L^p EXTENSION OF HOLOMORPHIC FUNCTIONS FROM SUBMANIFOLDS TO STRICTLY PSEUDOCONVEX DOMAINS WITH NON-SMOOTH BOUNDARY

KENZŌ ADACHI

Abstract. Let D be a bounded strictly pseudoconvex domain in \mathbb{C}^n (with not necessarily smooth boundary) and let X be a submanifold in a neighborhood of \overline{D} . Then any L^p $(1 \le p < \infty)$ holomorphic function in $X \cap D$ can be extended to an L^p holomorphic function in D.

§1. Introduction

Let D be a bounded strictly pseudoconvex domain in \mathbb{C}^n with smooth boundary and let X be a submanifold in a neighborhood of \overline{D} which intersects ∂D transversally. Then Henkin [4] proved that any bounded holomorphic function f in $X \cap D$ can be extended to a bounded holomorphic function F in D. Moreover, he proved that if f is holomorphic in $X \cap D$ and continuous on $\overline{X \cap D}$, then F is holomorphic in D and continuous on \overline{D} . Henkin-Leiterer [5] obtained the above results in the case when D is a bounded strictly pseudoconvex domain in \mathbb{C}^n with non-smooth boundary, without assuming that the submanifold X and ∂D intersect transversally. On the other hand, Beatrous [1] and Cumenge [3] obtained L^p extensions of holomorphic functions from a submanifold $X \cap D$ of a bounded strictly pseudoconvex domain D in \mathbb{C}^n with smooth boundary under the hypothesis that the submanifold X and ∂D intersect transversally. Using a quite different method, Ohsawa-Takegoshi [6] have done the remarkable discovery concerning L^2 extensions. They obtained the L^2 extension of holomorphic functions from the intersection of a complex hyperplane and a bounded pseudoconvex domain which involves weight functions. In their theorem

Received February 21, 2002.

Revised June 21, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 32A26, 32D15.

This research was partially supported by Grant-in-Aid for Scientific Research (No. 13640180), Ministry of Education, Culture, Sports, Science and Technology, Japan.

the transversality is not assumed. When p > 2, Cho [2] gave a counter-example in some pseudoconvex domain such that the L^p extension does not hold. In this paper, we show that any L^p $(1 \le p < \infty)$ holomorphic function in $X \cap D$ can be extended to an L^p holomorphic function in D in the case when D is a bounded strictly pseudoconvex domain in \mathbb{C}^n with non-smooth boundary, without assuming that the submanifold X and ∂D intersect transversally. The proof is based on the estimates of the integral formula for holomorphic functions in $X \cap D$ which was used to prove the bounded and continuous extension of holomorphic functions by Henkin-Leiterer [5]. We also use the estimate of the volume form by means of local coordinates in a neighborhood of a singular points of $X \cap \partial D$ obtained by Schmalz [7].

The author is pleased to acknowledge his gratitude to the referee for valuable suggestions and helps during the improvement of this paper.

§2. Preliminaries

Let $D \in \mathbb{C}^n$ be a strictly pseudoconvex open set and let $\theta \in \mathbb{C}^n$ be a neighborhood of ∂D , and let ρ be a strictly plurisubharmonic C^2 function in a neighborhood of $\bar{\theta}$ such that

$$D \cap \theta = \{ z \in \theta : \rho(z) < 0 \}.$$

Let $N(\rho) = \{z \in \bar{\theta} : \rho(z) = 0\}$, and assume that $N(\rho) \in \theta$. By Henkin-Leiterer [4], we can choose numbers $\varepsilon, \beta > 0$ and C^1 functions a_{jk} on $\bar{\theta}$ such that the following estimates hold:

