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ON PURELY PERIODIC BETA-EXPANSIONS OF

PISOT NUMBERS

YUKI SANO

Abstract. We characterize numbers having purely periodic β-expansions
where β is a Pisot number satisfying a certain irreducible polynomial. The
main tool of the proof is to construct a natural extension on a d-dimensional
domain with a fractal boundary.

§1. Introduction

Let β > 1 be a real number and let Tβ be the β-transformation on the

unit interval [0, 1) given by

Tβx = βx − [βx],

where [x] denotes the integer part of x. Then every x ∈ [0, 1) can be written

as

x =
∞∑

k=1

bkβ
−k, bk = [βT k−1

β x].

We call this representation in base β the β-expansion, which was introduced

by Rényi [16]. It is denoted by

x = .b1b2 . . . .

A real number x ∈ [0, 1) is said to have an eventually periodic β-

expansion with period p if there exist integers m ≥ 0 and p ≥ 1 such that

x = .b1b2 . . . bm(bm+1bm+2 . . . bm+p)
∞,

where w∞ will denote the sequence www . . . . In particular, if we can choose

m = 0, we say that x has a purely periodic β-expansion with period p, that

is,

x = .(b1b2 . . . bp)
∞.
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We know that x has a purely periodic β-expansion with period p if and only

if T p
βx = x.

For x = 1, we can define the β-expansion of 1 in the same way:

d(1, β) = .t1t2 . . . , tk = [βT k−1
β 1].

Let Dβ be the set of β-expansions of numbers in [0, 1). Parry characterized

the set Dβ in [13]. By <lex will be denoted the lexicographical order, that

is, (vi)
∞
i=1 <lex (wi)

∞
i=1 means that there exists k ≥ 1 such that vj = wj

for any 1 ≤ j < k and vk � wk. The (one-sided) shift σs maps a point

(vi)
∞
i=1 to the point (v′i)

∞
i=1 = σs ((vi)

∞
i=1) whose ith coordinate is given by

v′i = vi+1.

Theorem (Parry). Let β > 1 be a real number, and let d(1, β) =
.t1t2 . . . . Let w be an infinite sequence of positive integers.

(1) If d(1, β) is infinite,

w ∈ Dβ ⇐⇒ ∀u ≥ 0, σu
s (w) <lex d(1, β).

(2) If d(1, β) is finite, d(1, β) = .t1 . . . tn−1tn, say, then

w ∈ Dβ ⇐⇒ ∀u ≥ 0, σu
s (w) <lex d∗(1, β) = (t1 . . . tn−1(tn − 1))∞ .

Bertrand [3] and K. Schmidt [18] investigated eventually periodic β-

expansions. A Pisot number is an algebraic integer (> 1) whose conjugates

other than itself have modulus less than one. Let Q(β) be the smallest

extension field of rational numbers Q containing β.

Theorem (Bertrand, K. Schmidt). Let β be a Pisot number and

let x be a real number in [0, 1). Then x has an eventually periodic β-

expansion if and only if x ∈ Q(β).

In [1], Akiyama gives a sufficient condition for pure periodicity where

β belongs to a certain class of Pisot numbers. Hara and Ito characterized

purely periodic modified β-expansions for a quadratic irrational number β

in [8]. The present author studied necessary and sufficient condition for

pure periodicity in [11] where β is a cubic Pisot number whose minimal

polynomial is given by

Irr(β) = x3 − k1x
2 − k2x − 1, k1(6= 0), k2 ∈ N ∪ {0}, and k1 ≥ k2.
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Figure 1: Figure of Ŷ in case d = 3.

In this paper, we will generalize the results of [11]. Hereafter, β is a

positive root of the polynomial:

Irr(β) = xd − k1x
d−1 − k2x

d−2 − · · · − kd−1x − 1,

ki ∈ Z, and k1 ≥ k2 ≥ · · · ≥ kd−1 ≥ 1.

Then β is a Pisot number. We have the following result:

Main Theorem. Let x be a real number in Q(β)∩ [0, 1). Then x has

a purely periodic β-expansion if and only if x is reduced.

We define reduced numbers in Section 5. For our purpose, we introduce

a d-dimensional domain Ŷ with a fractal boundary (see Figure 1 and the

definition in Section 4) and a natural extension of Tβ on Ŷ , which were

originally discussed in [14] and [19]. In [8] and [9], you can find the basic

idea of the proof.

I would like to thank Professor S. Akiyama and Professor Sh. Ito for

many helpful suggestions and encouragement. I am grateful to N. Tangiku

for a life filled with love and support. Finally, I am greatly grateful to the

referee for careful reading the manuscript and giving helpful comments.

