEMMA 1. (π\Λ(q))*: H*(M) -> H*(Λ(q)) is a surjectίve ring homomor-

phίsm.

Proof. The inclusion of a spherical top-set into M induces an injective

homomorphism in Z2-homology [3], [9]. (Singular rather than Cech ho-

mology can be used because the spaces in question are manifolds.) Thus

π\Λ(q) induces an injective map in homology. By the dual pairing of

cohomology and homology when coefficients are in a field, π \ Λ(q) induces

a surjective ring homomorphism in cohomology.

For each XeNl9 let ξ(X) be the unique qeC(M) such that XeΛ(q).

Thus ξ(X) is the cut point along the M-geodesic with initial tangent vector

X. Clearly the mapping friVΊ—> C(M) is continuous, onto, and proper

(i.e. the inverse images of compacta are compact). The following is also

proved in [13].

PROPOSITION 2. Let U c Nx be a connected component of the set of

regular points, and set V = ξ(U) c C(M). Then V is an open subset of

C(M) forming an (n—k—ΐ)-dίmensίonal submanifold of Sn, and ξ: U-+ V

is a locally trivial bundle with fibers which are links diffeomorphic to Sk

where k is the constant value of mult on U.

Proof. Since mult is integer-valued and semi-continuous, it is locally

constant where it is continuous. Thus mult has a constant value k on U.

Since N is a compact Hausdorff space, C(M) has the identification

topology under ξ. Thus V is open in C(M) because f-^V) = U is open

in JV;.

Now ξ I U is a locally trivial bundle with a typical fiber Λ(q) for q e V

because it is proper and a smooth submersion. To see it is a submersion,

notice that ξ = expoτ where exp: N-+ Sn is the exponential map on the

normal bundle N of M, and τ: Nx -> Q is defined by setting τ(X) equal

to the first focal point along the ray through X in the focal locus Q C N.

Clearly, τ carries U diffeomorphically onto an open subset of the regular

focal locus which is a smooth hypersurface in N [6], and exp is a sub-

mersion on τ(U) because the kernel of exp* is tangent to Q and of con-

stant dimension k on τ(U). The rank theorem can then be used to put
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a smooth (n—β—l)-dimensional manifold structure on V.

If q e V and X e Λ(q), then the cohomology of Λ(q) with Z2 coefficients

can be computed by

H\Λ{q\ X) s ff G%), X) = ^-.-.(CCM), C(M) - q)

Here one uses in succession (1) the identification of singular with Cech

cohomology for manifolds, (2) Theorem 1.4 and the following remark of

[7], and (3) excision since q has a neighborhood in C(M) homeomorphic

to Rn~k-\ Consequently, Λ(q) and Sk have the same Z2-cohomology. Thus

Λ(q) is diffeomorphic to Sk because it is well known that a taut sub-

manifold having the cohomology of Sk is diffeomorphic to Sk. This com-

pletes the proof that ξ \ U is a locally trivial bundle with fiber Sk.

COROLLARY 3. Let XeNu mult(X) = k, and ξ(X) = q. Then X is

regular if and only if Λ(q) is homeomorphic to Sk.

Proof. If X is regular, then the result follows from Proposition 2.

If X is singular, then there are points of Nt arbitrarily close to X having

multiplicity strictly less than k. Thus by Lemmas 3.4 and 3.5 of [8], Λ(q)

has a non-zero homology group in some positive dimension less than k.

Hence A(q) is not homeomorphic to Sk.

There is a simple cohomology condition that prevents the existence

of certain singular points.

LEMMA 4. For a given positive integer k, suppose that the cup product

xy = 0 whenever x e H^M), y e HJ(M) with ifj>0 and ί + j = k. Then

there can be no singular X in N1 with mult (X) = k.

Proof. Suppose there is a singular X with mult (X) = k. Let Λ(q)

be the link containing X. Then Λ(q) is a ^-dimensional manifold which

is not a homology sphere by Corollary 3. By Poincare duality, there exist

cohomology classes u e H%Λ{q)), v e Hj(Λ(q)) with i + j = k, ij >0 such

that uv Φ 0. By Lemma 1, there exist x e H\M), y e Hj(M) such that

π*(x) = u, π*(y) = v. Hence π*(xy) = uv Φ 0. Thus xy Φ 0. This con-

tradicts the hypothesis. Therefore no such X exists.

