NONSTANDARD ARITHMETIC OF POLYNOMIAL RINGS

MASAHIRO YASUMOTO

Dedicated to Professor Toshiyuki Tugué on his 60th birthday

Let $f(X, T_1, \dots, T_m)$ be a polynomial over an algebraic number field K of finite degree. In his paper [2], T. Kojima proved

Theorem. Let K = Q. If for every m integers t_1, \dots, t_m , there exists an $r \in K$ such that $f(r, t_1, \dots, t_m) = 0$, then there exists a rational function $g(T_1, \dots, T_m)$ over Q such that

$$f(g(T_1, \dots, T_m), T_1, \dots, T) = 0$$
.

Later, A. Schinzel [6] proved

Theorem. If for every m arithmetic progressions P_1, \dots, P_m in Z there exist integers $t_i \in P_i$ ($i \leq m$) and an $r \in K$ such that $f(r, t_1, \dots, t_m) = 0$ then there exists a rational function $g(T_1, \dots, T_m)$ over K such that

$$f(g(T_1, \cdots, T_m), T_1, \cdots, T_m) = 0$$
.

In his thesis [7], S. Tung applied these theorems to solve some dicidability and definability problems. In this paper, we are concerned with geometric progressions of values of T_1, \dots, T_m . We prove

Theorem 1. Assume that there exists $a_1, \dots, a_m \in K$ other than 0 and roots of unity such that for any m integers t_1, \dots, t_m , there exists an $r \in K$ with $f(r, a_1^{t_1}, \dots, a_m^{t_m}) = 0$. Then there exist a rational function $g(T_1, \dots, T_m)$ over K and m integers k_1, \dots, k_m not more than k such that

$$f(g(T_1, \dots, T_m), T_1^{k_1}, \dots, T_m^{k_m}) = 0$$

where k is the X-degree of $f(X, T_1, \dots, T_m)$.

§ 1.

In case of m=1, Theorem 1 is an easy consequence from Theorem of P. Roquette (Theorem 2.1 [4]) as follows.

Received July 8, 1985.

Let $\omega \in {}^*N - N$ be a nonstandard natural number which is divisible by all natural number where *N is an enlargement of N. By the assumption of Theorem 1, there exists a $\delta \in {}^*K$ such that

$$f(\delta, a^{\omega}) = 0$$
.

Let $k_1 = [K(\delta, a^{\omega}); K(a^{\omega})]$. Since the X-degree of f(X, T) is k,

$$k_1 \leq k$$
.

According to Theorem 2.1 in [4], we have

Theorem 2. For each natural number n, there is one and only one extension $F_n = K(a^{\omega/n})$ of $K(a^{\omega})$ within *K such that

$$[F_n; K(a^\omega)] = n$$

where *K is an enlargement of K.

Hence, $K(\delta, a^{\omega}) = K(a^{\omega/k_1})$. Therefore there exists a rational function g(T) over T such that $\delta = g(a^{\omega/k_1})$. Now we have

$$f(g(a^{\omega/k_1}), a^{\omega}) = 0$$
.

Since a^{ω/k_1} is transcendental over K,

$$f(g(T), T^{k_1}) = 0$$

as contended.

§ 2.

In this section we prove Theorem 1 for the case m=2. To prove it, we need iterated enlargements. Iterated enlargements are very useful method but sometime they may cause confusion. So first we discuss basic properties of iterated enlargements. Let ${}^{\circ}K$ be an enlargement of K. We consider the structure $({}^{\circ}K, K)$ and its enlargement ${}^{*}({}^{\circ}K, K) = ({}^{*}{}^{\circ}K, {}^{*}K)$. Then ${}^{*}{}^{\circ}K$ is an elementary extension of ${}^{*}K$ but not an enlargement of ${}^{*}K$. By Theorem of Roquette, for each $n \in N$ and $a \in K$ other than 0 and roots of unity, the following statement is valid for $({}^{\circ}K, K)$;

"For each $\omega \in {}^{\circ}N - N$, there is one and only one extension F_n of $K(a^{\omega})$ within ${}^{\circ}K$ such that $[F_n; K(a^{\omega})] = n$."