§2. Admissible sequences of β-expansions

Recall that β is a positive root of the irreducible polynomial

(2.1) Irr(β) = xd − k1x
d−1 − k2x

d−2 − · · · − kd−1x − 1,

ki ∈ Z, and k1 ≥ k2 ≥ · · · ≥ kd−1 ≥ 1.
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From [4], we know that β is a Pisot number. From Theorem (Parry) it

follows that

d(1, β) = .k1k2 . . . kd−11.

Let

β = β(1), β(2), . . . , β(r1)

be the real Galois conjugates and

β(r1+1), β(r1+1), β(r1+2), β(r1+2), . . . , β(r1+r2), β(r1+r2)

be the complex Galois conjugates of β, where r1 + 2r2 = d and v̄ is the

complex conjugate of a complex number v. The corresponding conjugates

of x ∈ Q(β) are also denoted by

x = x(1), . . . , x(r1), x(r1+1), x(r1+1), . . . , x(r1+r2), x(r1+r2).

Let M be the companion matrix of the polynomial (2.1), that is,

M =




k1 k2 . . . kd−1 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0




.

We know that M is a d × d integer matrix with determinant (−1)d−1. It

is easily checked that the matrix M is irreducible. Here a nonnegative

matrix A is irreducible if for each ordered pair of indices I, J , there exists

some n ≥ 0 such that An
IJ > 0, where AIJ means the (I, J)-element of

the matrix A. An eigenvector α corresponding to the eigenvalue β of M

and an eigenvector γ corresponding to β of the transpose of M are vectors

α = t[α1, α2, . . . , αd] and γ = t[γ1, γ2, . . . , γd], satisfying

Mα = βα and tMγ = βγ, respectively,(2.2)

where t indicates the transpose. From the Perron-Frobenius theory, irre-

ducibility implies both eigenvectors are positive. We normalize α and γ by

putting γ1 = 1 and choosing αi (1 ≤ i ≤ d) to satisfy 〈α,γ〉 = 1, where

〈 , 〉 denotes the standard inner product. By using (2.2), we can see that

αi and γi (1 ≤ i ≤ d) are given by

αi = β1−i
/ d−1∑

n=0

β−nT n
β 1,(2.3)
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γ1 = 1 = .k1k2 . . . kd−11,

γ2 = Tβ1 = .k2 . . . kd−11,

...(2.4)

γd−1 = T d−2
β 1 = .kd−11,

γd = T d−1
β 1 = .1 =

1

β
.

By Z[β] will be denoted the set of polynomials in β with integral coefficients.

Then both {α1, . . . , αd} and {γ1, . . . , γd} generate Z[β] and both are bases

of Q(β).

It follows from either (2.4) or Theorem (Parry) in Section 1 that a

sequence (bi)
∞
i=1 ∈ Dβ if and only if for all i

0 ≤ bi ≤ k1,(2.5)





bi = k1 =⇒ bi+1 ≤ k2,

bi = k1, bi+1 = k2 =⇒ bi+2 ≤ k3,
...

...

bi = k1, bi+1 = k2, . . . , bi+d−3 = kd−2 =⇒ bi+d−2 ≤ kd−1,

bi = k1, bi+1 = k2, . . . , bi+d−3 = kd−2, bi+d−2 = kd−1 =⇒ bi+d−1 = 0.

(2.6)

Thus Dβ is represented by the labeled graph G in Figure 2. In other words,

the admissible sequence (bi)
∞
i=1 of β-expansions is an infinite label of the

walk in the sofic shift XG . See [12] concerning a labeled graph and a sofic

shift.

§3. Substitutions

Let σ be the substitution of the alphabet A = {1, 2, . . . , d} given by:

σ : 1 −→ 1 . . . 1︸ ︷︷ ︸
k1

2

2 −→ 1 . . . 1︸ ︷︷ ︸
k2

3

. . .

d − 1 −→ 1 . . . 1︸ ︷︷ ︸
kd−1

d
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Figure 2: Labeled graph G.

d −→ 1.

The free monoid on A, that is to say, the set of finite words on A, is denoted

by A∗ =
⋃∞

n=0 An.

There is a natural homomorphism (abelianization) f : A∗ → Zd given

by f(i) = ei for any i ∈ A where {e1, . . . , ed} is the canonical basis of Rd.

Then there exists a unique linear transformation 0σ satisfying the following

commutative diagram:

A∗
σ

−−−→ A∗

f

y
yf

Zd −−−→
0σ

Zd.

We know that 0σ is given by the matrix M in Section 2 in our case.

Let P be the contractive invariant plane of M , that is,

P =
{
x ∈ Rd

∣∣ 〈x,γ〉 = 0
}
.
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Figure 3: The figure for 1σ∗ for the Rauzy fractal (k1 = k2 = 1).

