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MORSE INEQUALITIES FOR COVERING MANIFOLDS

RADU TODOR, IONUŢ CHIOSE and GEORGE MARINESCU1

Abstract. We study the existence of L
2 holomorphic sections of invariant line

bundles over Galois coverings. We show that the von Neumann dimension of
the space of L

2 holomorphic sections is bounded below under weak curvature
conditions. We also give criteria for a compact complex space with isolated sin-
gularities and some related strongly pseudoconcave manifolds to be Moishezon.
As applications we prove the stability of the previous Moishezon pseudoconcave
manifolds under perturbation of complex structures as well as weak Lefschetz
theorems.

In this paper we wish to address the following problem. Let M̃ be a

complex manifold and assume there is a discrete group Γ ⊂ Aut(M̃ ) acting

freely and properly discontinuously on M̃ . Suppose that E −→ M is a

holomorphic line bundle on M = M̃/Γ. We denote by π : M̃ −→ M the

canonical projection.

Problem. Find non-trivial L2 holomorphic sections in π∗Ek over M̃

provided E satisfies reasonable conditions in terms of curvature positivity.

Gromov, Henkin and Shubin [12, Theorem 0.2] showed that, if M is a

strongly pseudoconvex domain, the von Neumann Γ–dimension (see Atiyah

[5, §3]) of the space of holomorphic L2 functions on M̃ (with respect to a Γ–

invariant metric) is infinite. Our aim is to generalize in a similar manner the

following Morse inequality of Siu–Demailly [24], [9]. Namely, assume that M

is a compact manifold, E −→M is a semi-positive holomorphic line bundle

which is positive at one point. Then dimH0(M,Ek) & kn, for large k, where

n = dimM . To this end we use the tools of [26] in which Shubin gives a proof

in the spirit of Witten [28] of the Morse inequalities for covering manifolds

(so called Novikov–Shubin inequalities). In §1 we generalize the Weyl type

formula of Demailly by describing the asymptotic behaviour of the spectrum
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of a Γ–invariant laplacian associated to high powers of a Γ–invariant line

bundle. We give in §2, Theorem 2.1, a general answer to our problem. We

focus in §3 on the case of pseudoconcave manifolds and establish criteria for

some classes of 1-concave manifolds to be Moishezon. We prove the stability

of some Moishezon strongly pseudoconcave manifolds under perturbation

of complex structures. As application of Theorem 2.1 we prove in §4 weak

Lefschetz theorems using the analytic proof (and generalization) of Nori’s

results due to Napier and Ramachandran [19].

§1. Estimates of the spectrum distribution function

As before letM be a complex manifold of dimension n and π : M̃ −→M

a normal covering of group Γ. We assume M̃ paracompact so that Γ will be

countable. Suppose we are given a holomorphic vector bundle F on M and

take its pull-back F̃ = π∗F , which is a Γ–invariant bundle on M̃ . We also

fix a Γ–invariant hermitian metric on M̃ and on F̃ . We consider an open set

Ω b M with smooth boundary and its preimage Ω̃ = π−1Ω; Γ acts on Ω̃ and

Ω̃/Γ = Ω. In general we will decorate with tildes the preimages of objects

living on the quotient. Let U be a fundamental domain of the action of Γ on

Ω̃. This means that (see e.g. [5, p.52]): (a) Ω̃ is covered by the translations

of U , (b) different translations of U have empty intersection and (c) U rU

has zero measure (since ∂Ω is smooth). Ω being relatively compact U has

the same property. Let us define the space of square integrable sections

L2(Ω̃, F̃ ) with respect to a Γ–invariant metric on M̃ (and its volume form)

and a Γ–invariant metric on F̃ . Then L2(U, F̃ ) is constructed with respect

to the same. There is a unitary action of Γ on L2(Ω̃, F̃ ). In fact it is easy to

see that L2(Ω̃, F̃ ) ∼= L2Γ ⊗ L2(U, F̃ ) ∼= L2Γ ⊗ L2(Ω, F ). We have a unitary

action of Γ on L2Γ by left translations: lγδα = δγα where {δα : α ∈ Γ} is

the orthonormal basis of L2Γ formed by the delta functions. It induces an

action on L2(Ω̃, F̃ ) by γ 7−→ Lγ = lγ ⊗ Id. Finally we denote by D(. , .) the

various spaces of smooth compactly supported sections.

