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LOCALIZATION LEMMAS FOR THE BERGMAN

METRIC AT PLURISUBHARMONIC PEAK POINTS

GREGOR HERBORT

Abstract. Let D be a bounded pseudoconvex domain in C
n and ζ ∈ D. . By

KD and BD we denote the Bergman kernel and metric of D, respectively. Given
a ball B = B(ζ, R), we study the behavior of the ratio KD/KD∩B(w) when
w ∈ D ∩ B tends towards ζ. It is well-known, that it remains bounded from
above and below by a positive constant. We show, that the ratio tends to 1,
as w tends to ζ, under an additional assumption on the pluricomplex Green
function GD(·, w) of D with pole at w, namely that the diameter of the sublevel
sets Aw := {z ∈ D | GD(z, w) < −1} tends to zero, as w −→ ζ. A similar result
is obtained also for the Bergman metric. In this case we also show that the
extremal function associated to the Bergman kernel has the concentration of
mass property introduced in [DiOh1], where the question was discussed how to
recognize a weight function from the associated Bergman space. The hypothesis
concerning the set Aw is satisfied for example, if the domain is regular in the
sense of Diederich-Fornæss, ([DiFo2]).

§1. Introduction

Let D be a bounded pseudoconvex domain in C
n with Bergman kernel

KD and Bergman metric BD. We fix a boundary point ζ of D. For a ball
B = B(ζ,R) we study the ratios

QD,B(w) :=
KD

KD∩B
(w)

and

Q̂D,B(w;X) :=
BD

BD∩B
(w;X)

at a point w ∈ D ∩B and a unit vector X ∈ C
n and ask:

Under which reasonable assumption on ζ do these ratios tend to 1 as
w −→ ζ?
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Also, since the work of Hörmander, [Hoer], we know that QD,B(w) −→
1, for w −→ ζ, if ζ is a local holomorphic peak point. For an alternative
proof of this fact (using purely Stein theoretic methods), which yields also

the corresponding result for the ratio Q̂D,B(w;X), see [Di].
If D is a general bounded pseudoconvex domain the ratio QD,B(w) was

in [Oh1] shown to be bounded from above and below by certain positive con-
stants for an arbitrary boundary point ζ ∈ ∂D. The corresponding result

for Q̂D,B(w;X) was obtained in [DiFoHe]. In Proposition 3.2 of [McN] one
can find a localization result (in the small-constant-large-constant sense)
for the more general domain functionals MD(·;M,Y ;w) that will be intro-
duced below.

In [Nik] it is implicitly shown, that on an arbitrary (i.e. not necessar-

ily bounded) pseudoconvex domain the ratios QD,B(w) and Q̂D,B(w;X)
remain bounded from above and below by positive constants near any
plurisubharmonic peak point ζ ∈ ∂D.

If one wants to prove limw→ζ QD,B(w) = 1, or limw→ζ Q̂D,B(w;X) = 1,
the assumption that ζ is a local holomorphic peak point is felt to be very
restrictive. It is known to be satisfied in classical cases (strongly pseudo-
convex case, points of finite type in C

2 (see [BeFo]) or of finite semiregular
type (see [DiHe1], or [Yu]) ).

The most natural way to weaken it, is to require that ζ is a plurisub-
harmonic peak point. There is a wide class of pseudoconvex domains that
includes the finite type domains. These domains are the so-called regular
domains and were introduced in [DiFo2]. Intuitively speaking, a smooth
bounded pseudoconvex domain D is regular, if the Levi degeneracy set E
in ∂D is stratified into certain subsets, each of which is locally contained in
a smooth submanifold of ∂D that has no complex tangents that are at the
same time weakly pseudoconvex tangential directions. (In particular, no
complex analytic varieties of positive dimension can be contained in ∂D).
In [DiFo2] it was shown, that the closure of a regular pseudoconvex domain
admits a Stein neighborhood basis. Later Sibony, [Si] proved that each
boundary point q of a regular domain D is a peak point with respect to the
family of continuous functions on D, that are plurisubharmonic inside D.

Recently the pluricomplex Green function GD(·, w), w ∈ D, has been
successfully applied to questions in Bergman geometry, see [BlPf], [He1],
[DiHe2].

