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ON PURELY PERIODIC BETA-EXPANSIONS OF
PISOT NUMBERS

YUKI SANO

Abstract. We characterize numbers having purely periodic [-expansions
where (3 is a Pisot number satisfying a certain irreducible polynomial. The
main tool of the proof is to construct a natural extension on a d-dimensional
domain with a fractal boundary.

81. Introduction

Let 3 > 1 be a real number and let T3 be the 3-transformation on the
unit interval [0,1) given by

where [z] denotes the integer part of . Then every = € [0,1) can be written
as

o0
v=Y bB7F, b =[8T5 ).
k=1
We call this representation in base ( the S-expansion, which was introduced
by Rényi [16]. It is denoted by
xTr = .b1 b2 e

A real number x € [0,1) is said to have an eventually periodic (-
expansion with period p if there exist integers m > 0 and p > 1 such that
xTr = .blbg e bm(bm+1bm+2 e berp)oo’

where w will denote the sequence www ... . In particular, if we can choose
m = 0, we say that x has a purely periodic S-expansion with period p, that
is,

Tr = .(blbg Ce bp)oo'
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We know that x has a purely periodic S-expansion with period p if and only
if Tg:c =z.
For x = 1, we can define the §-expansion of 1 in the same way:

d(1,0) = tity..., tp= [5T§—11].

Let Dg be the set of 3-expansions of numbers in [0,1). Parry characterized
the set Dg in [13]. By <j¢; will be denoted the lexicographical order, that
is, (v3)2) <iex (w;)52; means that there exists k& > 1 such that v; = w;
for any 1 < j < k and v < wg. The (one-sided) shift o maps a point
(v;)72, to the point (v})5°; = o, ((v3)$2;) whose ith coordinate is given by
vl = vig1.

THEOREM (PARRY). Let 3 > 1 be a real number, and let d(1,3) =
Aito ... . Let w be an infinite sequence of positive integers.

(1) If d(1,B) is infinite,
w € Dg <= Yu >0, of(w) <jep d(1, ).
(2) If d(1,3) is finite, d(1,3) = .ty ...tp—1tyn, say, then
we Dg <= Yu>0, of(w) <jeg d*(1,8) = (t1.. . tp_1(tn — 1))

Bertrand [3] and K. Schmidt [18] investigated eventually periodic (-
expansions. A Pisot number is an algebraic integer (> 1) whose conjugates
other than itself have modulus less than one. Let Q(3) be the smallest
extension field of rational numbers Q containing (.

THEOREM (BERTRAND, K. SCHMIDT). Let 3 be a Pisot number and
let x be a real number in [0,1). Then x has an eventually periodic [3-
expansion if and only if x € Q(f).

In [1], Akiyama gives a sufficient condition for pure periodicity where
0 belongs to a certain class of Pisot numbers. Hara and Ito characterized
purely periodic modified B-expansions for a quadratic irrational number §
in [8]. The present author studied necessary and sufficient condition for
pure periodicity in [11] where [ is a cubic Pisot number whose minimal
polynomial is given by

Irr(B) = 2% — kya? — kox — 1, ki(#0), ks € NU{0}, and ky > ko.
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Figure 1: Figure of Y in case d = 3.

In this paper, we will generalize the results of [11]. Hereafter, g is a
positive root of the polynomial:

Irr(B) = 2% — kyx®t = kox®? — kg — 1,
kiEZ, and k1 > ko > --- de,l > 1.

Then S is a Pisot number. We have the following result:

MAIN THEOREM. Let x be a real number in Q(5)N[0,1). Then x has
a purely periodic B3-expansion if and only if x is reduced.

We define reduced numbers in Section 5. For our purpose, we introduce
a d-dimensional domain Y with a fractal boundary (see Figure 1 and the
definition in Section 4) and a natural extension of T on Y, which were
originally discussed in [14] and [19]. In [8] and [9], you can find the basic
idea of the proof.

I would like to thank Professor S. Akiyama and Professor Sh. Ito for
many helpful suggestions and encouragement. I am grateful to N. Tangiku
for a life filled with love and support. Finally, I am greatly grateful to the
referee for careful reading the manuscript and giving helpful comments.