$$\begin{aligned} \operatorname{dist}(N(\rho),\partial\theta) > 2\varepsilon, \\ \inf_{\zeta\in\bar{\theta}} \sum_{j,k=1}^n \frac{\partial^2 \rho(\zeta)}{\partial \zeta_j \partial \bar{\zeta}_k} \xi_j \bar{\xi}_k > 3\beta |\xi|^2 \quad \text{for all } 0 \neq \xi \in \mathbb{C}^n, \\ \sup_{\zeta\in\bar{\theta}} \left| \frac{\partial^2 \rho(\zeta)}{\partial \zeta_j \partial \zeta_k} - a_{jk}(\zeta) \right| < \frac{\beta}{n^2}, \\ \left| \frac{\partial^2 \rho(\zeta)}{\partial x_j \partial x_k} - \frac{\partial^2 \rho(z)}{\partial x_j \partial x_k} \right| < \frac{\beta}{2n^2} \quad \text{for } \zeta, z \in \bar{\theta} \text{ with } |\zeta - z| \leq 2\varepsilon, \end{aligned}$$
 where $\zeta_j = x_j + i x_{j+n}$. We define

$$F(z,\zeta) = 2\sum_{j=1}^{n} \frac{\partial \rho(\zeta)}{\partial \zeta_j} (\zeta_j - z_j) - \sum_{j,k=1}^{n} a_{jk}(\zeta) (\zeta_j - z_j) (\zeta_k - z_k).$$

Then, by Henkin-Leiterer [5] there exist $\varepsilon > 0$ and c > 0 such that

$$\operatorname{Re} F(z,\zeta) \ge \rho(\zeta) - \rho(z) + c|\zeta - z|^2 \quad (\zeta, z \in \overline{\theta}, |\zeta - z| \le 2\varepsilon).$$

Moreover, Henkin-Leiterer [5] proved the following:

THEOREM 1. There exist a neighborhood $U \subseteq \theta$ of $N(\rho)$ and C^1 functions $\Phi(z,\zeta)$, $\widetilde{\Phi}(z,\zeta)$, $M(z,\zeta)$ and $\widetilde{M}(z,\zeta)$ for $\zeta \in U$ and $z \in U \cup D$ such that the following conditions are fulfilled:

- (i) $\Phi(z,\zeta)$ and $\widetilde{\Phi}(z,\zeta)$ depends holomorphically on $z \in U \cup D$.
- (ii) $\Phi(z,\zeta) \neq 0$ and $\widetilde{\Phi}(z,\zeta) \neq 0$ for $\zeta \in U$, $z \in U \cup D$ with $|\zeta z| \geq \varepsilon$.
- (iii) $M(z,\zeta) \neq 0$ and $\widetilde{M}(z,\zeta) \neq 0$ for $\zeta \in U$, $z \in U \cup D$.
- (iv) $\Phi(z,\zeta) = F(z,\zeta)M(z,\zeta)$ and $\widetilde{\Phi}(z,\zeta) = (F(z,\zeta) 2\rho(\zeta))\widetilde{M}(z,\zeta)$ for $\zeta \in U, z \in U \cup D$ with $|\zeta z| \leq \varepsilon$.
- (v) Let V_1 , V_0 be neighborhoods of $N(\rho)$ such that $V_0 \cup D$ is a strictly pseudoconvex open set and $V_1 \subseteq V_0 \subseteq U$. Then there exist the C^1 map $w(z,\zeta) = (w_1(z,\zeta), \ldots, w_n(z,\zeta))$ for $\zeta \in V_0$, $z \in V_0 \cup D$ with the following properties:
- (a) $\langle w(z,\zeta), \zeta z \rangle = \Phi(z,\zeta) \quad (\zeta \in V_0, z \in V_0 \cup D).$
- (b) We choose a neighborhood V_2 of $N(\rho)$ such that $V_2 \subseteq V_1$ and a C^{∞} function χ on \mathbb{C}^n such that

$$\chi = 0$$
 on $\mathbb{C}^n \backslash V_1$ and $\chi = 1$ on V_2 .