Let us consider a formally self-adjoint, strongly elliptic, positive differ-

ential operator P onM acting on sections of F . Denote by P̃ the Γ–invariant

differential operator which is its pull-back to M̃ . From P̃ we construct the

following operators: the Friedrichs extension in L2(Ω̃, F̃ ) of P̃ with domain

D(Ω̃, F̃ ) and the Friedrichs extension in L2(U, F̃ ) of P̃ with domain D(U, F̃ ).

From now on we denote these extensions by P̃ and PU . They are closed

self-adjoint positive operators. It is known that P̃ is also Γ–invariant i.e. it

commutes with all Lγ . This amounts to saying that the spectral projectors
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E(λ, P̃ ) of P̃ commute with all Lγ . On the other hand the Rellich lemma

tells us that PU has compact resolvent and hence discrete spectrum. We

will undertake the task of comparing the distribution of the two spectra.

Namely since E(λ, P̃ ) is Γ–invariant its image R(E(λ, P̃ )) is a Γ–invariant

closed subspace of the free Hilbert Γ–module L2Γ ⊗ L2(U, F̃ ) ∼= L2(Ω̃, F̃ ).

In general for any Hilbert space H we call the Hilbert space L2Γ⊗H a free

Hilbert Γ–module. The action of Γ is defined as above by γ 7−→ Lγ = lγ⊗Id.

To any Γ–invariant closed space (called a Γ–module) one can associate a

positive, possibly infinite real number, called von Neumann or Γ–dimension,

denoted dimΓ. For notions involving the Γ–dimension and linear algebra for

Γ–modules we refer the reader to [5], [26] and [14, pp.75–80]. Let us just

remark that if L ⊂ L2(Ω̃, F̃ ) is a Γ–module and fi is an orthonormal basis

of L,

dimΓL =
∑

i

∫

U
|fi|2 .(1.1)

We denote in the sequel NΓ(λ, P̃ ) = dimΓR(E(λ, P̃ )). Similarly we consider

the counting function of PU , N(λ,PU ) = dimR(E(λ,PU )). In order to

compare NΓ(λ, P̃ ) and N(λ,PU ) we use essentially the analysis of Shubin

[26]. Let P̃ be a Γ–invariant self-adjoint positive operator on a free Γ–module

L2Γ ⊗H where H is Hilbert space. Then we have the following variational

principle [26, Lemma 2.4]:

NΓ(λ, P̃ ) = sup
{

dimΓ L | L ⊂ Dom(Q̃), Q̃(f, f) 6 λ‖f‖2, ∀f ∈ L
}

(1.2)

where L is a Γ–module and Q̃ is the quadratic form of P̃ .

Proposition 1.1. (Estimate from below) For all λ ∈ R,

NΓ(λ, P̃ ) > N(λ,PU ) .(1.3)

Proof. Let us denote by λ0 6 λ1 6 . . . the spectrum of PU . Let {ei}
be an orthonormal basis of L2(U, F̃ ) which consists of eigenfunctions of PU
corresponding to the eigenvalues λi . Let ẽi be the extension by 0 on Ω̃ rU

of ei. Then {Lγ ẽi} is an orthonormal basis of L2(Ω̃, F̃ ) and Lγ ẽi ∈ Dom(Q̃).