§2. Admissible sequences of J-expansions

Recall that 3 is a positive root of the irreducible polynomial

(2.1) Irr(B) = 2% — kya® ™t — koad2 — o — kg —1,
ki €Z, and k1 > kg >---> kg1 > 1.
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From [4], we know that § is a Pisot number. From Theorem (Parry) it
follows that
d(1,8) = kiks.. ka1l

Let
g=pW,%,. .. 50
be the real Galois conjugates and
ﬂ(m-i-l)’ Blri+1), ﬂ(r1+2)’ Bri+2) ’B(T1+T2)’B(r1+r2)
be the complex Galois conjugates of 3, where r1 + 2ro = d and v is the

complex conjugate of a complex number v. The corresponding conjugates
of z € Q(f) are also denoted by

w=a® gD gD pi41) o prdre) g (ribra)

Let M be the companion matrix of the polynomial (2.1), that is,

(k1 ko ... kgoq 1]

1 0 ... 0 O
M=10 1 ... 0 O
|0 0 ... 1 0]

We know that M is a d x d integer matrix with determinant (—1)%1. Tt
is easily checked that the matrix M is irreducible. Here a nonnegative
matrix A is irreducible if for each ordered pair of indices I, J, there exists
some n > 0 such that A}; > 0, where A;; means the (I,.J)-element of
the matrix A. An eigenvector a corresponding to the eigenvalue G of M
and an eigenvector v corresponding to 3 of the transpose of M are vectors

o = t[alu a, ... ,Oéd] and Y= t[717727 s 7’Yd]7 Sa‘tiSfying
(2.2) Ma = pa and ‘M~ = (Bv, respectively,

where t indicates the transpose. From the Perron-Frobenius theory, irre-
ducibility implies both eigenvectors are positive. We normalize o« and =« by
putting 73 = 1 and choosing «; (1 < i < d) to satisfy (a,v) = 1, where
( , ) denotes the standard inner product. By using (2.2), we can see that
a; and y; (1 <14 < d) are given by

d—1
(2.3) a =071 Ty,
n=0
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Y1 = 1= .k‘lkg .. .k‘d_ll,
Y2 = Tgl = .kg e .k‘dfll,

(2.4) :
Yd-1 = Tg_Ql = .kq-11,
1
d—1

=T 1 =1=—.

g 6

By Z[3] will be denoted the set of polynomials in 8 with integral coefficients.
Then both {aq,... ,aq} and {y1,... ,74} generate Z[3] and both are bases

of Q(8).
It follows from either (2.4) or Theorem (Parry) in Section 1 that a

sequence (b;)5°, € Dg if and only if for all 4

(2.5) 0<b; <k,
(2.6)
by = k1 = biy1 < ka,
bi = k1,bi41 = k2 = bit2 < ks,
by = k1,biy1 =ka,... ,biyq—3="Fkqg_o = bitd—2 < kq—1,
bi = k1,bit1 =kay ... biya—3 = kg—2,biya—2 = ka—1 = biyq-—1 = 0.

Thus Dg is represented by the labeled graph G in Figure 2. In other words,
the admissible sequence (b;)?°; of (-expansions is an infinite label of the
walk in the sofic shift Xg. See [12] concerning a labeled graph and a sofic
shift.

83. Substitutions
Let o be the substitution of the alphabet A = {1,2,... ,d} given by:
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Figure 2: Labeled graph G.

d — 1.

The free monoid on A, that is to say, the set of finite words on A, is denoted
by A* = J,—, A"

There is a natural homomorphism (abelianization) f : A* — Z? given
by f(i) = e; for any i € A where {e;,...,e4} is the canonical basis of RY.
Then there exists a unique linear transformation %o satisfying the following

commutative diagram:
o

A —— A*

fl lf
74— 74
Og

We know that %o is given by the matrix M in Section 2 in our case.
Let P be the contractive invariant plane of M, that is,

'P:{XGRd‘<X,’y>:O}.
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Figure 3: The figure for 'o* for the Rauzy fractal (k; = ko = 1).