The mapping which sends XeΛ(q) to ξ(—X) e C(M) is one-to-one, and

therefore is a diffeomorphism of A(q) onto its image which will be denoted

Ω(q). For if there were Xφ Y in Λ(q) with ξ(-X) = £ ( - Y) = p9 then
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the extensions of the M-geodesics with initial tangents X and Y in the

directions — X and — Y respectively would produce two distinct minimiz-

ing geodesies in Sn joining p to q. Thus p and q would be antipodal

points in Sn. And so, if r1 and r2 were the respective minimal distances

from q and p to M, then rx + r2 = diam {Sn), and M would be contained

in the metric sphere of radius rx about q (which is also the metric sphere

of radius r2 about p) in contradiction to substantiality.

If for every XeΛ(q), —X is a regular point of Nu then, by Proposi-

tion 2, the set P — ξ~\Ω(q)) = \J {Λ(p):p e Ω(q)} has the structure of a

sphere bundle over Ω(q), because it is the restriction to Ω(q) of a sphere

bundle over some space V containing Ω(q). Thus, under the diffeomorphism

of Ω(q) with Λ(q), there is a mapping f: P —> Λ(q) making P into a Sk-

bundle for some k. There is a section a: Λ(q) —> P given by σ(X) = — X

for XeΛ(q).

Because i admits a section, the Gysin sequence decomposes into short

exact sequences,

0 > HKΛfa)) 5=ϊ TO - ^ H -Wί)) > 0

I ** 1 I
0 > H%*) >Hί(Sk) > #'"*(*) >0.

The bottom row represents the Gysin sequence of P restricted to a point

* e Λ(q). There clearly exists a w e Hk(P) such that δ(u) = 1 e H°(A(q)) and

<7*(w) = 0. The above diagram shows that u restricts to the generator of

Hk(Sk) for each fiber Sk of P. Thus, by the Leray-Hirsch Theorem,

ξ*:H*(Λ(q))-+H*(P) turns H*(P) into a free iϊ*G%))-module with basis

{1, u}. Suppose uι = | * ( ^ ) M + f *(y) for some ar, y e H*(A(q)). Then 0 =

σ*(a2) = σ*(f *(2?)M + ξ*(y*)) = y. Thus w2 = l*(^)w. Therefore £T*(P) «

H*(A(q))[u]/(u2 + zu) for some ^ 6 Hk(A(q)). In this representation, f *(#)

= Λ; and σ*(xu + y) = y for x,ye H*(A(q)).

Let f:P->Mbe defined by /(X) = π(X).

PROPOSITION 5. Suppose for every XeA(q) that —Xίs a regular point

with mult (-X) = k = m - dim (/ί(g)). Ϊ7ιeπ degree (/) = 1 (mod 2). ΪTms

/*: H*(M) -* £Γ*(P) is an ίnjectίυe ring homomorphism.

Proof. For each point p e «0(g), the top-sets π(A(q)) and ττ(/I(p)) inter-

sect in the single point π(X) where X is the unique element of A(q) such
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that ξ(—X) = p. Clearly π(X)eπ(Λ(q)) Π π(Λ(p)). Moreover, there is at
most one point in the intersection. For if rλ and r2 are the respective
distances from q and p to M, then, by substantiality, dist (p, q) = rx + r2

< diam (Sw). Thus the metric ball of radius rλ about q (which contains
the set π(A(q))) intersects the metric ball of radius r2 about p (which con-
tains π(Λ(p))) in a single point.