Let π : Rd → P be the projection along the eigenvector α. In [15], Rauzy

constructed a curious compact domain with a fractal boundary, called the

Rauzy fractal, by using the Pisot number β for which Irr(β) = x3 − x2 −
x − 1 (k1 = k2 = 1). Arnoux and Ito in [2] showed that for any Pisot

substitution σ a compact domain X with a fractal boundary can be similarly

constructed, using the following mapping 1σ∗:

1σ∗(x, i∗) =
d∑

j=1

∑

W
(j)
n =i

(
M−1

(
x− f(P (j)

n )
)
, j∗

)
,(3.1)

where σ(j) = W
(j)
1 · · ·W (j)

lj
, W

(j)
n ∈ {1, . . . , d}, P

(j)
n is the prefix of the

letter W
(j)
n , and (x, i∗) is the set

{
x + ei +

∑
j 6=i λjej

∣∣ λj ∈ [0, 1]
}
. (See

Figure 3.) We remark that we use the notation 1σ∗ in stead of E∗
1(σ) which

was used in [2].

In [17], the authors define higher dimensional extensions kσ (1 ≤ k ≤ d)

of σ, acting on formal sums of weighted k-dimensional faces of unit cubes

with vertices in Zd, and their dual maps kσ∗. Moreover, they proved that

these maps commute with the natural boundary morphisms and establish

some basic properties.

Theorem. The following limit sets exist in the sense of Hausdorff

metric:

Xi := lim
n→∞

Mn
(
π
(
1σ∗n

(0, i∗)
))

= lim
n→∞

Mn
(
π
(
1σ∗n

(−ei, i
∗)

))
, (1 ≤ i ≤ d)

X =
d⋃

i=1

Xi.

Xi are bounded, closed, and disjoint, up to a set of measure 0.
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Figure 4: The Rauzy fractal (k1 = k2 = 1).

Note that the origin of Rd−1 belongs to X. (See the details in [2].) See

Figure 4 in case k1 = k2 = 1.

From the equation (3.1) and M−1e1 = ed, we see that the mapping
1σ∗(0, i∗) (1 ≤ i ≤ d) in our case are given by

1σ∗ : (0, 1∗) 7−→
k1−1∑

i1=0

(−i1ed, 1
∗) +

k2−1∑

i2=0

(−i2ed, 2
∗)

+ · · · +
kd−1−1∑

id−1=0

(−id−1ed, d − 1∗) + (0, d∗),

(0, 2∗) 7−→ (−k1ed, 1
∗),

(0, 3∗) 7−→ (−k2ed, 2
∗),

...
(0, d∗) 7−→ (−kd−1ed, d − 1∗).

Hence, M−1Xi (1 ≤ i ≤ d) are given by

M−1X1 = lim
n→∞

Mn−1π
(

1σ∗n−1(1σ∗(0, 1∗)
))

= lim
n→∞

Mn−1π

(
1σ∗n−1

(k1−1∑

i1=0

(−i1ed, 1
∗) + · · ·

+

kd−1−1∑

id−1=0

(−id−1ed, d − 1∗) + (0, d∗)

))
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=

k1−1⋃

i1=0

(X1 − i1πed) ∪ · · · ∪
kd−1−1⋃

id−1=0

(Xd−1 − id−1πed) ∪ Xd,

M−1X2 = lim
n→∞

Mn−1π
(

1σ∗n−1 (
1σ∗(0, 2∗)

))

= lim
n→∞

Mn−1π
(

1σ∗n−1
(−k1ed, 1

∗)
)

= X1 − k1πed,
...

M−1Xd = lim
n→∞

Mn−1π
(

1σ∗n−1 (
1σ∗(0, d∗)

))

= lim
n→∞

Mn−1π
(

1σ∗n−1
(−kd−1ed, d − 1∗)

)

= Xd−1 − kd−1πed.

Then applying M , from the property Mπed = πMed = πe1, we have





X1 =

k1−1⋃

i1=0

(MX1 − i1πe1) · · ·
kd−1−1⋃

id−1=0

(MXd−1 − id−1πe1) ∪ MXd,

X2 = MX1 − k1πe1,
...

Xd = MXd−1 − kd−1πe1,

(3.2)

X =

d⋃

i=1

Xi(3.3)

=

k1⋃

i1=0

(MX1 − i1πe1) · · ·
kd−1⋃

id−1=0

(MXd−1 − id−1πe1) ∪ MXd.