Let 7 : R? — P be the projection along the eigenvector .. In [15], Rauzy
constructed a curious compact domain with a fractal boundary, called the
Rauzy fractal, by using the Pisot number 3 for which Irr(3) = 2® — 2% —
x—1 (k; = kg = 1). Arnoux and Ito in [2] showed that for any Pisot
substitution o a compact domain X with a fractal boundary can be similarly

constructed, using the following mapping 'o*

d
(3.1) o (i) =) Y (M7 (x— f(BY)).5%),

=y

where o(j) = Wi W, Wi € {1,....d}, P is the prefix of the

letter quj), and (x,7*) is the set {X—l—ez + E#Z}\ e; | Aj €[0,1]}. (See
Figure 3.) We remark that we use the notation 'o* in stead of E5 (o) which
was used in [2].

In [17], the authors define higher dimensional extensions *o (1 < k < d)
of o, acting on formal sums of weighted k-dimensional faces of unit cubes
with vertices in Z%, and their dual maps ¥o*. Moreover, they proved that
these maps commute with the natural boundary morphisms and establish
some basic properties.

THEOREM. The following limit sets exist in the sense of Hausdorff
metric:

Xz' = lim Mn(ﬂ'(lo'*n(ovi*)))

n—oo

= lim M"(r('c*"(—e;,i%))), (1<i<d)

n—oo

d
X:U&.
=1

X; are bounded, closed, and disjoint, up to a set of measure 0.
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Figure 4: The Rauzy fractal (k1 = ko = 1).

Note that the origin of R%~! belongs to X. (See the details in [2].) See
Figure 4 in case k; = ko = 1.

From the equation (3.1) and M~le; = ey, we see that the mapping
Lo*(0,i*) (1 <i < d) in our case are given by

k1—1 k2—1
Io*:(0,1%) —s Z —i1eq, 1) + Z —i2€q,2
i1=0 i2=0
kqg_1—1
44 Z (—idfled,d_l*)"i‘(oad*):
ig_1=0

(0,2*) — (—kled,l*),
0,3*) — (—kged,Q*),

—~

(O,d*) [— (—kdfled, d— 1*).
Hence, M1 X; (1 <i < d) are given by

MUK = Tim M (10T (l(0,17)))

k1—1
. _ -1 .
= 71151;0 M" 17T<10*n ( E (—ireq, 1%) + - -
i1=0
kg_1—1

+ > (—id_led,d—1*)+(0,d*)>>

1g—1=0
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k1—1 kqg—1—1
= JX—iimeq) U U | (Xao1 — da1meq) U Xq,
i1=0 ig_1=0

MK, = Tim M (Y0 (1(0,27)))

n—oo
= lim M™% (10*"’1(—k1ed, 1*))

= X1 — kimey,

M™'X,; = lim M" Iz (10*71—1 (10*(0,d*)))

n—oo

= lim M" 'x <1U*n71(—kd_1ed,d— 1*)>

n—oo

= Xg-1— kqg_17eq.
Then applying M, from the property Mmey; = tMey; = wey, we have

(3.2)

( ki—1 ka-1-1

X1 = (MXy —iymer) -+ | (MXqy —ig1mer) UMXy,
i1=0 ig_1=0

XQ = MX1 — k17re1,

Xqg=MX4 1 — kg mey,

d
33) X=X
=1

k1 k'd—l
= U(MXl_ilﬂel)“‘ U (Mdel—id,lﬂel)UMXd.
i1=0 ig_1=0

Since X; are disjont up to a set of measure 0, the partition of X is con-
structed. By using the partition (3.3), the transformation T5 on X without
boundaries can be defined as follows:

(34) Tpx= M™'x +b*rey if x € MX; —b*re; for some j and b*.
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Then for x € X satisfying the condition that Tﬁ* k2 are not on the boundaries
of X* for any k, there exists an infinite sequence (b})?°, such that

(3.5) T3"'x € M X — byme,

and x is represented by
o0
X=— Z bZMkilﬂel.
k=1

Note that (j(k))z—, is the orbit of the point x, that is,
k
TE X € X](k)
From the set equations (3.2) and (3.5) we can see that