Next fix Xe Λ(q), and set y=π(X) e π(Λ(q)) c M. Set ξ(Y) = p, then
ye π(Λ(q)) Π π(Λ(p)). Thus there exists a unique Ze Λ(q) such that ξ(—Z)
— p and π(Z) = y. Since π | Λ(q) is one-to-one, Z = X. Since £ | — Λ(q) is
one-to-one, - Z = 7 . Therefore Y=-X. This shows /-'(y) = {-X}.
Observe that {—X} is the transverse intersection in P of Λ(p) and — Λ(<7),
for 7Γ carries Λ(p) and — Λ(q) diffeomorphically onto the transverse sub-
manifolds π(Λ(p)) and π(A(q)) of M, whose tangent spaces at y are respec-
tively the eigenspaces of the smallest and largest eigenvalues of the shape
operator Ax. Transversality is immediate because the sum of the dimen-
sions of these two eigenspaces equals dim (Λ(p)) + dim (Λ(q)) = m = dim (M)

— dim (P) by hypothesis. This also shows that the differential f* is an
isomorphism at —X. Thus y is a regular value of /, and f~\y) has only
one point. Therefore the mod 2 degree of / is 1 [10].

Now f/* is multiplication by 1 = degree2 (/) where f: H*(P) -* H*(M)
is the cohomology transfer [4]. Thus /*: H*(M) -> H*(P) is injective.

Remark. Since f°σ = π\Λ(q), Lemma 1 implies that H*(M) is a sub-
ring of H*(P) which σ* takes onto H*(Λ(q)).

EXAMPLE. Consider the Veronese embedding which is a substantial
taut embedding of M = #P 2 into S\ Here for every g e C(M\ Λ(q) « S1.
The manifold P is a S^bundle over S\ Since H^RP1) injects into #*(P),
P is a Klein bottle. Note / is not a homeomorphism.

A similar example is given by the Veronese embedding of M = i?P3

into S8. This is also taut and substantial. Here there exists a q e C(M)
with Λ(<?) ~ RP1. For each Xe Λ(q), — Xis a regular point of multiplicity
one. Thus P is a (non-trivial) S^bundle over RP2. The other Veronese
embeddings give like examples [3].

§2. Mϋnzner's list

If M admits a taut embedding into Sn such that every point of Nλ

is regular, then the hypothesis of Theorem 3.1 in [6] is satisfied. Con-
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sequently, C(M) is a submanifold of Sn (consisting of two components

when M is a hypersurface and one otherwise), and Sn decomposes as a

topological union of a disk bundle over M with a disk bundle over C(M)

identified along the boundaries of the disk bundles. Mύnzner essentially

determined all possible Z2-cohomology rings of M in this situation.

THEOREM 6. Suppose Mm admits a taut embedding into a sphere such

that every point of Nλ is regular, then H*(M) must be isomorphic to a ring

in one of the following classes of graded algebras over Z2.

#0. Z2 (In this case M is a point).

#1. Z2[x]/<x2> where degree x — m. (In this case, M is a sphere, for it

is a taut homology sphere.)

#2. Z2[x, y]/(x2, y2) where degree x + degree y = m.

#3. Z2[x]/<x3> where degree x = 1, 2, 4 or 8, and m = 2 degree x.

#4. Z2[x, y]l(x2 + y2 + xy9 y> where degree x — degree y = 1, 2, 4 or 8,

and m = 3 degree x.

#5. Z2[x, y, £]/<V, y, 22> where degree x + degree y = degrees, and

in = 2 degree z.

#6. Z2[x]/<x4) where degree x = 1, 2 or 4, ami n = 3 degree x.

#7. Z2[x, 3̂ ]/<x4, y2) where degree x = degrees = 1, 2 or 4, and m = 4

degree x.

#8. Z2[x, J]/<Λ:3, / > ί̂ /ιerβ degree x is either 1 or ei en, degree y = 3

degree x, and m = 5 degree x.

#9. Z2[x, y, -ε]/<x2 + y + xy, y, 2;2) where degree x = degree y is either

1 or even, degree x — 3 degree x, and m = 6 degree x.