This function is defined by

GD(·, w) := sup{u(z) | u ∈ P (w;D)}

where P (w;D) denotes the class of all negative plurisubharmonic functions
on D such that u− log | · −w| is bounded from above near w.
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It has been introduced and studied by Klimek, [Kli], and Demailly, [De]
(for more general hyperconvex domains), who proved fundamental proper-
ties (in particular its relationship to the Monge-Ampère operator).

Its importance is based upon the fact that it has a logarithmic pole
at w and hence becomes an important tool in applying the L2-theory for
the ∂̄-operator with plurisubharmonic weight functions, see [Hoer], [OhTa].
The ∂̄-method is the main ingredience in the construction of holomorphic
L2-functions that exhibit a prescribed behavior at the point w.

What is needed, however, is information about the boundary behavior
of GD(·, w) under approach of w to the boundary. This has been studied in
[CCW], [He2].

A reasonable condition for (in a sense ) optimal localization lemmas for
the quantities from Bergman theory can be stated in terms of the sublevel
sets of the pluricomplex Green function GD(·, w) of D with pole at w, see
condition (1.1) below.

In Bergman theory domain functionals play a key role. By H 2(D)
we denote the Hilbert space of all holomorphic functions over D that are
square-integrable with respect to the Lebesgue measure.

Let for a multi-index α ∈ INn the symbol Dα denote the partial deriva-
tive Dα = ∂α

∂zα .
Given a k-tuple M = (T1, ..., Tk) of differential operators with constant

coefficients and a k-tuple Y := (Y1, ..., Yk) of complex numbers, we denote
for fixed w ∈ D by MD(·;M,Y ;w) the well-defined function from H2(D)
having minimal L2-norm among those functions f ∈ H2(D) satisfying the
auxiliary conditions Tlf(w) = Yl for all l = 1, 2, ..., k. (We will suppose that
the set of such functions is not empty).

Here are two well-known examples:
a) The function KD(·, w)/KD(w,w) can be represented as MD(·;M,

{1};w), where M = {T}, with Tf := f . Furthermore,

‖MD(·;Y,M ;w)‖2 = 1/KD(w,w).

b) Let X denote a unit vector in C
n. Now we choose M = {T1, T2},

where T1f = f and T2f =
∑n

j=1Xj
∂f
∂zj

. Let Y1 = 0, Y2 = 1. Then

‖MD(·;M,Y ;w)‖2 =
1

KD(w,w)B2
D(w;X)

.

Also, the holomorphic curvatures for the Bergman metric can be ex-
pressed in terms of such domain functionals. (See [KrYu] for domain func-
tionals that decribe the Ricci or scalar curvature of the Bergman metric).

For w ∈ D we denote by Aw the sublevel set

Aw := {z ∈ D | GD(z, w) < −1}.
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Now our comparison theorem for the domain functionals is as follows:

Theorem 1.1. Let D ⊂⊂ C
n be pseudoconvex, and ζ ∈ ∂D a point

such that

(1.1) lim
w→ζ

diam(Aw) = 0.

If M and Y have the meanings as explained before, then for any radius

R > 0 we have

lim
w→ζ

‖MD(·;M,Y ;w)‖
‖MD∩B(ζ,R)(·;M,Y ;w)‖ = 1.

The method applied in the proof also gives the following result con-
cerning the concentration of the L2-mass of the minimizing function from
Theorem 1.1.

Theorem 1.2. Let D ⊂⊂ C
n be pseudoconvex, and ζ ∈ ∂D a point

such that

lim
w→ζ

diam(Aw) = 0.

If M and Y have the meanings as explained before, then, given a radius

R > 0 and a number s ∈ (0, 1), there exists a number δ(R, s) > 0, such that

‖MD(·;M,Y ;w)‖D∩B(ζ,R)C

‖MD(·;M,Y ;w)‖ < s

whenever |w − ζ| < δ(R, s).

Here, by SC we always mean the complement of a set S.

Remarks. The above theorems do not explicitly require smoothness of
the boundary of D near ζ.

The crucial property described in (1.1) is satisfied for example on reg-
ular domains, see [DiHe2].

The appearance of analytic discs in the boundary is certainly an obsta-
cle for (1.1) in general, as the example of a bidisc shows.
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§2. The proofs

We have to show the following Main Lemma:

Main Lemma. Under the assumptions of Theorems 1.1 and 1.2 the

following holds :
Given two numbers s,R > 0 one can find a radius δ = δ(s,R) > 0 with

the following property :
For any point w ∈ D ∩B(ζ, δ) and any function f ∈ H2(D ∩ B(ζ,R))

there exists a function f̃w ∈ H2(D) such that

Tj f̃w(w) = Tjf(w), ∀1 ≤ j ≤ k

and

(2.1) ‖f̃w‖ ≤ (1 + s)‖f‖D∩B(ζ,R).