Then there exist constants $\alpha > 0$ and $c < \infty$ such that

$$|\widetilde{\Phi}(z,\zeta)| \ge \alpha (|\rho(\zeta)| + |\rho(z)| + |\operatorname{Im} F(z,\zeta)| + |\zeta - z|^2) \quad \text{for } z,\zeta \in V_2 \cap D.$$
$$|w(z,\zeta)| \le c(||d\rho(\zeta)|| + |\zeta - z|) \quad \text{for } \zeta,z \in V_2.$$

$$\left| \frac{\partial \widetilde{\Phi}(z,\zeta)}{\partial \overline{\zeta}_j} \right| \le c \left(\left| \frac{\partial \rho(\zeta)}{\partial \overline{\zeta}_j} \right| + |\zeta - z| + |\rho(\zeta)| \right) \quad \text{for } \zeta, z \in V_2, \ j = 1, \dots, n.$$

§3. L^p extension

We define

$$\zeta' = (\zeta_1, \dots, \zeta_{n-1}), \quad (w(z, \zeta))' = (w_1(z, \zeta), \dots, w_{n-1}(z, \zeta)),$$

$$\bar{\partial}_{\zeta'} = \sum_{j=1}^{n-1} \frac{\partial}{\partial \bar{\zeta}_j} d\bar{\zeta}_j, \quad \omega_{\zeta'}(\zeta) = d\zeta_1 \wedge \dots \wedge d\zeta_{n-1},$$

$$\overline{\omega}_{\zeta'}\left(\frac{\chi(\zeta)(w(z,\zeta))'}{\widetilde{\Phi}(z,\zeta)}\right) = \bigwedge_{j=1}^{n-1} \bar{\partial}_{\zeta'}\left(\frac{\chi(\zeta)w_j(z,\zeta)}{\widetilde{\Phi}(z,\zeta)}\right).$$

Let $X = \{z \in \mathbb{C}^n : z_n = 0\}$. We denote by dV and dV' the volume form on \mathbb{C}^n and \mathbb{C}^{n-1} , respectively. For an L^p holomorphic function f in $D \cap X$ $(p \ge 1)$ and $z \in D$, we define

(3.1)
$$Ef(z) = \frac{(n-1)!}{(2\pi i)^{n-1}} \int_{D\cap X} f(\zeta) \overline{\omega}_{\zeta'} \left(\frac{\chi(\zeta)(w(z,\zeta))'}{\widetilde{\Phi}(z,\zeta)} \right) \wedge \omega_{\zeta'}(\zeta).$$

Then Ef is holomorphic in D and satisfies $Ef|_{D\cap X}=f$.

Using Schmalz [7], we have the following lemma:

LEMMA 1. Let $t(z,\zeta) = \operatorname{Im}\langle w(z,\zeta), \zeta - z \rangle$. We set $\zeta_j = \xi_j + i\xi_{j+n}$, $z_j = \eta_j + i\eta_{j+n}$ and $E_\delta(z) = \{\zeta \in D : |\zeta - z| < \delta \|d\rho(z)\|\}$ for all $\delta > 0$. Then there are constants $c < \infty$, $\gamma > 0$, and numbers $\mu, \nu \in \{1, \dots, 2n\}$ such that, $\{\rho, t(z,\zeta), \xi_1, \dots, \hat{\mu}, \hat{\nu}, \dots, \xi_{2n}\}$ $\{\xi_\mu \text{ and } \xi_\nu \text{ have to be omitted}\}$ forms coordinates system in $E_\gamma(z)$ $\{\{\rho, t(z,\zeta), \eta_1, \dots, \hat{\mu}, \hat{\nu}, \dots, \eta_{2n}\}\}$ forms coordinates system in $E_\gamma(\zeta)$, respectively) and we have the estimates

$$dV \leq \frac{c}{\|d\rho(z)\|^2} |d\rho(\zeta) \wedge d_{\zeta}t(z,\zeta) \wedge \dots, \hat{\mu}, \hat{\nu}, \dots \wedge d\xi_{2n}| \quad on \ E_{\gamma}(z)$$
$$dV \leq \frac{c}{\|d\rho(\zeta)\|^2} |d\rho(z) \wedge d_zt(z,\zeta) \wedge \dots, \hat{\mu}, \hat{\nu}, \dots \wedge d\eta_{2n}| \quad on \ E_{\gamma}(\zeta),$$

where dV is the Euclidean volume form on \mathbb{C}^n .

Using Lemma 1, we prove the following theorem:

THEOREM 2. Let X be a closed complex submanifold of some neighborhood of \overline{D} . Let f be an L^p holomorphic function in $D \cap X$ $(p \ge 1)$. Then there exists an L^p holomorphic function F in D such that $F|_{D \cap X} = f$.