Since Xi are disjont up to a set of measure 0, the partition of X is con-

structed. By using the partition (3.3), the transformation T ∗
β on X without

boundaries can be defined as follows:

T ∗
βx = M−1x + b∗πed if x ∈ MXj − b∗πe1 for some j and b∗.(3.4)



166-09 : 2002/6/10(22:38)

192 Y. SANO

Then for x ∈ X satisfying the condition that T ∗
β

kx are not on the boundaries

of Xi for any k, there exists an infinite sequence (b∗k)
∞
k=1 such that

T ∗
β

k−1
x ∈ MXj(k) − b∗kπe1,(3.5)

and x is represented by

x = −
∞∑

k=1

b∗kM
k−1πe1.

Note that (j(k))∞k=1 is the orbit of the point x, that is,

T ∗
β

k
x ∈ Xj(k).

From the set equations (3.2) and (3.5) we can see that

T ∗
β (X◦

1 ) = X◦
1 ∪ X◦

2 ∪ · · · ∪ X◦
d ,

T ∗
β (X◦

2 ) = X◦
1 ,

T ∗
β (X◦

3 ) = X◦
2 ,

...

T ∗
β (X◦

d ) = X◦
d−1,

where for each i X◦
i is given by

X◦
i =

{
x ∈ Xi

∣∣∣∣
T ∗

β
kx are not on the boundaries of Xj for any k

and any j

}
.

Hence, an infinite walk (b∗k)
∞
k=1 is obtained from the labeled graph G∗, which

is the dual graph of G. Here, the dual graph G∗ is the graph with the same

vertices as G, but with each edge in G reversed in direction. We can deal

with all points of Xi successfully. As a consequence, we know that the

domains Xis (1 ≤ i ≤ d) are given by

Xi =

{
−

∞∑

k=1

b∗kM
k−1πe1

∣∣∣∣
(b∗k)

∞
k=1 is an admissible walk starting

at i in G∗

}
.

(3.6)

See details in [2] and [6].
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Figure 5: The figure of X̂ =
⋃d

i=1 X̂i in case k1 = k2 = 1.

§4. The natural extension of the β-transformation Tβ

Let for each i (1 ≤ i ≤ d) X̂i ⊂ Rd be the following domain:

X̂i =
{
tα + x

∣∣ 0 ≤ t < γi and x ∈ Xi

}
.(4.1)

And we define X̂ by

X̂ =

d⋃

i=1

X̂i.

See Figure 5.

Let T̂β be the transformation on X̂ given by

T̂β

(
tα + x

)
= (βt − [βt])

Tβt

α + Mx − [βt]πe1.(4.2)

Note that T̂β is just the β-transformation Tβ on the direction α. We know

that for any z = tα + x ∈ X̂,

T̂β(z) = Mz − [βt]e1.

T̂β will be a toral automorphism associated with M on the fundamental

domain X̂.

From the partition (3.3) and the property (2.4) we have the following

result.
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Proposition 4.1. T̂β is surjective and injective on X̂ except on the

boundary.

Proof. For any y ∈ X̂ there exist y′ ∈ Xi (1 ≤ i ≤ d) and t′ (0 ≤ t′ <
γi ≤ 1) such that

y = t′α + y′.

From the partition (3.2), we have

y = t′α + Mx′ − kπe1 for some x′ ∈ Xj and 0 ≤ k ≤ k1.

Let

x =

(
k

β
+

t′

β

)
α + x′.

Then

T̂βx = t′α + Mx′ − kπe1 = y.

If i = 1, 0 ≤ t′ < 1 and k = 0, 1, . . . , kj − 1. Here we set kd = 1. Then

0 ≤ k

β
+

t′

β
<

kj − 1

β
+

1

β
=

kj

β
= .kj ≤ γj .

If i = 2, . . . , d, we know that 0 ≤ t′ < γi = .ki . . . kd−11, j = i − 1, and
k = ki−1. Hence

0 ≤ k

β
+

t′

β
<

ki−1

β
+

γi

β
= .ki−1 . . . kd−11 = γi−1 = γj.

Therefore for any i, we see that x ∈ X̂j ⊂ X̂. Hence T̂β is surjective.
And except for the boundary, i, t′, j, and k are uniquely determined by y.
Therefore T̂β is almost everywhere injective.

Therefore T̂β is the natural extension of the transformation Tβ.

Recall that the domain X is on the plane P, which is orthogonal to γ.

We put

Q :=




α
(1)
1 · · · α

(r1)
1 <α

(r1+1)
1 −=α

(r1+1)
1 · · · <α

(r1+r2)
1 −=α

(r1+r2)
1

α
(1)
2 · · · α

(r1)
2 <α

(r1+1)
2 −=α

(r1+1)
2 · · · <α

(r1+r2)
2 −=α

(r1+r2)
2

...
...

...
...

...
...