T5(X7) = X3 UXSU--- U XS,
T(X3) = X7,
Tj(X3) = X3,

T5(Xq) = Xg-1,

where for each ¢ X is given by

7

*k ; .
Yo {x e T)3"x are not on the boundaries of X; for any k }

and any j

Hence, an infinite walk (b};)72 is obtained from the labeled graph G*, which
is the dual graph of G. Here, the dual graph G* is the graph with the same
vertices as GG, but with each edge in G reversed in direction. We can deal
with all points of X; successfully. As a consequence, we know that the
domains X;s (1 <i < d) are given by

(3.6)

B (b¥)22 is an admissible walk starting
Xi=1{-=> bpM*! Rok=1 :
‘ { Py k el at 7 in G*

See details in [2] and [6].
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Figure 5: The figure of X = U?Zl 5(\1 in case k1 = ko = 1.

84. The natural extension of the -transformation 7j

Let for each i (1 <i <d) X; € R be the following domain:
(4.1) X\i:{ta+x|0§t<% andxeXi}.

And we define X by

See Figure 5.
Let T be the transformation on X given by

(4.2) Tj (ta + x) = (Bt — [Bt]) e + Mx — [t]me;.

Tgt

Note that T; is just the (-transformation 73 on the direction a. We know
that for any z =ta +x € X,

T3(z) = Mz — [Bt]e;.

fg will be a toral automorphism associated with M on the fundamental
domain X.

From the partition (3.3) and the property (2.4) we have the following
result.
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ProOPOSITION 4.1. TE s surjective and injective on X except on the
boundary.

Proof. For any y € X there exist y’ € X; (1<i<d)and ¢’ (0 <t <
~vi < 1) such that

y=ta+y.
From the partition (3.2), we have
y =ta+ Mx' — kne; for some x’ € Xjand 0 < k < k.

Let
x:(ﬁ—i—t—,)a—kx’.
B
Then
I/gx:t’a—FMX’—lmel:y.
Ifi=1,0<t <land k=0,1,... ,kj — 1. Here we set kg = 1. Then
o k-1 1k

k
CEETECTE e e

If i =2,...,d, we know that 0 < ¢ < ~; = .k;... kg1, j =i —1, and
k = k;_1. Hence

koot ki v
0<—4+—=< 4+ —=ki_1... kg1l ="v_1=";.
B B B ' ' ’
Therefore for any ¢, we see that x € 5(; C X. Hence J/E is surjective.
And excepﬁ\for the boundary, 7, t’, j, and k are uniquely determined by y.
Therefore T is almost everywhere injective. 0

Therefore J/E is the natural extension of the transformation 7j.
Recall that the domain X is on the plane P, which is orthogonal to ~.
We put

agl) o OzYl) §RO{§T1+1) —C\\SQYIJFD o §Ra§h+r2) _%agrlJrrg)

aél) . agﬁ) %ag"ﬁrl) _%@érl+1) . %aérlJer) _cxag"lJrTQ)
Q = . . .

a&l) L Oéérl) %ag"l-i-l) —%Oégrl-i_l) L éﬁagﬁl-f—’r‘g) _%Oég"l-f—’l‘g)

= o, ag,...,04],
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where R indicates the real part and & indicates the imaginary part. The
plane P is spanned by as, as, ..., and ay, because a; (2 < i < d) and ~
intersect orthogonally and s are linearly independent.

Let us define the domains Y and }Afz (1 <i<d) as follows:

(4.3) V:=Q Y(X) and Y :=Q (X))

We will make preparations for the explicit representation of }Afz
Define a d x d matrix

- agl) e agrl) a§r1+l) W o a§r1+r2) W -
P Ozgl) - ag‘l) a§7‘1+1) a§7‘1+1) L Ozgler) a§r1+’l“2)
I O‘((jl) ... aglrl) aérﬁrl) W o aglJer) W |
= [a’u27"' ,ud].

Let

vene b el Alee] b A
where A @ B is a matrix of a form:

o 5]

0 B

and [, is the identity matrix of size r;. Then

QU = P.
From I; = P - P~!, we have

er = (P e+ (P )yup +-- + (P yua.
Each u; (2 < i <d) is also orthogonal to «. Therefore,
(e1,7) = ((P_1)11047’Y> = (P_1)11<a:’>’> = (P_l)n-

It follows that

(P_l)n =1
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and
Ple; ="1[1,1,... ,1].
You can see the detailed proof in [11]. According to the relation QU = P
Qle; ="11,1,...,1,2,0,...,2,0].