Let Φλ the Γ–module spanned by the orthonormal set {Lγ ẽi : λi 6 λ} in

L2(Ω̃, F̃ ). Then by (1.1) dimΓ Φλ =
∑

λi6λ
1 = N(λ,PU ). Moreover, it is

easy to see that Φλ ⊂ Dom(Q̃) and Q̃(f, f) 6 λ‖f‖2, f ∈ Φλ, as Dom(Q̃)

is complete in the graph norm. Thus (1.3) follows from (1.2).
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The next step is an estimate from above of NΓ(λ, P̃ ). Let L1, L2 be

two Γ–modules. A bounded linear operator T : L1 −→ L2 is called a Γ–

morphism if it commutes with the action of Γ. By [26, p. 398], if T is injec-

tive, dimΓ L1 6 dimΓ L2 and if T has dense image, dimΓ L1 > dimΓ L2. Set

rankΓT = dimΓR(T ). For the following we refer to [26, Lemma 3.7].

Lemma 1.2. Let us consider the same setting as in the variational

principle. Assume T : L2(Ω̃, F̃ ) → L2(Ω̃, F̃ ) is a Γ–morphism such that

((P̃ + T )f, f) > µ‖f‖2, f ∈ Dom(P̃ ) and rankΓT 6 p. Then

NΓ(µ− ε, P̃ ) 6 p , ∀ε > 0.(1.4)

In order to get an estimate from above we have to enlarge a little bit

the fundamental domain U and compare the counting function of P̃ on Ω̃

to the counting function of P̃ with Dirichlet boundary conditions on the

enlarged domain. For h > 0, let Uh = {x ∈ Ω̃ : d(x,U) < h} where d is

the distance on M̃ associated to the Riemann metric on M̃ and then let

Uh,γ := γUh. Next we need a partition of unity. Let ϕ(h) ∈ C∞(Ω̃), ϕ(h) > 0,

ϕ(h) = 1 on U and suppϕ(h) ⊂ Uh, ϕ
(h)
γ = ϕ(h) ◦γ−1. We define the function

J
(h)
γ ∈ C∞(Ω̃) by J

(h)
γ = ϕ

(h)
γ (

∑
γ(ϕ

(h)
γ )2)−

1
2 so that

∑
γ∈Γ(J

(h)
γ )2 = 1. If

P̃ is of order 2, which will be assumed from now on, by [26, Lemma 3.1]

(variant of IMS localization formula, see [8]),

P̃ =
∑

γ∈Γ

J (h)
γ P̃ J (h)

γ −
∑

γ∈Γ

σ0(P̃ )(dJ(h)
γ )

where σ0 is the principal symbol of P̃ . Since the derivative of J
(h)
γ is O(h−1)

and the order of P̃ is 2 we deduce that there exists C > 0 independent of h

such that:

P̃ >
∑

γ∈Γ

J (h)
γ P̃ J (h)

γ − C

h2
Id(1.5)

We let P̃ act on D(Uh,γ , F̃ ) and take its Friedrichs extension PUh,γ
. Since

PUh,γ
is positive, PUh,γ

+ λE(λ,PUh,γ
) > λId. We define the bounded op-

erators Gγ on L2(Ω̃, F̃ ) given by Gγ = J
(h)
γ λE(λ,PUh,γ

)J
(h)
γ and G =

∑
γ∈ΓGγ . Since J

(h)
γ P̃ J

(h)
γ = J

(h)
γ PUh,γ

J
(h)
γ , (1.5) yields

P̃ +G >

(
λ− C

h2

)
Id.(1.6)
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Claim 1.3.

rankΓG 6 N(λ,PUh
)(1.7)

Proof. We start with the finite rank operator G on L2(Uh, F̃ ), G =

J
(h)
e λE(λ,PUh

)J
(h)
e . Then, rankG 6 rankE(λ,PUh

) = N(λ,PUh
). Next we

consider the free Γ–module L2Γ ⊗ L2(Uh, F̃ ) and the bounded Γ–invariant

operator Id⊗G. Then R(Id⊗G) = L2Γ⊗R(G) so that rankΓId⊗G = rankG.