α
(1)
d · · · α

(r1)
d <α

(r1+1)
d −=α

(r1+1)
d · · · <α

(r1+r2)
d −=α

(r1+r2)
d




=: [α,α2, . . . ,αd] ,
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where < indicates the real part and = indicates the imaginary part. The

plane P is spanned by α2, α3, . . . , and αd, because αi (2 ≤ i ≤ d) and γ

intersect orthogonally and αis are linearly independent.

Let us define the domains Ŷ and Ŷi (1 ≤ i ≤ d) as follows:

Ŷ := Q−1(X̂) and Ŷi := Q−1(X̂i).(4.3)

We will make preparations for the explicit representation of Ŷi.

Define a d × d matrix

P :=




α
(1)
1 · · · α

(r1)
1 α

(r1+1)
1 α

(r1+1)
1 · · · α

(r1+r2)
1 α

(r1+r2)
1

α
(1)
2 · · · α

(r1)
2 α

(r1+1)
2 α

(r1+1)
2 · · · α

(r1+r2)
2 α

(r1+r2)
2

...
...

...
...

...
...

α
(1)
d · · · α

(r1)
d α

(r1+1)
d α

(r1+1)
d · · · α

(r1+r2)
d α

(r1+r2)
d




=: [α,u2, . . . ,ud] .

Let

U := Ir1 ⊕
[

1 1
−
√
−1

√
−1

]
⊕

[
1 1

−
√
−1

√
−1

]
⊕ · · · ⊕

[
1 1

−
√
−1

√
−1

]
,

where A ⊕ B is a matrix of a form:
[

A 0

0 B

]

and Ir1 is the identity matrix of size r1. Then

QU = P.

From Id = P · P−1, we have

e1 = (P−1)11α + (P−1)21u2 + · · · + (P−1)d1ud.

Each ui (2 ≤ i ≤ d) is also orthogonal to γ. Therefore,

〈e1,γ〉 = 〈(P−1)11α,γ〉 = (P−1)11〈α,γ〉 = (P−1)11.

It follows that

(P−1)11 = 1
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and

P−1e1 = t[1, 1, . . . , 1].

You can see the detailed proof in [11]. According to the relation QU = P

Q−1e1 = t[ 1, 1, . . . , 1︸ ︷︷ ︸
r1

, 2, 0, . . . , 2, 0︸ ︷︷ ︸
2r2

].

Moreover, from Id = Q · Q−1

e1 = α + α2 + · · · + αr1 + 2αr1+1 + 2αr1+3 + · · · + 2αd−1.

Since π is the projection along α,

πe1 = α2 + · · · + αr1 + 2αr1+1 + 2αr1+3 + · · · + 2αd−1.

Hence

Q−1πe1 = t[ 0, 1, 1, . . . , 1︸ ︷︷ ︸
r1

, 2, 0, . . . , 2, 0︸ ︷︷ ︸
2r2

].(4.4)

Lemma 4.2. The following relation holds:

MQ = Q




β

β(2)

. . .

β(r1)




⊕
[
<β(r1+1) −=β(r1+1)

=β(r1+1) <β(r1+1)

]
⊕ · · · ⊕

[
<β(r1+r2) −=β(r1+r2)

=β(r1+r2) <β(r1+r2)

]
.

Proof. The relation (2.2) implies that

MP = PD,

where D is the diagonal matrix

D =




β

β(2)

. . .

β(r1)

β(r1+1)

β(r1+1)

. . .

β(r1+r2)

β(r1+r2)




.



166-09 : 2002/6/10(22:38)

PURELY PERIODICITY OF β-EXPANSIONS 197

Then, from the relation P = QU ,

MQU = QUD.

Using

U−1 = Ir1 ⊕
1

2

[
1

√
−1

1 −
√
−1

]
⊕ · · · ⊕ 1

2

[
1

√
−1

1 −
√
−1

]
,

we have

Q−1MQ = UDU−1

=




β

β(2)

. . .

β(r1)




⊕
[
<β(r1+1) −=β(r1+1)

=β(r1+1) <β(r1+1)

]
⊕ · · · ⊕

[
<β(r1+r2) −=β(r1+r2)

=β(r1+r2) <β(r1+r2)

]
.

Hereafter we represent Ŷis as the domains in R × Rd−1.

Proposition 4.3. The domains Ŷis are given by

Ŷi =

{(
t,−

∞∑

k=1

b∗kR
k−1v

) ∣∣∣∣ 0 ≤ t < γi and

(b∗k)
∞
k=1 is an admissible walk starting at i in G∗

}
,

where

R =




β(2)

. . .