By nonstandard principle, the above statement holds for $(*\circ K, *K)$;

"For each $\omega \in {}^*{}^\circ N - {}^*N$, there is one and only one extension F_n of L within ${}^*{}^\circ K$ such that $[F_n; L] = n$."

where $L = \{h(a^{\omega}) | h(X) \in {}^*(K(X))\}$. It should be noted that the rational function field over *K in the sence of the enlargement generated by a^{ω} must be L, not ${}^*K(a^{\omega})$.

Remark. *°K is an enlargement of °K, but Theorem 2 (replacing °K and K by *°K and °K respectively) does not hold, because *°N is not an end extension of °N, namely there exist a $c \in *°N - °N$ and a $d \in °N$ with c < d. In fact, let $c \in *°N$ be an element which satisfies the set of formulas $T = \{c < d \mid d \in °N - N\} \cup \{n < c \mid n \in N\}$. Since any finite subset of T is satisfiable and *°N is an enlargement of °N, such c exists. On the other hand, °N is an end extension of N, so *°N is also an end extension of *N, therefore *°K is not an enlargement of *K.

The following Lemma 1 has been proved in [4] but we include its proof for the convenience of the reader.

Lemma 1. Let M be any field. Then *M(X) is relatively algebraically closed in *(M(X)).

Proof. Let u(X)/v(X) be any element of *(M(X)) - *M(X) where u(X), $v(X) \in *(M[X])$ and g.c.d. (u(X), v(X)) = 1 and assume that u(X)/v(X) is algebraic over *M(X). Then there exist $c_0, c_1, \dots, c_n \in *M[X]$ with $c_0 \neq 0$ and $c_0(u/v)^n + c_1(u/v)^{n-1} + \dots + c_n = 0$. Since $u/v \notin *M(X)$, the degree of u or v is infinitely large. We may assume without loss of generality that the degree of v is infinitely large. Then

$$c_0 u^n + c_1 u^{n-1} v + \cdots + c_n v^n = 0$$

 $c_0 u^n \equiv 0 \mod (v)$.

Since g.c.d. (u, v) = 1,

$$c_0 \equiv 0 \mod(v)$$
.

Since the degree of v is infinitely large and the degree of c_0 is finite, $c_0 = 0$. This is a contradiction.

LEMMA 2. Let $a \in K$ be not 0 nor roots of unity and $\omega \in {}^{*\circ}N - {}^{*}N$ be divisible by all natural number. Then ${}^{*}K(a^{\omega/n})$ is the unique extension of ${}^{*}K(a^{\omega})$ of degree n within ${}^{*\circ}K$.

Proof. Let $x \in {}^{*\circ}K$ be algebraic over ${}^*K(a^{\omega})$ of degree n. Then $x \in L(a^{\omega/n})$ because $L(a^{\omega/n})$ is the unique extension of L of degree n within ${}^{*\circ}K$

and $*K(a^{\omega})$ is relatively algebraically closed in $L = \{h(a^{\omega}) | h(X) \in *(K(X))\}$ by Lemma 1.

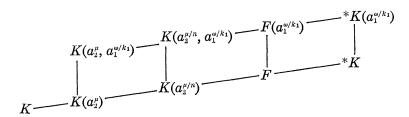


Again by Lemma 1, $*K(a^{\omega/n})$ is relatively algebraically closed in $L(a^{\omega/n}) = \{h(a^{\omega/n}) \mid h(X) \in *(K(X))\}$. Hence $x \in *K(a^{\omega/n})$, as contended.

Let $\omega \in {}^{*\circ}N - {}^*N$ and $\mu \in {}^*N - N$ be divisible by all natural numbers. By the assumption of Theorem 1, there exists a $\delta \in {}^{*\circ}K$ with

$$f(\delta, a_1^\omega, a_2^\mu) = 0$$
.