We now identify the space L2Γ ⊗ L2(Uh, F̃ ) with
⊕

γ∈Γ L
2(Uh,γ , F̃ ) by the

unitary transform K :
∑

γ δγ ⊗ wγ 7−→ (Lγwγ)γ . Thus
⊕

γ∈Γ L
2(Uh,γ , F̃ )

is naturally a free Γ–module for which K is Γ–invariant. We transport

Id⊗G on
⊕

γ∈Γ L
2(Uh,γ , F̃ ) by K and we think of it as acting on this latter

space. We construct then a restriction operator V :
⊕

γ∈Γ L
2(Uh,γ , F̃ ) −→

L2(Ω̃, F̃ ) , V ((wγ)γ) =
∑

γ∈Γ wγ which is a surjective Γ–morphism. We

have also the Γ–morphism I from L2(Ω̃, F̃ ) to
⊕

γ∈Γ L
2(Uh,γ , F̃ ), I(u) =

(u �Uh,γ
)γ which is obviously bounded. With our identifications, and re-

placing E(λ,PUγ,h
) by LγE(λ,PUh

)L−1
γ in the definition of Gγ , we have

G = V (Id ⊗ G) I . As in the case of usual dimension rankΓV (Id ⊗ G) I 6

rankΓ(Id ⊗ G) (see [26, Lemma 3.6]). Hence rankΓG 6 rankΓ(Id ⊗ G) =

rankG 6 N(λ,PUh
) .

Proposition 1.4. (Estimate from above) There is a constant C > 0

such that

NΓ(λ, P̃ ) 6 N

(
λ+

C

h2
, PUh

)
λ ∈ R, h > 0 .(1.8)

Proof. We obtain NΓ(λ, P̃ ) 6 N
(
λ+ C

h2 + ε, PUh

)
by Lemma 1.2,

(1.6), (1.7) and let ε −→ 0 (the counting function is right continuous).

We are going to apply the above results to the semi-classical asymp-

totics as k −→ ∞ of the spectral distribution function of the laplacian

k−1∆̃′′
k on M̃ . We let Ẽ and G̃ be two Γ–invariant holomorphic line bundles.

Let us form the Laplace–Beltrami operator ∆̃′′
k = ∂̄ϑ + ϑ∂̄ on (0, q) forms

with values in Ẽk⊗G̃. We apply the previous results for P̃ = k−1∆̃′′
k �

Ω̃
, the

operator of the Dirichlet problem on Ω̃. Now we have to make a good choice

of the parameter h. We take h = k−
1
4 so that the derivative of the cutting

off function J
(h)
γ is just O(k

1
4 ). Then σ0(k

−1∆̃′′
k)(dJ

(h)
γ ) = k−1|∂̄J (h)

γ |2 =

O(k−
1
2 ). Modifying (1.5), (1.6) and (1.8) accordingly we obtain the follow-

ing semi–classical estimate.
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Proposition 1.5. There exists a constant C > 0 independent of k

such that for λ ∈ R and k > 0 we have

N

(
λ ,

1

k
∆̃′′
k �U

)
6 NΓ

(
λ ,

1

k
∆̃′′
k �

Ω̃

)
6 N

(
λ+

C√
k
,
1

k
∆̃′′
k �U

k−1/4

)
(1.9)

Demailly has determined the spectrum distribution for the Dirichlet

problem for k−1∆̃′′
k in [9, Théorèmes 2.16, 3.14]. He introduces an integral

Iq(V, λ) over an open set V b M̃ of a function νE(x, λ) on M̃×R depending

on c(Ẽ) and λ, right continuous in λ and bounded on compacts of M̃ [9,

pp.197, 205].

Proposition 1.6. (Demailly) Assume ∂V has measure zero and the

laplacian acts on (0, q) forms. Then lim supk k
−nN(λ , 1

k ∆̃
′′
k �V ) 6 Iq(V, λ).

There exists an at most countable set N ⊂ R such that for λ ∈ R r N the

limit of the left–hand side expression exists and we have equality.