β(r1)




⊕
[
<β(r1+1) −=β(r1+1)

=β(r1+1) <β(r1+1)

]
⊕ · · · ⊕

[
<β(r1+r2) −=β(r1+r2)

=β(r1+r2) <β(r1+r2)

]

and

v = t[ 1, . . . , 1︸ ︷︷ ︸
r1−1

, 2, 0, . . . , 2, 0︸ ︷︷ ︸
2r2

].
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Proof. The definitions of Ŷi, X̂i, and Xi, that is, (4.3), (4.1), and (3.6),
show that

Ŷi = Q−1(X̂i)

= Q−1

{
tα −

∞∑

k=1

b∗kM
k−1πe1

∣∣∣∣ (∗)-condition

}

=

{
tQ−1

α −
∞∑

k=1

b∗kQ
−1Mk−1πe1

∣∣∣∣ (∗)-condition

}
.

By Lemma 4.2

Q−1Mk−1 =
(
βk−1 ⊕ Rk−1

)
Q−1.

And using (4.4), we have

Ŷi =

{
te1 −

∞∑

k=1

b∗k

(
βk−1 ⊕ Rk−1

)
Q−1πe1

∣∣∣∣ (∗)-condition

}

=

{(
t,−

∞∑

k=1

b∗kR
k−1v

) ∣∣∣∣ (∗)-condition

}
.

Here (∗)-condition means that 0 ≤ t < γi and (b∗k)
∞
k=1 is an admissible walk

starting at i in G∗. Therefore we arrive at the conclusion of the assertion.

Naturally, we can define a transformation Ŝβ on Ŷ as follows:

Ŝβ := Q−1 ◦ T̂β ◦ Q.(4.5)

Then Ŝβ is also a natural extension of Tβ .

Proposition 4.4. The transformation Ŝβ on Ŷ is given by

Ŝβ(t,x) = (βt − [βt], Rx − [βt]v)

and surjective.
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Proof. From (4.5) and (4.2), which are definitions of Ŝβ and T̂β ,

Ŝβ(t,x) := Q−1 ◦ T̂β ◦ Q(te1 + 0 ⊕ x)

= Q−1 ◦ T̂β (tα + Q (0 ⊕ x))

= Q−1 ((βt − [βt])α + MQ (0 ⊕ x) − [βt]πe1)

= (βt − [βt], Rx − [βt]v) .

Surjectivity of Ŝβ is obtained by Proposition 4.1.

§5. The reduction theorem

In this section, we introduce reduced numbers and show our main the-

orem.

Let Ỹ (⊂ R × Rd−1) be the following product space:

Ỹ := [0, 1) × Rd−1.

Let S̃β be the transformation on Ỹ defined by

S̃β (x,x) := (βx − [βx], Rx − [βx]v) , x ∈ [0, 1).

Then the restriction of S̃β on Ŷ (⊂ Ỹ ) is Ŝβ.

Define a map ρ : Q(β) → R × Rd−1 by

ρ(x) =




x,




x(2)

...

x(r1)

2<x(r1+1)

2=x(r1+1)

...

2<x(r1+r2)

2=x(r1+r2)







.

Definition 5.1. A real number x ∈ Q(β) ∩ [0, 1) is reduced if ρ(x) ∈
Ŷ .

In order to prove the main theorem, we will need some important lem-

mas.
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Lemma 5.1. Let x ∈ Q(β) ∩ [0, 1). Then

S̃β (ρ(x)) = ρ (Tβx) .

Proof. From the definitions of S̃β, ρ, and Tβ, we have

S̃β (ρ(x)) = S̃β




x,




x(2)

...

x(r1)

2<x(r1+1)

2=x(r1+1)

...

2<x(r1+r2)

2=x(r1+r2)







=




βx − [βx],




β(2)x(2)

...

β(r1)x(r1)

2
(
<β(r1+1) · <x(r1+1) −=β(r1+1) · =x(r1+1)

)

2
(
=β(r1+1) · <x(r1+1) + <β(r1+1) · =x(r1+1)

)
...

2
(
<β(r1+r2) · <x(r1+r2) −=β(r1+r2) · =x(r1+r2)

)

2
(
=β(r1+r2) · <x(r1+r2) + <β(r1+r2) · =x(r1+r2)

)




−[βx]




1
...
1
2
0
...
2
0






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using the relations <(xy) = <x<y −=x=y and =(xy) = <x=y + =x<y,

=




βx − [βx],




(βx)(2) − [βx]
...

(βx)(r1) − [βx]

2<
(
(βx)(r1+1) − [βx]

)

2=
(
(βx)(r1+1) − [βx]

)
...

2<
(
(βx)(r1+r2) − [βx]

)

2=
(
(βx)(r1+r2) − [βx]

)







= ρ(βx − [βx])

= ρ (Tβx) .