1 2ro

Moreover, from I; =Q - Q!
ei=at+og+ -+ oy + 20,41+ 200,43+ -+ 20041
Since 7 is the projection along «,
me; = ay+ -+ oy + 20041 + 200 43+ 0+ 2041
Hence

(4.4) Q 'me; =10,1,1,...,1,2,0,...,2,0].

1 2ro

LEMMA 4.2. The following relation holds:

’ (2)
ﬁ 2
MQ=Q )
ﬂ(rl)
RA+Y _gparitl) REr1+r2) _GRritr2)
D %,B(rlJrl) %ﬁ(rlJrl) :| PP [%IB(HJFTQ) é):eﬁ(rﬂrm)

Proof. The relation (2.2) implies that
MP = PD,

where D is the diagonal matrix

B
5(2)

Br1)
D= ﬂ(rl +1)

Blri+1)

. ﬂ(m +72)

5(7"1 +r2)
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Then, from the relation P = QU,

MQU = QUD.

Using

I I P B LR
we have
Q'MQ=UDU!

B

5(2)
5(7"1)

§R,3<m+1) _%/6(7’14’1) §R/@(m+r2) _%/6(7’14’1”2)
® [gg(m-&l) LGRSy ] C- D [gg(rﬁ-m) RA(r1+r2)

Hereafter we represent )//\;s as the domains in R x R4,

ProproSITION 4.3. The domains )//\;3 are given by

ﬁ = {(t,—ZbZRk_lv) ‘ 0<t<~ and
k=1

(b1) 52y is an admissible walk starting at i in g*},

where
5(2)
ﬂ(rl)
e §Rﬁ(m+1) —%,B(Tﬁ'l) o %ﬁ(m-ﬁ-m) _%/8(7"1—}—7‘2)
%ﬁ(ﬁﬂ) %g(f‘ﬂrl) gﬁ(rﬁrrz) §RI8(H+T2)
and
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Proof. The definitions of Y}, X;, and X;, that is, (4.3), (4.1), and (3.6),
show that

Yi=Q 7' (X)
=Q" 1{ta ZbkMk ! (*)—condition}
k=1
= {tQ la - Zka VLY (*)-condition}.
k=1
By Lemma 4.2

Q- MFT = (51#1 @ qu) Q!

And using (4.4), we have
ﬁ = {tel — Z b;; (ﬁkil % Rkil) Qilﬂel
k=1

= { <t, - Z bZRk1v> ‘ (*)—condition}.
k=1

(*)-condition}

Here (x)-condition means that 0 < ¢ < ~y; and (b};)72; is an admissible walk
starting at ¢ in G*. Therefore we arrive at the conclusion of the assertion.

O

Naturally, we can define a transformation 3; on Y as follows:
(4.5) S5=Q ' oTs0Q.

Then 3; is also a natural extension of Tj.

PROPOSITION 4.4. The transformation 3'\5 onY is given by

Ss(t,x) = (Bt — [8], Rx — [B]v)

and surjective.
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Proof. From (4.5) and (4.2), which are definitions of S’E and Z//’E,

g;(t,x) =Q lto 17’; oQ(te; + 0 ®x)
= QLo T (ta + Q (0@ x))
= Q7' (Bt — [At])a + MQ (0@ x) — [Bt]mer)
= (Bt — [t], Bx — [Bt]v).

Surjectivity of 3’; is obtained by Proposition 4.1. 0

85. The reduction theorem

In this section, we introduce reduced numbers and show our main the-
orem.

Let Y (C R x R%1) be the following product space:
Y :=1[0,1) x R*,
Let 57; be the transformation on Y defined by
Sp (2,%) == (Bz — [B2], Rx — [Ba]v), w €0,1).

Then the restriction of SNg on Y (C }7) is 3’;
Define a map p: Q(8) — R x R4! by

O

x(rl)

2Rz (r+1)
plx) = | =, 9 (r1+1)

2R(r1+72)
oG +72)

_ DerFNiTION 5.1, A real number z € Q(8) N [0,1) is reduced if p(z) €
Y.