Let us fix ε > 0. Then N(λ+ C√
k
, 1
k∆̃

′′) 6 N(λ+ ε, 1
k∆̃

′′ �Uε) since for

sufficiently large k we have U
k−

1
4
⊂ Uε. So lim supk k

−nNΓ(λ ,
1
k ∆̃

′′
k �

Ω̃
) 6

Iq(Uε, λ+ ε) by (1.9) (∂Uε is negligible for small ε). The use of dominated

convergence to make ε −→ 0 in the last integral yields:

Theorem 1.7. The spectral distribution function of 1
k∆̃

′′
k �

Ω̃
acting on

L2
0,q(Ω̃, Ẽ

k ⊗ G̃) with Dirichlet boundary values satisfies

lim sup
k

k−nNΓ

(
λ ,

1

k
∆̃′′
k �

Ω̃

)
6 Iq(U, λ).(1.10)

Moreover, there exists an at most countable set N ⊂ R such that for λ in

R r N the limit exists and we have equality in (1.10).

§2. Geometric situations

If M is a complete Kähler manifold and E a positive line bundle on M

the L2 estimates of Andreotti–Vesentini–Hörmander allow us to find a lot

of sections of Ẽ on a covering M̃ (see e.g. [19]). We now prove:

Theorem 2.1. Let (M,ω) be an n–dimensional complete hermitian

manifold such that the torsion of ω is pointwise bounded and let (E, h) be a

holomorphic hermitian line bundle. Let K b M and a constant C0 > 0 be

such that ıc(E, h) > C0 ω on M rK. Let p : M̃ −→M be a Galois covering
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with group Γ, Ẽ = p∗E, and let Ω be any open set with smooth boundary,

K b Ω b M . Then, for k −→ ∞,

dimΓH
n,0
(2) (M̃, Ẽk) >

kn

n!

∫

Ω(61,h)

( ı

2π
c(E, h)

)n
+ o(kn) ,(2.1)

where Hn,0
(2) (M̃, Ẽk) is the space of (n, 0)–forms with values in Ẽk which are

L2 with respect to any metric on M̃ and the pullback of h and Ω(6 1, h)

is the subset of Ω where ıc(E, h) is non–degenerate and has at most one

negative eigenvalue.

Proof. We endow M̃ with the metric ω̃ = p∗ω and Ẽ with h̃ = p∗h.

The operators ∂̄ and Laplace–Beltrami are Γ–invariant. We remark that G̃

being a Γ–invariant bundle on M̃ , L2(M̃ , G̃) is a free Γ–module (as in §1).

It is standard to see that ω̃ is also complete. We take a fundamental domain

U for the action of Γ on Ω̃ and put K̃ = p−1K.

Since p is locally biholomorphic we see that ıc(Ẽ, h̃) > C0ω̃ on M̃ r K̃.

Let u be a smooth (n, 1) form on M̃ with values in Ẽk and compactly

supported outside Ω̃. We apply now the Bochner–Kodaira–Nakano formula:

3
(
∆̃′′
ku, u

)
> 2

([
ıc(Ẽk), Λ̃

]
u, u

)
−

(
‖τ u‖2 + ‖τ̄ u‖2 + ‖τ∗ u‖2 + ‖τ̄∗ u‖2

)

where Λ̃ is the interior product with ω̃ and the τ ’s are the torsion operators

of ω̃ (τ = [Λ̃, ∂ω̃]). Therefore there exists a constant C1 > 0 (depending just

on the metric ω) such that 3
(
∆̃′′
ku, u

)
> 2C0 k ‖u‖2 − C1 ‖u‖2 , and hence

(
∆̃′′
ku, u

)
>
C0 k

2
‖u‖2 , k >

C1

2C0

.(2.2)

by the hypothesis on the curvature and torsion. Let ρ ∈ C∞(M) such that

ρ = 0 on L and ρ = 1 on M r Ω, where L is a neighbourhood of K in Ω.