Therefore we arrive at the conclusion.

Lemma 5.2. Let x ∈ Q(β) ∩ [0, 1) be reduced. Then

(1) Tβx is reduced,

(2) there exists x∗ such that x∗ is reduced and Tβx∗ = x.

Proof. Since x ∈ Q(β) ∩ [0, 1) is reduced, ρ(x) ∈ Ŷ .
(1) From Lemma 5.1,

Ŝβ (ρ(x)) = ρ (Tβx) ∈ Ŷ .

Hence Tβx is reduced.

(2) From Proposition 4.4, Ŝβ is surjective on Ŷ . Thus there exist (x∗,x) ∈ Ŷ
such that

Ŝβ (x∗,x) = ρ(x).(5.1)

Comparing first coordinates in both sides, we see that

Tβx∗ = x.

To verify x∗ is reduced, we will only show

(x∗,x) = ρ (x∗) .

Then ρ (x∗) ∈ Ŷ implies that x∗ is reduced.
We put

x = t
[
x2, . . . , xr1 , xr1+1, x̃r1+1, . . . , xr1+r2 , x̃r1+r2

]
.
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Then (5.1) shows that

βx∗ − [βx∗] = x

and

Rx− [βx∗]v =




x(2)

...

x(r1)

2<x(r1+1)

2=x(r1+1)

...

2<x(r1+r2)

2=x(r1+r2)




.

So that,




β(2)x2 − [βx∗]
...

β(r1)xr1 − [βx∗]

<β(r1+1) · xr1+1 −=β(r1+1) · x̃r1+1 − 2[βx∗]

=β(r1+1) · xr1+1 + <β(r1+1) · x̃r1+1
...

<β(r1+r2) · xr1+r2 −=β(r1+r2) · x̃r1+r2 − 2[βx∗]

=β(r1+r2) · xr1+r2 + <β(r1+r2) · x̃r1+r2




=




β(2)x∗(2) − [βx∗]
...

β(r1)x∗(r1) − [βx∗]

2<
(
β(r1+1)x∗(r1+1) − [βx∗]

)

2=
(
β(r1+1)x∗(r1+1) − [βx∗]

)

...

2<
(
β(r1+r2)x∗(r1+r2) − [βx∗]

)

2=
(
β(r1+r2)x∗(r1+r2) − [βx∗]

)




.

Thus

x2 = x∗(2), . . . , xr1 = x∗(r1),
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and for 1 ≤ j ≤ r2

<β(r1+j) · xr1+j −=β(r1+j) · x̃r1+j

= 2<
(
β(r1+j)x∗(r1+j)

)

= 2<β(r1+j)<x∗(r1+j) − 2=β(r1+j)=x∗(r1+j),

=β(r1+j) · xr1+j + <β(r1+j) · x̃r1+j

= 2=
(
β(r1+j)x∗(r1+j)

)

= 2<β(r1+j)=x∗(r1+j) + 2=β(r1+j)<x∗(r1+j).

Then for 1 ≤ j ≤ r2, we have

(
xr1+j − 2<x∗(r1+j)

)
<β(r1+j) −

(
x̃r1+j − 2=x∗(r1+j)

)
=β(r1+j) = 0,

(
xr1+j − 2<x∗(r1+j)

)
=β(r1+j) +

(
x̃r1+j − 2=x∗(r1+j)

)
<β(r1+j) = 0.

Thus

xr1+j = 2<x∗(r1+j) and x̃r1+j = 2=x∗(r1+j).

Therefore

(x∗,x) = ρ(x∗).

Thus we obtain the assertion (2).

By the lemmas above, we can get a sufficient condition for pure peri-

odicity of β-expansions.

Proposition 5.3. Let x ∈ Q(β) ∩ [0, 1) be reduced. Then x has a

purely periodic β-expansion.

Proof. Lemma 5.2 (2) shows that there exist x∗
i s such that x∗

i s are
reduced and Tβx∗

i = x∗
i−1, where we set x∗

0 = x. Here, we put

x =
p0

q
for some q ∈ Z, p0 ∈ Z[β].

Then Tβx∗
1 = x implies that

βx∗
1 − [βx∗

1] = x.
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So that

x∗
1 =

[βx∗
1]

β
+

x

β
=

p1

q
for some p1 ∈ Z[β].

Inductively we can see for every k

x∗
k =

pk

q
for some pk ∈ Z[β].

Let bj be positive real numbers. Only in this proof, we denote by x(j)

(1 ≤ j ≤ d) algebraic conjugates of x and x(1) = x. Let

C =
{
x ∈ Z[β]

∣∣ |x(j)| ≤ bj

}
.