In order to prove the main theorem, we will need some important lem-
mas.
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LEMMA 5.1. Let x € Q(8)N[0,1). Then

S5 (p()) = p (Tpz) .

Proof. From the definitions of ,,S'Vg, p, and T3, we have

x(rl)
— o~ 2Rz (r1+1)
Sp (p(x)) = Sa | =, 9G(r1+1)

2Rx(r1+72)
2Qx(r+72)

- ) .

Bl )'x(m)

2 (gcgg(rﬁrl) Rzt — gt .gx(mﬂ))
= | Bz — [Bx], 9 (gﬁ(m-l—l) SRt %ﬁ(rﬁ—l) . %x(m-i-l))

2 (§R5(T1+T2) Ry (r1tr2) _ 3B (rtra) . gx(rﬁm))
_2 (%ﬁ(rﬁr?ﬁ) . §R$(T‘1+T2) + %ﬁ(rﬁr?ﬁ) . %J;(TI‘H"Q)) ]

1

[\
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using the relations R(zy) = ReRy — Sy and I(zy) = RxSy + SzRy,
[ (B —[B] ]

(Bz)(") — [Ba]
2R ((Bz)" 1) — [Ba])

=~ s (e ()
2R ()" +72) — [Ba])
| 23 ((Bz) "1 +72) — [Ba]) |
= p(Bz — [Bz])
=p(Tpz).
Therefore we arrive at the conclusion. []

LEMMA 5.2. Let z € Q(8)N[0,1) be reduced. Then

(1) Tgax is reduced,
(2) there exists * such that x* is reduced and Tgx* = x.

Proof. Since z € Q(8) N[0,1) is reduced, p(z) € Y.
(1) From Lemma 5.1,

S5 (p(x)) = p(Tpz) €Y.

Hence Tgx is reduced.
(2) From Proposition 4.4, S is surjective on Y. Thus there exist (z*,x) € YV’
such that

(5.1) S (%) = pla).
Comparing first coordinates in both sides, we see that
Tga* = x.
To verify z* is reduced, we will only show
(2,%) = p (2.

Then p (z*) € Y implies that z* is reduced.
We put

_t
X = [.2172, s 3 Ty T +15 Ty 415 - - - 7xr1+r27xr1+r2} .
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202
Then (5.1) shows that
Bzt — [z ==
and
— x(2) —
21
N 2Rz (r1+1)
2R (r+)
| o5t |
So that,
[ B@ s — [Ba] |
ﬂ xrl [,BCC ]/_\/
REHD -y, g — SBTD T T — 2[Ba]
%ﬂ(erl) R %6(7‘14’1) x/rri-/l
RECLTD) 0y, = AT G 9]0
gﬁ(m-i—m) Ly ey + %ﬁ(rﬁ—m) . Cc/r;r/m ]
[ Bz @ — [ga"]
BV — 7]
2R B(T1+1)x*(7‘1+1) -
= | 25 (Bt pr(rtl)
2R (Blritra) gpr(ritra) _
2% 5(r1+r2)x*(r1+rz) _
Thus

_ x(r1)
7xr1 _x b
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and for 1 < j <o

—~—

REr1+I) Tpytg — g3 +) o

— 2%(5(r1+j)x*(m+j)>

= IRBIIFDRE*(1+D) _ ogg(ritd) gapx(rit)
gprti) . T+ RET1HI) . Tt

= 2§<g(r1+j)x*(m+j)>

— 23%5(7‘1+J')g$*(7‘1+j) + 235(r1+j)§)%$*(7"1+j)'
Then for 1 < j < ry, we have

(xrl-i-j - 2%x*(rl+j))%ﬂ(r1+j) + (m - 2%x*(r1+j))§}%ﬂ(r1+j) —0.

Thus
Ty g = 2R ) and £,7; = 28t (D),
Therefore
(z%,x) = p(z”).
Thus we obtain the assertion (2). 0

By the lemmas above, we can get a sufficient condition for pure peri-
odicity of [-expansions.

PROPOSITION 5.3. Let x € Q(B) N [0,1) be reduced. Then = has a
purely periodic (B-expansion.