Proof. We may assume $X = \{z_n = 0\}$. We set $\widetilde{U} = D \cap U$. The integral of the right hand side of (3.1) consists of the following two types

integrals:

$$I_{1}(z) = \int_{X \cap \widetilde{U}} f(\zeta) \frac{G(z,\zeta)}{\widetilde{\Phi}(z,\zeta)^{n-1}} dV'(\zeta),$$

$$I_{2}(z) = \int_{X \cap \widetilde{U}} f(\zeta) G(z,\zeta) \frac{w_{j}(z,\zeta) \frac{\partial}{\partial \zeta_{\nu}} \widetilde{\Phi}(z,\zeta)}{\widetilde{\Phi}(z,\zeta)^{n}} dV'(\zeta),$$

where $G(z,\zeta)$ is a smooth function in $\overline{D} \times \overline{D}$. At first we prove the theorem in the case when p=1. Using Fubini's theorem, we have

$$\begin{split} \int_{D} |I_{1}(z)| \, dV(z) &\lesssim \int_{X \cap \widetilde{U}} |f(\zeta)| \left\{ \int_{D} \frac{1}{|\widetilde{\Phi}(z,\zeta)|^{n-1}} \, dV(z) \right\} dV'(\zeta) \\ &\lesssim \int_{X \cap \widetilde{U}} |f(\zeta)| \left\{ \int_{|\zeta-z| \leq M} \frac{1}{(|\zeta-z|^{2})^{n-1}} \, dV(z) \right\} dV'(\zeta) \\ &\lesssim \int_{X \cap \widetilde{U}} |f(\zeta)| \, dV'(\zeta). \end{split}$$

Using the inequality

$$|w_j(z,\zeta)| \left| \frac{\partial \widetilde{\Phi}(z,\zeta)}{\partial \overline{\zeta}_{\nu}} \right| \lesssim \left(\|d\rho(\zeta)\|^2 + |\zeta - z| + |\rho(\zeta)| \right),$$

we have

$$\int_{D} |I_{2}(z)| dV(z)
\lesssim \int_{X \cap \widetilde{U}} |f(\zeta)| \left(\int_{D} \frac{\|d\rho(\zeta)\|^{2} + |\zeta - z| + |\rho(\zeta)|}{|\widetilde{\Phi}(z, \zeta)|^{n}} dV(z) \right) dV'(\zeta).$$

In view of Lemma 1, if we set $t' = (t_3, \ldots, t_{2n})$, we obtain

$$\int_{D} \frac{\|d\rho(\zeta)\|^{2}}{|\widetilde{\Phi}(z,\zeta)|^{n}} dV(z)$$

$$= \int_{z \in E_{\gamma}(\zeta)} \frac{\|d\rho(\zeta)\|^{2}}{|\widetilde{\Phi}(z,\zeta)|^{n}} dV(z) + \int_{z \notin E_{\gamma}(\zeta)} \frac{\|d\rho(\zeta)\|^{2}}{|\widetilde{\Phi}(z,\zeta)|^{n}} dV(z)$$

$$\lesssim \int_{|t| \le M} \frac{dt_{1}dt_{2}dt'}{(|t_{1}| + |t_{2}| + |t'|^{2})^{n}} + \int_{z \notin E_{\gamma}(\zeta)} \frac{|\zeta - z|^{2}}{|\widetilde{\Phi}(z,\zeta)|^{n}} dV(z)$$

$$\lesssim \int_{0}^{M} \frac{r^{2n-3}}{(r^{2})^{n-2}} dr \lesssim 1.$$

The other cases are similar. Thus we have

$$\int_{D} |I_2(z)| dV(z) \lesssim \int_{X \cap \widetilde{U}} |f(\zeta)| dV'(\zeta),$$

which completes the proof when p=1. Next we assume 1 . Let <math>q be a positive number such that $p^{-1} + q^{-1} = 1$. We choose $\varepsilon > 0$ so small that $2\varepsilon p < 1$ and $2\varepsilon q < 1$. Using Hölder's inequality, we have

$$|I_{1}(z)|^{p} \lesssim \left(\int_{X \cap \widetilde{U}} \frac{|f(\zeta)|^{p}}{|\widetilde{\Phi}(z,\zeta)|^{n-1+\varepsilon p}} dV'(\zeta) \right) \left(\int_{X \cap \widetilde{U}} \frac{dV'(\zeta)}{|\widetilde{\Phi}(z,\zeta)|^{n-1-\varepsilon q}} \right)^{p/q}$$
$$\lesssim \int_{X \cap \widetilde{U}} \frac{|f(\zeta)|^{p}}{|\widetilde{\Phi}(z,\zeta)|^{n-1+\varepsilon p}} dV'(\zeta).$$