Obviously, C is a finite set. As Ŷ is bounded, we can see the set {x∗
i }∞i=0 is

a finite set. Hence there exist j and k (j > k) such that

x∗
j = x∗

j−k.

Applying T j−k
β we get

x∗
k = x.

Hence

T k
β x = x.

Therefore x has a purely periodic β-expansion.

Lemma 5.2 and Proposition 5.3 show that the transformation Tβ re-

stricted to Q(β) ∩ [0, 1) is bijective.

To complete the proof of our main theorem, the following proposition

is positively necessary.

Proposition 5.4. Let x ∈ Q(β) ∩ [0, 1). Then there exists N1 > 0
such that TN

β x are reduced for any N ≥ N1.

Proof. Consider the Euclidean distance d between S̃β
k(

ρ(x)
)

and

S̃β
k
(x,0) for k ≥ 0. Since the first coordinates of these points are equal,
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this coincides with the distance between the origin of Rd−1 and

Rk




x(2)

...

x(r1)

2<x(r1+1)

2=x(r1+1)

...

2<x(r1+r2)

2=x(r1+r2)




.

By s(x) we denote this distance. As Rks are given by

Rk =




(β(2))k

. . .

(β(r1))k




⊕
∣∣β(r1+1)

∣∣2k

[
<β(r1+1)/

∣∣β(r1+1)
∣∣2 −=β(r1+1)/

∣∣β(r1+1)
∣∣2

=β(r1+1)/
∣∣β(r1+1)

∣∣2 <β(r1+1)/
∣∣β(r1+1)

∣∣2

]k

⊕ · · · ⊕
∣∣β(r1+r2)

∣∣2k

[
<β(r1+r2)/

∣∣β(r1+r2)
∣∣2 −=β(r1+r2)/

∣∣β(r1+r2)
∣∣2

=β(r1+r2)/
∣∣β(r1+r2)

∣∣2 <β(r1+r2)/
∣∣β(r1+r2)

∣∣2

]k

,

we have

s(x)2 =
(
β(2)

)2k(
x(2)

)2
+ · · · +

(
β(r1)

)2k(
x(r1)

)2

+
∣∣β(r1+1)

∣∣2k
{(

2<x(r1+1)
)2

+
(
2=x(r1+1)

)2
}

+ · · · +
∣∣β(r1+r2)

∣∣2k
{(

2<x(r1+r2)
)2

+
(
2=x(r1+r2)

)2
}

.

If we put

u = max
{∣∣β(2)

∣∣, . . . ,
∣∣β(r1)

∣∣,
∣∣β(r1+1)

∣∣, . . . ,
∣∣β(r1+r2)

∣∣},

then 0 < u < 1 and

s(x) ≤ uk ·
{(

x(2)
)2

+ · · · +
(
x(r1)

)2
+

(
2<x(r1+1)

)2
+

(
2=x(r1+1)

)2

+ · · · +
(
2<x(r1+r2)

)2
+

(
2=x(r1+r2)

)2
}1/2

.
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Thus

d
(
S̃β

k(
ρ(x)

)
, S̃β

k
(x,0)

)
≤ uk · d

(
ρ(x), (x,0)

)
.

From the fact (x,0) ∈ Ŷ and S̃β|Ŷ = Ŝβ, we know that

S̃β
k
(x,0) ∈ Ŷ .

It follows that S̃β
k(

ρ(x)
)

comes exponentially close to Ŷ as k → ∞. By the
same reason that we used in the proof of Proposition 5.3, we can conclude
that there exists a finite number of ρ

(
T k

β

)
in a certain bounded domain.

Hence

S̃β
N1(

ρ(x)
)

= ρ
(
TN1

β x
)
∈ Ŷ

for a sufficiently large N1. Then TN1
β x is reduced. From Lemma 5.2 (1), we

see that TN
β x are reduced for any N ≥ N1.

At last we attain our goal.

Theorem 5.5. Let x ∈ [0, 1). Then

(1) x ∈ Q(β) if and only if x has an eventually periodic β-expansion,

(2) x ∈ Q(β) is reduced if and only if x has a purely periodic β-expansion.

Proof. (1) Assume that x ∈ Q(β). By Proposition 5.4, there exists N >
0 such that TN

β x is reduced. Proposition 5.3 says that TN
β x has a purely

periodic β-expansion. Hence x has an eventually periodic β-expansion. The
opposite implication is trivial.
(2) Necessity is obtained by Proposition 5.3. Conversely, assume that x has
a purely periodic β-expansion. According to Proposition 5.4, there exists
N > 0 such that TN

β x is reduced. The pure periodicity of x implies that

there exists j > 0 such that TN+j
β x = x. Lemma 5.2 (1) says that x is

reduced.
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