It is (2.1) what requires w to be situated close to ζ.

We first show how Theorems 1.1 and 1.2 follow from the Main Lemma.

To obtain Theorem 1.1 we choose f = MD∩B(ζ,R)(·;M,Y,w). If then

w ∈ D ∩B(ζ, δ), we note that f̃w yields a candidate for ‖MD(·;M,Y,w)‖,
and

‖MD(·;M,Y,w)‖ ≤ ‖f̃w‖
≤ (1 + s)‖f‖D∩B(ζ,R)

= (1 + s)‖MD∩B(ζ,R)(·;M,Y,w)‖.
Hence

1 ≤ ‖MD(·;M,Y ;w)‖
‖MD∩B(ζ,R)(·;M,Y ;w)‖ ≤ 1 + s

for w ∈ D ∩B(ζ, δ).

In a similar way we obtain Theorem 1.2, namely:
We apply the Main Lemma to the function f = MD(·;M,Y,w) and

get for points w ∈ D ∩B(ζ, δ) by means of the function f̃w:

‖MD(·;M,Y ;w)‖D∩B(ζ,R)C

= ‖MD(·;M,Y ;w)‖ − ‖MD(·;M,Y ;w)‖D∩B(ζ,R)

≤ ‖f̃w‖ − ‖MD(·;M,Y ;w)‖D∩B(ζ,R)

≤ (1 + s)‖MD(·;M,Y ;w)‖D∩B(ζ;R)

−‖MD(·;M,Y ;w)‖D∩B(ζ,R)

= s‖MD(·;M,Y ;w)‖D∩B(ζ,R)
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This implies

‖MD(·;M,Y ;w)‖D∩B(ζ,R)C

‖MD(·;M,Y ;w)‖D
≤

‖MD(·;M,Y ;w)‖D∩B(ζ,R)C

‖MD(·;M,Y ;w)‖D∩B(ζ,R)
≤ s

as desired.

Proof of the Main Lemma

Our aim is to construct the desired function f̃w ∈ H2(D) in the form

f̃w(z) := λε

( |z − ζ|
2R

)
f(z) − uw,ε(z)

where λε is a suitable cut-off function (that will be constructed in the next
subsection) and uw,ε is smooth and vanishes to sufficiently high order at w,
while, at the same time its L2-norm tends to zero, as ε↘ 0. This function
uw,ε will be gained by means of the L2-techniques for solving the ∂̄-equation
with plurisubharmonic weights, as developped in [OhTa]. In that paper an
apriori formula for the ∂̄ operator at the level of (n, 1)-forms was derived on
complex manifolds with a complete Kähler metric. This in conjunction with
a standard Hahn-Banch argument made it possible to solve the ∂̄-equation
in the Kähler manifold setting. We will use a variant of this approach that
works directly for (0, 1)-forms on a pseudoconvex domain and was derived
in [DiHe3].

A) A suitable cut-off function

We make use of a cutoff-function, that can be obtained by modifying
Lemma 2.2 from [DiOh2].

Lemma 2.1. There exists a number ε0 > 0 and a positive M , such

that : For any 0 < ε < ε0 there exists a smooth function λε : IR −→ [0, 1],
such that λε(t) = 1 for t ≤ εe−2ε and λε(t) = 0 for t ≥ 1/3, and furthermore

the derivative is estimated by

|λ′ε(t)| ≤
M

log log(1/ε)

1

t| log t| .

For the reader’s convenience we give a proof of this.
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Proof. For ε > 0 and x < 0 we define a continuous function hε by

hε(x) :=



1 , if x < −ε+ log ε

1 + log log(−x−2ε)
log (−ε+log(1/ε) ) , if −ε+ log ε≤x≤−2ε− (−ε+ log(1/ε) )1/e

0 , if x > −2ε− (−ε+ log(1/ε) )1/e

.

On the open intervall Iε := (−ε + log ε, −2ε − (−ε + log(1/ε) )1/e) this
function is smooth, and

h′ε(x) =
1

(x+ 2ε) log(−x− 2ε)
, h′′ε < 0.