Thus we have

$$\int_{D} |I_{1}(z)|^{p} dV(z) \lesssim \int_{X \cap \widetilde{U}} |f(\zeta)|^{p} \left(\int_{D} \frac{dV(z)}{|\widetilde{\Phi}(z,\zeta)|^{n-1+\varepsilon p}} \right) dV'(\zeta)$$
$$\lesssim \int_{X \cap \widetilde{U}} |f(\zeta)|^{p} dV'(\zeta).$$

Next we estimate $I_2(z)$. It is sufficient to prove that the following $I_2^1(z)$, $I_2^2(z)$ and $I_2^3(z)$ belong to $L^p(D)$:

$$I_{2}^{1}(z) = \int_{X \cap \widetilde{U}} \frac{|f(\zeta)| ||d\rho(\zeta)||^{2}}{|\widetilde{\Phi}(z,\zeta)|^{n}} dV'(\zeta),$$

$$I_{2}^{2}(z) = \int_{X \cap \widetilde{U}} \frac{|f(\zeta)| ||d\rho(\zeta)|| |\zeta - z|}{|\widetilde{\Phi}(z,\zeta)|^{n}} dV'(\zeta),$$

$$I_{2}^{3}(z) = \int_{X \cap \widetilde{U}} \frac{|f(\zeta)| ||d\rho(\zeta)|| |\rho(\zeta)|}{|\widetilde{\Phi}(z,\zeta)|^{n}} dV'(\zeta).$$

We prove that $I_2^1(z)$ belongs to $L^p(D)$. The other cases are similar. Using Hölder's inequality

$$I_{2}^{1}(z)^{p} \leq \left(\int_{X \cap \widetilde{U}} |f(\zeta)|^{p} \frac{\|d\rho(\zeta)\|^{2}}{|\widetilde{\Phi}(z,\zeta)|^{n+\varepsilon p}} dV'(\zeta)\right) \times \left(\int_{X \cap \widetilde{U}} \frac{\|d\rho(\zeta)\|^{2}}{|\widetilde{\Phi}(z,\zeta)|^{n-\varepsilon q}} dV'(\zeta)\right)^{p/q}.$$

We set $\zeta' = (\zeta_1, ..., \zeta_{n-1}), z' = (z_1, ..., z_{n-1})$. Then we have

$$\int_{X\cap\widetilde{U}} \frac{\|d\rho(\zeta)\|^2}{|\widetilde{\Phi}(z,\zeta)|^{n-\varepsilon q}} dV'(\zeta)
= \int_{\zeta'\in E_{\gamma}(z')} \frac{\|d\rho(\zeta)\|^2}{|\widetilde{\Phi}(z,\zeta)|^{n-\varepsilon q}} dV'(\zeta) + \int_{\zeta'\notin E_{\gamma}(z')} \frac{\|d\rho(\zeta)\|^2}{|\widetilde{\Phi}(z,\zeta)|^{n-\varepsilon q}} dV'(\zeta).$$