We put ρ̃ = ρ ◦ p. Let u ∈ Dn,1(M̃, Ẽk), so that ρ̃ u has support outside K̃.

We use now the elementary estimate:

(
∆̃′′
k(ρ̃ u), ρ̃ u

)
6

3

2

(
∆̃′′
ku, u

)
+ 6 sup |dρ̃ |2‖u‖2 .(2.3)

Obviously C2 = 6 sup |dρ̃ |2 <∞. Estimates (2.2) and (2.3) yield

‖u‖2 6
12

C0 k

(
∆̃′′
ku, u

)
+ 4

∫

Ω̃
|(1 − ρ̃ )u|2 , k >

max{C1, 16C2}
2C0

(2.4)
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for any compactly supported u. Since the metric ω̃ is complete the density

lemma of Andreotti and Vesentini [3] shows that ∆̃′′
k is essentially self–

adjoint. Thus (2.4) is true for any u in the domain of the quadratic form

Q̃k of the self–adjoint extension of k−1∆̃′′
k. From relation (2.4) we infer

that the spectral spaces corresponding to the lower part of the spectrum

of k−1∆̃′′
k on (n, 1)–forms can be injected into the spectral spaces of the

Γ–invariant operator k−1∆̃′′
k �

Ω̃
which correspond to the Dirichlet problem

on Ω̃ for k−1∆̃′′
k. The latter operator was studied in §1. This idea appears in

Witten’s proof (see Henniart [13, Lemme 2.1]) and in Bouche [6, Théorème

2.1] in the context of q–convex manifolds in the sense of Andreotti–Grauert.

We claim that for λ < C0/24,

L1
k(λ) −→ L1

k,Ω̃
(12λ+ C3k

−1) ,

u 7−→ E(6λ+ C3k
−1, k−1∆̃′′

k �
Ω̃
)(1 − ρ̃)u ,

(2.5)

is an injective Γ–morphism, where L1
k(λ) = R(E(λ, k−1∆̃′′

k)) is the spectral

space of k−1∆̃′′
k on (n, 1)–forms, L1

k,Ω̃
(µ) = R(E(µ, k−1∆̃′′

k �
Ω̃
)) and C3 =

8C2. It is easy to see that (2.5) is Γ–invariant. To prove the injectivity

we choose u ∈ L1
k(λ), λ < C0/24 to the effect that Q̃k(u) 6 λ‖u‖2 6

(C0/24)‖u‖2. Plugging this relation in (2.4) we get

‖u‖2 6 8

∫

Ω̃
|(1 − ρ̃ )u|2 , u ∈ L1

k(λ) , λ < C0/24 .(2.6)

Let us denote by Q̃
k,Ω̃

the quadratic form of k−1∆̃′′
k �

Ω̃
. Then by (2.3)

and (2.6), Q̃
k,Ω̃

((1− ρ̃)u) 6 3
2 Q̃k(u)+ C2

k ‖u‖2 6
(
12λ+ 8C2

k

) ∫
Ω̃
|(1− ρ̃ )u|2

which shows that if E(12λ+C3k
−1, k−1∆̃′′

k �
Ω̃
) (1−ρ̃)u = 0 then (1−ρ̃)u = 0

so that u = 0 by (2.6). Therefore (2.5) is injective and hence

N1
Γ

(
λ,

1

k
∆̃′′
k

)
6 N1

Γ

(
12λ+

C3

k
, ∆̃′′

k �
Ω̃

)
, λ < (C0/24) ,(2.7)

and thus the spectral spaces L1
k(λ), λ < C0/24, are of finite Γ–dimension.