In particular, we have −x ≥ 2ε + (−ε + log(1/ε) )1/e, for all x ∈ Iε, and
hence

|h′ε(x)| =
1

|x+ 2ε| log(−x− 2ε)
≤ 2

log
(
(−ε+ log(1/ε) )1/e

) 1

|x| ,

if ε < e−2.

We now smooth out the function hε: Let α ∈ C∞
0 (−1, 1) be a nonneg-

ative function with
∫ 1
−1 α(s)ds = 1. Then we consider

µε(x) :=
1

ε

∫ ε

−ε
hε(x− s)α(s/ε)ds.

It can be left to the reader to show, that the function µε satisfies:

µε(x) = 1, on (−∞,−2ε+ log ε),

µε(x) = 0, on (−ε− (−ε+ log(1/ε) )1/e,∞)

and that, furthermore, with some constant M > 0, one has

|µ′ε(x)| ≤
M

log log(1/ε)

1

|x|

everywhere. The requirements of the lemma will now be fulfilled by

λε(t) = µε(log t), t > 0
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B) Solving the ∂̄-equation with weights

Let U ⊂ C
n be an open set and ϕ ∈ C 0(U). We denote by L2(U,ϕ)

the space of all measurable functions f on U , for which the weighted L2

integral

‖f‖ϕ :=

(∫

U
|f |2e−ϕd2nz

)1/2

is finite (here, d2nz is the Lebesgue measure in C
n). Let L2

q(U,ϕ) be the

space of (0, q) forms with coefficients in L2(U,ϕ). These spaces are Hilbert
spaces, the inner product being defined by

(u, v)ϕ :=

∫

U
u ∧ ?ve−ϕ

where ? is the euclidean Hodge star operator.

We will use some more notation:
For a C 2-function h on U we write Lh for the Levi form of h.
If Q =

∑n
a,b=1Qab̄d za d z̄b is a hermitian form defined over U we write

Q(u) :=
∑n

a,b=1Qab̄uaub for any (0, 1)-form u =
∑n

k=1 ukdz̄k on U , and, if Q

is positive definite, we denote byQ−1(u) the formQ−1(u) :=
∑n

a,b=1Q
ab̄uaub,

where Qab̄ describe the entries of (Qa b̄)
n
a,b=1.

With these notations we state our solution lemma for the ∂̄-equation
as follows

Lemma 2.2. Let Ω ⊂⊂ C
n be a pseudoconvex domain with a C 2-

boundary. Suppose that on Ω we are given two functions ϕ and η of class

C∞, where η > 0 on Ω, that satisfy

(2.2) ηLϕ − Lη ≥ Q+
1

2

∂η ⊗ ∂η

η

where Q is some positive definite hermitian form on Ω.

Then, given a smooth ∂̄-closed (0, 1)-form v on Ω satisfying

JQ,ϕ(v) :=

∫

Ω
Q−1(v)e−ϕd2nz

there exists a smooth solution u to the equation

∂̄(
√
ηu) = v

over Ω, such that the growth condition

‖u‖2
ϕ ≤ 10JQ,ϕ(v)

is fulfilled.
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Proof. The operator ∂̄ and its formal adjoint ϑ admit densely defined
closures ∂̄ and ∂̄∗ϕ on the spaces L2

q(Ω, ϕ), q = 0, 1, respectively.

We want to show

(2.3) |(u, v)ϕ|2 ≤ 10JQ,ϕ(v)
(
‖√η∂̄u‖2

ϕ + ‖√η∂̄∗ϕu‖2
ϕ

)

for all u ∈ L2
1(Ω, ϕ) ∩ dom(∂̄) ∩ dom(∂̄∗ϕ).

In order to achieve this we may restrict to forms in the space F of all
(0, 1)-forms u = u1dz̄1 + · · · + undz̄n that have coefficients in C1(Ω) and
satisfy the Neumann condition u | ∂r = 0 at the boundary of Ω. (Here
r denotes a defining function for Ω). This space is known to be densely
situated in L2

1(Ω, ϕ) ∩ dom(∂̄) ∩ dom(∂̄∗ϕ) in the graph norm associated to
∂̄ and ∂̄∗ϕ (,see [Hoer], p. 100). Now, Lemma 2.1b) of [DiHe3] applies and
gives for any form u ∈ F :