In view of Lemma 1, if we set $t' = (t_3, \ldots, t_{2n-2})$, then there exists a positive constant M such that

$$\int_{\zeta' \in E_{\gamma}(z')} \frac{\|d\rho(\zeta)\|^{2}}{|\widetilde{\Phi}(z,\zeta)|^{n-\varepsilon q}} dV'(\zeta) \lesssim \int_{|t| \leq M} \frac{dt_{1}dt_{2}dt'}{(|t_{1}| + |t_{2}| + |t'|^{2})^{n-\varepsilon q}}
\lesssim \int_{0}^{M} \frac{dr}{r^{1-2\varepsilon q}} \lesssim 1.$$

$$\int_{\zeta' \notin E_{\gamma}(z')} \frac{\|d\rho(\zeta)\|^{2}}{|\widetilde{\Phi}(z,\zeta)|^{n-\varepsilon q}} dV'(\zeta) \lesssim \int_{X \cap \widetilde{U}} \frac{|\zeta' - z'|^{2}}{|\widetilde{\Phi}(z,\zeta)|^{n-\varepsilon q}} dV'(\zeta)
\lesssim \int_{0}^{M} \frac{dr}{r^{1-2\varepsilon q}} \lesssim 1.$$

By Fubini's theorem, we obtain

$$\int_D I_2^1(z)^p dV(z) \lesssim \int_{X \cap \widetilde{U}} |f(\zeta)|^p \left(\int_D \frac{\|d\rho(\zeta)\|^2}{|\widetilde{\Phi}(z,\zeta)|^{n+\varepsilon p}} dV(z) \right) dV'(\zeta).$$

Using the inequality

$$||d\rho(\zeta)|| \lesssim ||d\rho(z)|| + |\zeta - z|,$$

it is sufficient to estimate the following two integrals $J_1(\zeta)$ and $J_2(\zeta)$:

$$J_1(\zeta) = \int_D \frac{\|d\rho(z)\|^2}{|\widetilde{\Phi}(z,\zeta)|^{n+\varepsilon p}} dV(z),$$

$$J_2(\zeta) = \int_D \frac{|\zeta - z|^2}{|\widetilde{\Phi}(z,\zeta)|^{n+\varepsilon p}} dV(z).$$

We estimate $J_1(\zeta)$. The other case is similar. In view of Lemma 1, we have

$$J_{1}(\zeta) = \int_{z \in E_{\gamma}(\zeta)} \frac{\|d\rho(z)\|^{2}}{|\widetilde{\Phi}(z,\zeta)|^{n+\varepsilon p}} dV(z) + \int_{z \notin E_{\gamma}(\zeta)} \frac{\|d\rho(z)\|^{2}}{|\widetilde{\Phi}(z,\zeta)|^{n+\varepsilon p}} dV(z)$$

$$\lesssim \int_{|t| \leq M} \frac{dt_{1}dt_{2}dt'}{(|t_{1}| + |t_{2}| + |t'|^{2})^{n+\varepsilon p}} + \int_{D} \frac{dV(z)}{(|\zeta - z|^{2})^{n-1+\varepsilon p}}$$

$$\lesssim \int_{0}^{M} r^{1-2\varepsilon p} dr \lesssim 1.$$

Thus we have proved that

$$\int_D I_2^1(z)^p \, dV(z) \lesssim \int_{X \cap \widetilde{U}} |f(\zeta)|^p \, dV'(\zeta).$$

This completes the proof of Theorem 2.

References

- F. Beatrous, L^p estimates for extensions of holomorphic functions, Michigan Math. J., 32 (1985), 361–380.
- [2] H. R. Cho, A counterexample to the L^p extension of holomorphic functions from subvarieties to pseudoconvex domains, Complex Variables, **35** (1998), 89–91.
- [3] A. Cumenge, Extension dan des classes de Hardy de fonctions holomorphes et estimations de type "mesures de Carleson" pour l'equation ∂, Ann. Inst. Fourier, 33 (1983), 59–97.
- [4] G. M. Henkin, Continuation of bounded holomorphic functions from submanifolds in general position in a strictly pseudoconvex domain, Math. USSR Izv., 6 (1972), 536–563.
- [5] G. M. Henkin and J. Leiterer, Theory of functions on complex manifolds, Birkhäuser, 1984.
- [6] T. Ohsawa and K. Takegoshi, On the extension of L² holomorphic functions, Math. Z., 195 (1987), 197–204.
- [7] G. Schmalz, Solution of the $\bar{\partial}$ -equation with uniform estimates on strictly q-convex domains with non-smooth boundary, Math. Z., 202 (1989), 409–430.

Department of Mathematics Nagasaki University Nagasaki, 852-8521 Japan

k-adachi@net.nagasaki-u.ac.jp