We consider also the operator k−1∆̃′′
k defined on L2

n,0(M̃ , Ẽk) and de-

note by L0
k(λ) its spectral spaces and N0

Γ
(λ, k−1∆̃′′

k) their Γ–dimension. Now

we can apply Theorem 1.7 for k−1∆̃′′
k �

Ω̃
on Ω̃ (with G̃ = K

M̃
). By (1.2) we

have N0
Γ
(λ, k−1∆̃′′

k) > N0
Γ
(λ, k−1∆̃′′

k �
Ω̃
) and by Theorem 1.7 for q = 0

lim inf
k

k−nN0
Γ

(
λ,

1

k
∆̃′′
k

)
> I0(U, λ) , λ < C0/24 , λ ∈ R r N .(2.8)
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We find now an upper bound. Fix an arbitrary δ > 0. Then (2.7) and (1.10)

give lim supk k
−nN1

Γ
(λ, k−1∆̃′′

k) 6 I1(U, 12λ+ δ). We let δ −→ 0 :

lim sup
k

k−nN1
Γ

(
λ,

1

k
∆̃′′
k

)
6 I1(U, 12λ) , λ < C0/24 .(2.9)

We introduce the group Hn,0
(2) (M̃, Ẽk) = {u ∈ L2

n,0(M̃, Ẽk, ω̃, h̃) : ∂̄u =

0} which is a Γ–module and we find a lower bound for its Γ–dimension.

(We know that the L2 norm in degree (n, 0) doesn’t actually depend on

the metric on M̃ .) Since ∆̃′′
k commutes with ∂̄ it follows that the spectral

projections of ∆̃′′
k commute with ∂̄ too, showing thus ∂̄L0

k(λ) ⊂ L1
k(λ).

We have the Γ–morphism ∂̄λ : L0
k(λ) −→ L1

k(λ), the restriction of ∂̄ (by

the definition of L0
k(λ), ∂̄λ is bounded by kλ). As for usual dimension (see

e.g.[14, Lemma 6.11]), dimΓ ker ∂̄λ + dimΓR(∂̄λ) = dimΓ L
0
k(λ). Moreover

dimΓR(∂̄λ) 6 dimΓ L
1
k(λ) and they are finite. Therefore by (2.8) and (2.9),

dimΓH
n,0
(2) (M, Ẽk) > dimΓ ker ∂̄λ > kn

[
I0(U, λ)− I1(U, 12λ)

]
for λ < C0/24

and λ ∈ R r N . We can now let λ go to zero through these values. The

limits I0(U, 0) and I1(U, 0) are calculated in [9, p.224] and identifying the

fundamental domain U with Ω, the result is exactly the integral from (2.1).

Remark 2.1. We can obviously apply Theorem 2.1 for the case M com-

pact taking K = M in the hypothesis and Ω = M in the conclusion. We

can work directly with sections in Ẽ rather than (n, 0)–forms. More gen-

erally, Theorem 2.1 may be applied to generalize the L2 Morse inequality

of Takayama [27, Main Theorem] to the case of coverings of Zariski open

sets in Moishezon manifolds. Also, this theorem may be used to recover [12,

Theorem 0.2] of Gromov–Henkin–Shubin already quoted.

To state the following result let us remind that by the definition of

Andreotti and Grauert [2] a manifold is called 1-concave if there exists a

smooth function ϕ : X −→ (a, b ] where a ∈ {−∞} ∪ R, b ∈ R, such that

Xc := {ϕ > c} b X for all c ∈ (a, b ] and ϕ is strictly plurisubharmonic

outside a compact set. Let E be a holomorphic line bundle on X. In [21],

[16] one constructs χ : (−∞, 0) −→ R such that
∫ 0
−1 χ(t)1/2dt = ∞, χ′(t)2 6

4χ(t)3 , χ(t) > 4 and a hermitian metric ω which equals 1
3∂∂̄ϕ near ∂Xc.

For convenience we denote ψ = c− ϕ. We define ω0 = ω + χ(ψ)∂ϕ ∧ ∂̄ϕ, a

complete metric on Xc and a hermitian metric h0 = h exp(−A
∫ ψ
inf ψ χ(t)dt)

on E over Xc.
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Theorem 2.2. Let X be a 1-concave manifold of dimension n > 3

and let Xc be a sublevel set such that the exhaustion function ϕ is strictly

plurisubharmonic near ∂Xc. Let p : X̃c −→ Xc be a Galois covering of group

Γ. Assume that X̃c and Ẽ are endowed with the lifts of the metrics ω0 and

h0. Then, for k −→ ∞ ,

dimΓH
0
(2)(X̃c, Ẽ

k) >
kn

n!