‖√η∂̄u‖2
ϕ + ‖√η∂̄∗ϕu‖2

ϕ ≥
∫

Ω
(ηLϕ − Lη)(u)e

−ϕd2nz + 2Re (u | ∂η, ∂̄∗ϕu)ϕ

Combining this with

2|Re (u | ∂η, ∂̄∗ϕu)ϕ| ≤ ‖u | ∂η/√η‖ϕ‖
√
η∂̄∗ϕu‖ϕ

≤ 1

4
‖u | ∂η/√η‖2

ϕ + 4‖√η∂̄∗ϕu‖2
ϕ

≤ 1

2

∫

Dt

(ηLϕ − Lη)(u)e
−ϕd2nz + 4‖√η∂̄∗ϕu‖2

ϕ

(the last estimate follows from (2.2))
we obtain together with our hypothesis (2.2) and the Cauchy-Schwarz-
inequality

|(u, v)ϕ|2 ≤ JQ,ϕ(v)

∫

Ω
Q(u)e−ϕd2nz

≤ JQ,ϕ(v)

∫

Ω
(ηLϕ − Lη)(u)e

−ϕd2nz

≤ 10JQ,ϕ(v)
(
‖√η∂̄u‖2

ϕ + ‖√η∂̄∗ϕu‖2
ϕ

)

for u ∈ F ; this gives us (2.3). The claim now follows from the Hahn-Banach
theorem applied to the linear form L (

√
η∂̄∗ϕu) := (u, v)ϕ, which is now well-

defined on the subspace E := {√η∂̄∗ϕu |u ∈ L2
1(Ω, ϕ)∩dom(∂̄)∩dom(∂̄∗ϕ)}.
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C) Construction of the function f̃w

Let (Dt)t>0 be an exhaustion of D by smooth bounded pseudocon-

vex subdomains. For each t we choose on Dt a regularization G(t)
D (·, w) of

GD(·, w), (where w ∈ D is arbitrary), such that 0 ≥ G (t)
D (·, w) ≥ GD(·, w)

and G(t)
D (·, w) ↘ GD(·, w), as t↘ 0.

Let L be the maximum of the orders of differential operators T1, ..., Tk.
For each small t > 0 we apply Lemma 2.2 to

Ω = Dt, ϕ = φt := 2(n+ L)G(t)
D (·, w) + |z|2 − log η

where

η = − log
|z − ζ|
RD

, RD := diam(D)

Then we get

ηLφt
− Lη ≥ ηL|z|2 − ηLlog η − Lη = ηL|z|2 − 2Lη +

∂η ⊗ ∂η

η

≥ Q+
1

2

∂η ⊗ ∂η

η

where

Q =
1

2
η

(
L|z|2 +

1

2

∂η ⊗ ∂η

η2

)
.

The data of our ∂̄-equation are defined by

v := ∂̄
(
λε(

|z − ζ|
2R

) f
)

Next we estimate the quantity JQ,φt
(v). Using ∂̄η = − ∂̄|z−ζ|

|z−ζ| we compute

Q−1(v)e−φt = e−2(n+L)G
(t)
D

(·,w)−|z|2
∣∣∣λ′ε(

|z − ζ|
2R

)
∣∣∣
2
( |z − ζ|

2R

)2

ηQ−1(∂̄η)|f |2

≤ e−2(n+L)GD(·,w) M2

log2 log(1/ε)

(
η

log |z−ζ|
2R

)2

|f |2,

using Lemma 2.1 and

( |z − ζ|
2R

)2

ηQ−1(∂̄η) ≤ η2,

as well as G(t)
D (·, w) ≥ GD(·, w).
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But −η = log |z−ζ|
RD

= log |z−ζ|
2R + log 2R

RD
, hence

(
η

log(|z − ζ|/2R)

)2

≤ 2

(
1 +

log2(2R/RD)

log2(|z − ζ|/2R)

)
≤ 4(1 + log2(2R/RD))

because, on supp (v) we have | log(|z − ζ|/2R)| ≥ log 3.
Altogether, this yields

JQ,φt
(v) ≤ M1

log2 log(1/ε)
S(w, ε)‖f‖2

D∩B(ζ,R)

where M1 > 0 is an unimportant constant and

S(w, ε) := exp

(
2(n+ L) max

2εe−2εR≤|z−ζ|≤2R/3
|GD(z, w)|

)
.