Proof. This list is extracted from Mϋnzner's work by the following

argument. First assume M is a hypersurface. Then, by means of Satz

C and Satz 8 in [11], one has for Mϋnzner's case g = 1, that H*(M) is

isomorphic to a ring in class #1; for g = 2, a ring in class #2; for g = 3,

a ring in class #4; for g = 4, either class #5 or #7, depending upon whether

case 1 or case 2 in the proof of Satz 8 [11] is fulfilled; and for g = 6,

class #9. Next assume M is not a hypersurface, then H^(Nί) is among

classes #1, #2, #4, #5, #7, #9. By Satz 5 and Satz 6 in [11], the homomor-

phism π*: H*(M)-> H*(N,) is injective, and makes H^iN,) into a free

]?*(M)-module on two generators. Hence by calculating, in each case,

just what subrings of H*(NX) turn it into such a free module, tha pos-

sibilities for H*(M) are obtained. In detail, if Hήi(Nί) is in class #1, then
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H*(M) is in class #0; if #2, then #1; if #4, then #3; if #5, then #2; if #7,

then either #2 or #6; and if #9, then #8. Then restrictions on the degrees

of the generators in #3, #4, #6 and #7 are not in Mύnzner, but come from

Theorem of Adams [1] and Adem [2], for in these cases there must be a

manifold whose Z2-cohomology is a truncated polynomial ring in one

generator.

Examples may be found in [3], [5], [14]. These examples show that

the topological type of M is not necessarily determined by its cohomology

ring. For instance, some rings in class #2 occur both for a product of

two spheres and for certain Stiefel manifolds.

None of the rings in this list can be the cohomology ring of a con-

nected sum of two compact m-dimensional manifolds which are not Z2-

homology spheres. For by means of the Mayer-Vietoris sequences, if M

= Mx # M2, then H*(M) has a presentation as an amalgamated direct sum

of H*{MX) and H*(M2) in which the units in #°(Mi) and H°(M2\ are

amalgamated to form the unit 1 e H\M), and the generators of Hm{M^) and

Hm(Mo) are amalgamated to form the generator of Hm(M). It is a simple

(though tedious) exercise to show case by case that none of the rings in

the list admits such a presentation.

§ 3. Applications and examples

PROPOSITION 7. Suppose Mm admits a taut embedding in some sphere.

Assume that the cup product xy = 0 whenever x e H%M), y e H3(M) for i,j

> 0 with i + j <m. Then the Z2-cohomology ring H*(M) is in one of the

classes #0, #1, #2, or #3.

Proof. Without loss of generality one may assume M is taut and sub-

stantially embedded. By Lemma 4 every point of Nx is regular. By

Theorem 6, H*(M) is one of the rings on the list. Classes #4 through

#9 can be eliminated because they do not satisfy the condition on the

cup product.

Some examples of manifolds satisfying the cup product condition in

Proposition 7 are the protective planes FP2, products of two spheres Sk

X Sm~k (more generally, sphere bundles over spheres), and connected sums

of these types as long as dimensions agree. For example (Sι X S4) # (S2

X S2) # CP\ HP2 % HP\ (S1 X SH) # (S4 X Sn) # (S7 X S8). Another example

is the 3-dimensional nil-manifold obtained by dividing the group of upper

triangular 3 x 3 matrices by the group of such integral matrices. Its
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cohomology ring is the same as that of (S1 X S2) # (S1 X S2). The following

theorem is an immediate corollary of Proposition 6. It generalizes results

of Ozawa [12].

THEOREM 8. No manifold having the same Z2-cohomology ring as a

connected sum of projectίve planes and/or products of two spheres admits

a taut embedding into a sphere.

§4. The main list

Assume now that £ is the least positive dimension in which the

homology of M does not vanish. Thus Ht(M) = 0 for all 0 < i < £.

If there is a link Λ(q) of dimension m — £, then for every XeΛ(q),

mult(—X) — £ and —X is regular. Hence Λ(q) satisfies the hypothesis

of Proposition 5. For if Xe Λ(q\ then £ < mult (—X) < m - mult (X) = £

where the first inequality is valid because mult cannot take on any value

between 0 and £, and the second because mult (X) + mult (—X) < m.

Since mult cannot take on any value less than £, upper semi-continuity

implies mult is continuous at all points where it equals £. Note that Λ(q)

^ π(Λ(q)) C Sn is a taut submanifold by Theorem 1.1 of [12].

THEOREM 9. Suppose Mm admits a taut embedding into some sphere.

Let β be the least positive dimension in which the homology of M does not

vanish, Assume that the cup product xy = 0 whenever x e H\M), y e Hj(M)

for i, j > 0 with ί + j < m — L Then H*(M) is isomorphίc to one of the

following rings.