Proof. Lemma 5.2 (2) shows that there exist z}s such that xs are
reduced and Tgx; = x]_,, where we set x; = x. Here, we put

=22 for some q €Z, py € Z|J].
q

Then Tz} = x implies that

By — [Bai] = .
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So that

* _ [Ba7] + r_ P for some p; € Z[].

B B q

Inductively we can see for every k

8
=

xy = PE - for some pr € Z[f).
q

Let b; be positive real numbers. Only in this proof, we denote by z()
(1 < j < d) algebraic conjugates of z and (1) = z. Let

C = {zez[f]]| 2V <b;}.

Obviously, C is a finite set. As Y is bounded, we can see the set {z}}>°, is
a finite set. Hence there exist j and k& (j > k) such that

T =Ty
Applying Té;k we get
rp =
Hence
Tg:c =x.
Therefore x has a purely periodic G-expansion. 0

Lemma 5.2 and Proposition 5.3 show that the transformation Tp re-
stricted to Q(5) N [0,1) is bijective.

To complete the proof of our main theorem, the following proposition
is positively necessary.

PROPOSITION 5.4. Let x € Q(3) N[0,1). Then there exists Ny > 0
such that Tévx are reduced for any N > Ni.

—k

Proof. Consider the Euclidean distance d between Sz (p(z)) and
~k

Ss (x,0) for k > 0. Since the first coordinates of these points are equal,
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this coincides with the distance between the origin of R%~! and

— x(z) —

()

R (r1+1)
2Gz(m+1)

2R(r-+2)
| 2q (i)

By s(x) we denote this distance. As RFs are given by

(8@
Rk — .
oy

RECHD|gr D[ it | grirn ]
3B+ / ‘5(r1+1){2 R+ / ‘5(r1+1){2 ]
RE(I+72) | g |2 _gpritra) | glrar) | ] k
SPtr) j|gritra) 2 pritra) f| gl |

@ [ D[

D P ‘5(7‘1+T2)‘2k

we have
s(z)? = (5(2))2k(x(2))2 R (gm))?k(x(m))?
+ |+ ‘2’“{ (2Rz(11+1)? 4 (2%:1;(7"1“))2}

NN {/B(TI‘H"Q) ‘2]“{ (2%x(r1+r2))2 + (2%:6(7‘14’1“2))2}.

If we put
u = max{‘ﬁ@)‘,... ,‘ﬁ(rl)‘7 m(rl‘*‘l)"“. ’m(n—i—rz)‘}’

then 0 < v < 1 and
s(z) < uP- {(x(z))Q 4o (:1:(”1))2 + (2%x(r1+1))2 I (2%1,(7'14»1))2

+--+ (28%:0(”*’"2))2 + (2%56(7‘1%"2))2}1/2'
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Thus

A(55" (), 55 (2,0)) < u* - d(p(), (1,0).

From the fact (z,0) € ¥ and SNgDA/ = S'\g, we know that
—k ~
Sp (z,0) €Y.

—~k ~

It follows that Sg (p(:c)) comes exponentially close to Y as k — oco. By the
same reason that we used in the proof of Proposition 5.3, we can conclude
that there exists a finite number of p(Tg) in a certain bounded domain.
Hence

S (o) = p(T)2) € ¥

for a sufficiently large Ny. Then T, ﬁN 'z is reduced. From Lemma 5.2 (1), we
see that Tév x are reduced for any N > Nj.

At last we attain our goal.

THEOREM 5.5. Let x € [0,1). Then

(1) z € Q(B) if and only if © has an eventually periodic (3-expansion,
(2) z € Q(B) is reduced if and only if x has a purely periodic [3-expansion.

Proof. (1) Assume that x € Q(f5). By Proposition 5.4, there exists N >
0 such that T, ﬁN x is reduced. Proposition 5.3 says that T ﬁN x has a purely
periodic J-expansion. Hence x has an eventually periodic S-expansion. The
opposite implication is trivial.
(2) Necessity is obtained by Proposition 5.3. Conversely, assume that x has
a purely periodic [-expansion. According to Proposition 5.4, there exists
N > 0 such that Tév x is reduced. The pure periodicity of x implies that

there exists j > 0 such that Tévﬂx = z. Lemma 5.2 (1) says that z is
reduced. []
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