By Lemma 2.2 we obtain a smooth solution ut,w to the equation ∂̄(
√
ηut,w )

= v on Dt such that
‖ut,w‖2

φt
≤ 10JQ,φt

(v).

Since ηeφt ≤ eR
2
D and hence ‖√ηut,w‖2 ≤ 10eR

2
DJQ,φt

(v) we see that

f̃t,w := λε(
|z − ζ|

2R
) f −√

ηut,w ∈ H2(Dt)

and

‖f̃t,w‖Dt ≤
(

1 +

√
M2

log log(1/ε)

√
S(w, ε)

)
‖f‖D∩B(ζ,R)

with M2 := 10eR
2
DM1.

In a similar way as in [He1] and [DiHe2] we obtain a subsequence (tj)j
that tends to 0 and a smooth function uw,ε on D, such that in the weak-?-
topology,

i)
√
ηutj ,w −→ √

ηuw,ε, as j −→ ∞,

and

ii) f̃tj ,w −→ f̃w := λε(
|z−w|

R )f −√
ηuw,ε

Furthermore, using (i), we have

‖√ηuw,ε‖2
D ≤ 10eR

2
D

∫

D
η(z)|uw,ε(z)|2e−2(n+L)GD(z,w)−|z|2 d2nz

≤ M2

log log(1/ε)
S(w, ε)‖f‖2

D∩B(ζ,R).
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As a consequence, all derivatives of uw,ε up to order L vanish at the point

w, and f̃w is holomorphic on D and belongs to H2(D), its L2-norm is

‖f̃w‖D ≤
(

1 +

√
M2

log log(1/ε)

√
S(w, ε)

)
‖f‖D∩B(ζ,R).

Finally we bring the hypothesis (1.1) into the picture. Let ε > 0 be
arbitrary. Then we can choose δ = δ(ε,R) > 0 so small, that

Aw ⊂ D ∩B(ζ, 2εe−2εR),

whenever w ∈ D ∩B(ζ, δ). Then Aw is disjoint with the support of v, and

hence S(w, ε) ≤ e2(n+L) for such points w.
Given a arbitrarily small number s > 0, we choose ε > 0 so small, that

(
√
M2e

(n+L))/(log log(1/ε)) < s, and then δ = δ(ε,R) as described before.
The main lemma is proved.

§3. Application to plurisubharmonic peak points

We deal with the question, under which conditions we can prove

lim
w→ζ

diam(Aw) = 0

Our result is:

Lemma 3.1. Suppose that D has a C 2-smooth boundary, and ζ ∈ ∂D is

a plurisubharmonic peak point and there exists a plurisubharmonic peaking

function ψ ∈ C 0(D) that is even Hölder continuous at ζ, more precisely:

We have, with some constants C, λ > 0, that |ψ| ≤ C| · −ζ|λ. Then

lim
w→ζ

Λ

diam(Aw) = 0

(meaning that in the limit on the left side, w is supposed to tend to ζ non-

tangentially).

This will follow from

Lemma 3.2. Suppose that D has a C 2-smooth boundary. Then, for a

sufficiently small positive number α, the following holds: If r0 > 0 is a fixed
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number, then there exists a constant C∗ > 0, such that for any x, y ∈ D
with |x− y| > r0 one has

|GD(x, y)| ≤



C∗δD(y)3α/8 for δD(x) ≤ δD(y)3/2

C∗δD(y)α/20n for δD(x) ≥ δD(y)2/3

C∗
(
δD(y)−3α/8n|GD(y, x)|1/n+δD(y)α/8n

)
for δD(y)3/2≤δD(x)≤δD(y)2/3

.

One should note here, that the point x is not supposed to stay within
any compact subset of D, hence the lemma is not simply a corollary of
Thm. 1.4 from [DiHe2].