(0) Z2.

(1) Z2[x]l(x2} where degree x = m.

(2) Z2[x, y]/(x2, y2) where degree x + degree y = m.

(3) Z2[x]l(x3} where degree x = 1, 2, 4, or 8, and m = 2 degree x.

(4) Z2[x, y]l(x2 + y2 + xy, yz) where degree x = degree y = ί — 1, 2, 4

or 8, and m = 3£.

(5) Z2[x]/<x4> where degree x = £ = 1, 2 or 4, αrcd m = 3^.

(6) Z2[x, u]l(x3, u2} where degree x — degree u = £, and m — 3£.

(7) Z2[x, u]l(x2, u2 + xu) where degree x = degree u = ^ = 1, 2, 4 or 8,

(8) Z2[x, y, w]/<x2, y2*u2) where degree x = degree y = degree u= £, and

m = 3^.

(9) Z2[x, y, u]l(x2, y\ u2 + xu) where degree x — degree y — degree

u = £9 and m = 3£.
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Proof. First assume that M satisfies the more stringent cup product

condition of Proposition 7. Then by that proposition we have the pos-

sibilities (0), (1), (2), or (3). Thus we may henceforth assume that there

exist cohomology classes x e H%M), y e Hj(M) with xy Φ 0, i9 j > 0, and

i + j = m — £.

Thus by Lemma 4, either every point of Nt is regular, or there exists

a singular X e Nx of multiplicity m — L In the former case, the possibilities

in Theorem 6 which are compatible with the conditions on the cup product

are #4 and #6. These are (4) and (5). In the latter case, by Proposition 5,

if *(M) is a subring of H*(P) where P is a certain S^-bundle over the

link A through X. By Corollary 3, A is not a sphere. By the remark

following Proposition 5, (π \ A)*: H*(M) -> H*(Λ) is onto. Thus xy = 0

whenever x e H\A) and y e Hj(A) with 0 < i, j , and ί + j < m — £ = dim (A).

Therefore H*(A) is a ring in either class #2 or #3 by Proposition 7.

Suppose H*(A) = Z2[x]l(x3) and H*(P) = Z2[x, u]/(x\ u2 + zu) where

degree u = £, degree x = k, £ < k, 2k = m — £, and z e H\Λ).

If dim (He(M)) — 1 as a vector space over Z2, then £ — k. For if £ < k,

then dim (Ή%P)) = dim (Hk(P)) = 1. Since iί*(M) -» iJ*(Λ) is onto, Hk(M)

Φ 0. Thus x,ue H*(M). But then xuφOe H*(M) is a contradiction

because k + £<2k = m— £. Therefore £ = k, and m = 3-0. Thus take

the generator x e H\M). It maps onto x e H%A). Then x2 ^ 0 since it

maps onto x2 Φ W(Λ). By Poincare duality dim (HU(M)) = dim (H£(M))

— 1. Thus x2 is the generator of H2e(M). Again by Poincare duality,

x x2 Φ 0. Clearly H*(M) = Z2[x]/<x4>. This is (5).

If dim (H\M)) = 2, then dim (H\P)) = 2. Thus £ = Jfe, and /n = 3^.

Also x, w € ff*(Λf). Therefore H*(M) = F*(P). This gives (6) and (7).

Since dim (H%P)) < 2, even if £ = A, it is impossible for dim (H\M))

Now suppose tf*(Λ) = Z2[x, ^]/<x2, / > and H*(P) = Z2[«,y, u]l(x\y2, u2

+ zu) where degree u ~ £, degree x = k, degree y = r, £ < k < r, k + r =

m = ^, and 2; e f f ^ ) . Again ίP(M) ^ 0. Since dim (H%P) < 3, even if

£ = k = r, dim(iiXiki))<3.

If d i m ( # W ) ) = 3, then H*(M) - F*(P). This gives (8) and (9).