Since $a_2^{\mu} \in {}^*K$, δ is algebraic over ${}^*K(a_1^{\omega})$ of degree $k_1 \leq k$. Hence by Lemma 2, $\delta \in {}^*K(a_1^{\omega/k_1})$. Let F be the relative algebraic closure of $K(a_2^{\mu})$ within *K . Then $\delta \in F(a_1^{\omega/k_1})$ because $F(a_1^{\omega/k_1})$ is relatively algebraically closed in ${}^*K(a_1^{\omega/k_1})$. By Theorem 2, $K(a_2^{\mu})$ has the unique extension $K(a_2^{\mu/n})$ of degree n within F. Since a_1^{ω/k_1} is transcendental over F, $K(a_1^{\omega/k_1}, a_2^{\mu})$ has the unique extension $K(a_1^{\omega/k_1}, a_2^{\mu})$ of degree n within $F(a_1^{\omega/k_1}, a_2^{\mu})$ of degree n within $F(a_1^{\omega/k_1}, a_2^{\mu})$



Let $k_2 = [K(\delta, a_2^{\mu}, a_1^{\omega/k_1}); K(a_2^{\mu}, a_1^{\omega/k_1})]$. Then $k_2 \leq k$ and

$$K(\delta, a_2^{\mu}, a_1^{\omega/k_1}) = K(a_2^{\mu/k_2}, a_1^{\omega/k_1})$$
.

Hence there exists a rational function $g(T_1, T_2) \in K(T_1, T_2)$ such that

$$f(g(a_1^{\omega/k_1}, a_2^{\omega/k_2}), a_1^{\omega}, a_2^{\omega}) = 0$$
.

Since $a_1^{\omega/k_1} \in {}^*{}^{\circ}K - {}^*K$ and $a_2^{\omega/k_2} \in {}^*K - K$ are algebraically independent over K,

$$f(g(T_1, T_2), T_1^{k_1}, T_2^{k_2}) = 0$$
.

§ 3.

Proof of Theorem for m>2 is essentially the same as that in Section 2. By induction on $i\in N$, we define iterated enlargements $K_i=(^{*i\cdots^*2^{*i}}K,^{*i\cdots^*3^{*2}}K,\cdots,^{*i}K)$ as follows. Let $K_1=(^{*1}K)$. K_{i+1} is an enlargement of $(K_i,K)=(^{*i\cdots^*2^{*i}}K,^{*i\cdots^*3^{*2}}K,\cdots,^{*i}K,K)$, i.e. $K_{i+1}=^{*i+1}(K_i,K)=(^{*i+1}K_i,^{*i+1}K)$. Let $\omega_j\in ^{*m\cdots^*j+1^*j}N-^{*m\cdots^*j+1}N$ be divisible by all natural numbers. Let $\delta\in ^{*m\cdots^*j}K$ satisfy

$$f(\delta, a_1^{\omega_1}, a_2^{\omega_2}, \cdots, a_m^{\omega_m}) = 0$$
.

Then by the same way as in Section 2, there exist natural numbers k_1, k_2, \dots, k_m not more than k such that $\delta \in K(a_1^{\omega_1/k_1}, \dots, a_m^{\omega_m/k_m})$. Since $a_1^{\omega_1/k_1}, \dots, a_m^{\omega_m/k_m}$ are algebraically independent over K, there is a rational function $g(T_1, \dots, T_m) \in K(T_1, \dots, T_m)$ such that

$$f(g(T_1, \dots, T_m), T_1^{k_1}, \dots, T_m^{k_m}) = 0$$
.

References

- H. Davenport, D. J. Lewis and A. Schinzel, Polynomials of certain special types, Acta Arith., 9 (1964), 107-116.
- [2] T. Kojima, Note on number theoretic properties of algebraic functions, Tohoku Math. J., 8 (1915), 24-37.
- [3] A. Robinson and P. Roquette, On the finiteness theorem of Siegel and Mahler concerning diophantine equations, J. Number Theory, 7 (1975), 121-176.
- [4] P. Roquette, Nonstandard aspects of Hilbert's irreducible theorem, Lecture Notes in Math., 498, 231-274.
- [5] A. Schinzel, On Hilbert's irreducible theorem, Ann. Polon. Math., 16 (1965), 333-340.
- [6] —, Selected topics on polynomials, Michigan 1982.
- [7] S. Tung, On weak number theories, Thesis Illinois 1983.
- [8] T. Skolem Einige Satze uber Polynome, Avhandlinger Norske Vid. Akad. Oslo, I Mat-Naturv. Kl. No. 4.

Department of Mathematics Faculty of Science Nagoya University Chikusa-ku, Nagoya 464 Japan