Proof of the lemma. If α > 0 is small, we can choose a Hölder-α-
continuous plurisubharmonic exhaustion function % : D −→ (−1, 0) , such
that

(3.1) C̃2δ
α
D ≤ −% ≤ C̃1δ

α
D,

with C̃1, C̃2 > 0, and α ∈ (0, 1). This follows from [DiFo1].
We make use of two estimates on the Green function, that were obtained

in [DiHe2]:
(i) There exists a constant C1 > 0, such that for any compact set

K ⊂⊂ D

(3.2) sup
w∈K

|GD(z, w)| ≤ C1

(
δD(z)

δD(K)

)α(
log

RD

δD(w)

)
, if δD(z) <

1

2
δD(K)

and
(ii)

sup
z∈K

|GD(z, w)| ≤(3.3)

C1



(
δD(w)3/4

δD(K)

)α/n (
log

RD

δD(w)

)1/n

+ δD(w)α/8n(w)| log δD(w)|


 ,

whenever w ∈ D \K, δD(w) < 1
C1
δD(K)

Let x, y ∈ D be arbitrary points. Let δ0 � 1. We may suppose that
δD(y) ≤ δ0, otherwise the left-hand side of the claimed estimate is ≤ log RD

δ0
,
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while the right side is bounded away from zero, and there is nothing to
prove.

(A) Assume, that δD(x) ≤ δD(y)3/2.

We apply (3.2) to z = x and K = {y}. This yields

|GD(x, y)| ≤ C1

(
δD(x)

δD(y)

)α(
log

RD

δD(y)

)

≤ δD(y)α/2

(
log

RD

δD(y)

)
≤ C2δD(y)3α/8.

We turn to the next case:
(B) Assume that δD(x) ≥ δD(y)2/3.
We apply (3.4) with K = {x}, w = y. This gives us

|GD(x, y)|

≤ C1



(
δD(y)3/4

δD(x)

)α/n(
log

RD

δD(y)

)1/n

+ δD(y)α/8n(y)| log δD(y)|




≤ C1

(
δD(y)α/12n

(
log

RD

δD(y)

)1/n

+ δD(y)α/8n(y)| log δD(y)|
)

≤ C2δD(y)α/20n.

Now we come to
(C) The case δD(y)3/2 ≤ δD(x) ≤ δD(y)2/3.

This case can be treated by the methods applied in the proof of Theorem
1.4 of [DiHe2]. For the reader’s convenience we recall the main steps in the
proof.

First we show, that, with some (unimportant) constant C3 > 0

GD(s, y) ≤ 1

2
GD(x, y) + C3δD(y)α/8n,(3.4)

if δD(x) < C−1
3 , s ∈ B(x,RD exp(−δD(x)−α/4n ) ).

For this we put
σ = −(−%)1/8n.

Then we have, with some constant C4 > 0:

|σ(z′) − σ(z′′)| ≤ C4|z′ − z′′|α/8n, for z′, z′′ ∈ D
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With a suitable small ε0 > 0 we get for all 0 < ε1 < ε0:
(i)

log ε
1/α
1 − logRD − logC4

α
− ε1 > − 1

ε1

(ii)

log
ε
1/α
1

RD
> (1 − ε1) log ε

1+ 1
α

1

Furthermore, we put
ε := |σ(y)|

and

t = t(y) :=

(
1

2C
8n/α
4

δD(y)

)1/ε

ε8n(1−ε)/αε.

Then we have for small enough δ0:

t < min{
(
ε3

C4

)8n/α

,
1

2
δD(y)3/2}

We want to regularize the Green function. For this we choose a radially
symmetric function α1 ≥ 0 in the class C ∞

0 which is supported in the unit
ball, with L1-norm equal to 1, and put

ψt
y := GD(·, y) ? αt,

where αt(v) = t−2nα1(v/t), and t is as defined above.
Let

φy(s) := (1 − ε) log
(
ε8n/α|s− y|

)
− ε− 8n

logC4

α
.

Then the following function vy becomes plurisubharmonic on D

vy(s) :=





ε−2σ(s) for σ(s) > −ε3
max{ψt

y(s) − ε, ε−2σ(s)} for −ε ≤ σ(s) ≤ −ε3
max{ψt

y(s) − ε, φy(s)} for σ(s) < −ε, |s− y| ≥ t

φy(s) for σ(s) < −ε, |s− y| < t

.

Obviously vy ≤ (1 − ε)GD(·, y).
Using the hypothesis of case (C), we get

|s− y| > t, and δD(s) ≥ 1

2
δD(y)3/2 > t,

for any s ∈ B(x,RD exp(−δD(x)−α/4n ) )
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(recall that |x− y| ≥ r0!). Moreover

(3.5) ψt
y(x) ≤ ε+ vy(x) ≤ (1 − ε)GD(x, y) + ε.