If dim (H'(M)) = 2, then £ = k. Now r = 4 = A, for if r > £ = A, then

dim (H'(P)) = 2. Thus M, X e H*(M). This is a contradiction since xw ^ 0

and 2£ = £ + k<r + k = m — £. Therefore k = £ = r, and w = 3& Now,

there is an x e H\M) such that x2 Φ 0. For if not, take y e H\M) such
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that x,y is a basis for H%M). Then the element x-yeHm'e(M) is non-

zero since it maps onto the generator of Hm~e(Λ) and has no Poincare dual

because (x*y)x = 0 = (x-y)y. Thus there exists x e H\M) satisfying x2 Φ 0.

Thus H*(P) - Z2[x, y, u]/(x\ y\ ιiλ + xu). Thus w3 = 0 for every 10 e ίP(P),

and every two-dimensional subspace of H\P) contains an element y such

that y2 = 0. Therefore, there is a basis x, y of H\M) satisfying x2 =£ 0,

3>2 = 0. Since x, y maps onto a basis of H*(Λ), x y Φ 0. It is now clear

that H*(M) = Z2[x, y]/<*3, 5θ This is (6).

Finally, dim (H\M)) = 1 is impossible. Suppose dim (He(M)) = 1. Then

^ < r, for otherwise dim (H£(M)) > dim (ίΓ(Λ)) = 2. Also, ^ = A, for if

£ < k, then w, x e H*(M) giving the contradiction xw Φ 0 since ^ + k <

r + k = m- £. Thus £ = k < r. Now i? r(M) ^ 0 because i/r(/l) ^ 0.

Let x e H\M) be the generator. Then x2 = 0 since £ + £<k + £ = m~

£. Since some class in Hm~\M) is a cup product of classes in lower

degrees, the only possibility after consideration of the degrees in which

H*(M) does not vanish is that there exists yeHr(M) such that x-y Φ 0.

But x(x y) — x2y = 0 is a contradiction to Poincare duality.

§5. Further examples

Examples of spaces that satisfy the condition on the cup product in

Theorem 9 are products of three spheres of the same dimension Se X S£

X S\ the projective 3-spaces FeP3 (£ — 1, 2, 4), and connected sums of

these. For example (S* X Se X S% • #(S' X Se X S*) (k times), CP3# •

%CP3 (k times), (S2 X S2 X S2)#CP3. Also any connected sum of the form

Mi # M2 where Mί satisfies the hypothesis of Theorem 9 and M2 satisfies

the hypothesis of Proposition 7 as long as the least dimension in which

the homology of M2 does not vanish is greater than or equal to £. For

example (S2 X S2 X S2) # (S2 X S% CP* # (S3 X S3) # (S3 X S3).

THEOREM 10. No manifold, whose cohomology ring is isomorphic to

that of a connected sum of products of three spheres of the same dimension

and/or projective 3-spaces, has a taut embedding except possibly for FΨ3

# FΨ3 (I = 1, 2, 4). Also, no manifold, whose cohomology ring is isomorphic

to that of a connected sum of the form Mx % M2 where Mί satisfies the hy-

pothesis Theorem 9, and M2 satisfies the hypothesis of Proposition 7, and

the least dimension in which the homology of M2 does not vanish is greater

than or equal to the least dimension in which the homology of M does not

vanish, has a taut embedding.
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Proof. A case by case analysis of the list in Theorem 9 shows that

none of the rings on the list can be the cohomology ring of a connected

sum of two manifolds that are not Z2-homology spheres, except for (7)

which could be the cohomology ring of FΨS # FΨ* (£ = 1, 2, 4).

The preceding results are well adapted to study the cohomology ring

of a taut submanifold having four non-zero homology groups. For in this

case, the hypothesis of Theorem 9 is satisfied. An examination of the

possibilities from this theorem leads to the conclusion that the Euler

characteristic X(M) is non-negative, and the sum of the Z2-Betti numbers

b(M) does not exceed 8.

THEOREM 11. No manifold M having exactly four non-zero homology

groups (in particular, no ^-dimensional manifold) has a taut embedding if

either X(M) <0 or b(M) > 8.

This supports the following conjecture.

CONJECTURE. Let M be a taut submanifold of a sphere. Then X(M)

> 0 and b(M) < 2r~ι where r is the number of non-zero homology groups

of M.
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