From this we obtain:

GD(s, y) ≤ ψt
y(s) ≤ ψt

y(x) + ψt
y(s) − ψt

y(x)

≤ (1 − ε)GD(x, y) + ε+ ψt
y(s) − ψt

y(x), using (3.5)

Again, we can prove that

|ψt
y(s) − ψt

y(x)| ≤ C5(log(1/ε)
|s− x|
t

≤ C5RD( log(1/ε)
exp(−δD(x)−α/4n )

t
≤ C6ε.

The latter inequality is obtained by means of δD(x) ≤ δD(y)2/3 together
with (3.1): We have

exp(−δD(x)−α/4n ) ≤ exp(−δD(y)−α/6n )

≤ exp(− ( C̃2/|%(y)|)1/6n ) = exp

(
− C̃

1/6n
2

ε4/3

)
.

On the other hand,

t = (2C
8n/α
4 )−1/εδD(y)1/ε ε

8n(1−ε)
αε ≥ (2C

8n/α
4 )−1/ε

( |%(y)|
C̃1

)1/αε

ε
8n(1−ε)

αε

= (2αC̃1C
8n
4 )−1/αε ε

8n(2−ε)
αε = exp

(
−C6 +C7 log(1/ε)

ε

)

with unimportant constants C6, C7 > 0. This proves (3.4).

Let η > 0 and

Ux,η := max{GD(·, x), −η}.

Then we have (using an inequality of Blocki ([Blo]) )

∫

D
|GD(·, y)|(ddcUx,η)

n ≤ (2π)nn!1/nηn−1/n|GD(y, x)|1/n.
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We note that the measure (ddcUx,η)
n is supported in the set {GD(·, x) =

−η} ⊂ B(x,RDe
−η) and its total mass is equal to (2π)n. If we choose

η = δD(x)−α/4n, we can apply (3.4). This gives us

∫

D
|GD(·, y)|(ddcUx,η)

n ≥ (2π)n(
1

2
|GD(x, y)| − C3δD(y)1/8n)

and therefore (by the choice of ε):

|GD(x, y)| ≤ C7

(
δD(x)−α/4n|GD(y, x)|1/n + δD(y)α/8n

)

If we, finally, observe that δD(x)−α/4n ≤ δD(y)−3α/8n, we obtain the desired
estimate.

The next lemma is implicit in [DiHe2]:

Lemma 3.3. Assume that ζ ∈ ∂D admits a plurisubharmonic peak

function ψ ∈ C 0(D). If ρ1 > 0 and z, w ∈ D are points such that

|w − ζ| < ρ1/3 and |z − w| ≥ ρ1, then, with

C1(ρ1, ψ) := 2
log(3RD/ρ1)

minx∈D:|x−ζ|≥ρ1/3 |ψ(x)|

we can estimate the Green function by

GD(w, z) ≥ C1(ρ1, ψ)ψ(w).

With this lemma we can easily give the

Proof of Lemma 3.1. Assume that the plurisubharmonic peak function
ψ at ζ satisfies

|ψ(z)| ≤ C ′|z − ζ|λ

with some λ ∈ (0, 1]. If the claim were false, we could find a sequence
(wj)j of points such that δD(wj) ≥ c · |wj − ζ| (with a constant c > 0)
and limj→∞wj = ζ. Furthermore we find points zj ∈ Awj

, such that
|zj − wj | ≥ r0 with some r0 > 0. Now lemma 3.3 applies, and we get

(3.6) |GD(wj , zj)| ≤ C ′′|ψ(wj)| ≤ C ′′′δD(wj)
λ
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In Lemma 3.1 we can choose α sufficiently small. Then, by means of (3.6),
with x = zj , y = wj , Lemma 3.2 implies

|GD(zj , wj)| −→ 0, as j −→ ∞.

But this contradicts the assumption zj ∈ Awj
which says, that the left side

is ≥ 1 for all j. Lemma 3.1 is therefore proved.

The proof of Theorem 1.1 and the Main Lemma imply the following
application

Theorem 3.1. Let D ⊂⊂ C
n be pseudoconvex with a C 2-smooth

boundary, and ζ ∈ ∂D a point which admits a plurisubharmonic peak func-

tion that is even Hölder continuous at ζ.
If M and Y have the meanings as explained before Theorem 1.1, then

for any radius R > 0 we have for non-tangential approach of w towards ζ :

lim
Λ3w→ζ

‖MD(·;M,Y ;w)‖
‖MD∩B(ζ,R)(·;M,Y ;w)‖ = 1
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