∫

Ω(61,h0)

( ı

2π
c(E, h0)

)n
+ o(kn) ,(2.10)

for any sufficiently large open set Ω b Xc.

Proof. The metrics ω0 and h0 satisfy the following conditions:

(i) Denoting by γi the eigenvalues of ıχ(ψ)∂∂̄ψ + ıχ′(ψ)∂ψ ∧ ∂̄ψ with

respect to ω0 we have γ1 6 · · · 6 γn−1 6 −2χ(ψ) and γn 6 χ(ψ) so

that γn+ · · ·+γ2 6 (5−2n)χ(ψ) 6 −χ(ψ) for n > 3 outside a compact

set K := Xe b Xc.

(ii) The torsion operators of the metric ω0 are pointwise bounded by

C2χ(ψ)1/2 outside K.

(iii) The eigenvalues of ıc(E, h0) with respect to ω0 are bounded above on

Xc by C1 > 0.

Let us take the lifts ω̃0, h̃0 and ψ̃ = c − ϕ ◦ p. It is easy to see that prop-

erties (i), (ii) and (iii) are still valid for ω̃0, h̃0 and ψ̃ on X̃c r K̃. For u

in D(0,1)(X̃c r K̃, Ẽk) we apply the Bochner–Kodaira–Nakano inequality

using the formulas: ıc(Ẽ, h̃0) = ıc(Ẽ, h̃) + ıA(χ(ψ̃)∂∂̄ψ̃ + χ′(ψ̃)∂ψ̃ ∧ ∂̄ψ̃)

and, if Θ is a real (1, 1) form, ([Θ, Λ̃0]u, u) > −(αn + · · · + α2)|u|2, where

α1 6 · · · 6 αn are the eigenvalues of Θ with respect to ω̃0. We infer

3
(
∆̃′′
ku, u

)
>

∫ (
−knC1 + kAχ(ψ̃) − 4C2χ(ψ̃)

)
|u|2. Since χ > 4, we de-

rive easily, for large A, an estimate analogous to (2.2). From this point the

proof of Theorem 2.1 applies with just notational changes.

§3. Coverings of some strongly pseudoconcave manifolds

Recall that, by the solution of the Grauert-Riemenschneider conjecture

(Siu [24], Demailly [9]), a compact complex manifold M is Moishezon, if it

carries a line bundle E, which is either semi-positive and positive at one

point (Siu’s criterion), or (Demailly’s criterion) satisfies the inequality:

(D)

∫

M(61)
(ıc(E))n > 0 .



MORSE INEQUALITIES FOR COVERING MANIFOLDS 155

Then, in fact, dimH0(M,Ek) ≈ kn, for large k. Our aim is to extend this

result in two directions. We allow M to belong to a class of 1-concave

manifolds and study their Galois coverings.

If, in the Andreotti–Grauert definition, the function ϕ can be taken

such that a = inf ϕ = −∞, we say that X is hyper 1-concave 1. For 1-

concave manifolds (which are pseudoconcave in the sense of Andreotti [1])

the transcendence degree of the meromorphic function field is less than or

equal to the dimension of X. In the latter case we say that the manifold is

Moishezon by extending the terminology from compact manifolds.

Let us describe some examples. Let Y be a compact complex manifold,

S a complete pluripolar set. Then M = Y r S is hyper 1-concave. Con-

versely, if dimM > 3 any hyper 1-concave manifold M is biholomorphic to

a complement of a pluripolar set in a compact manifold as a consequence of

Rossi’s compactification theorem [22]. Another example is Reg (X) where

X is a compact complex space with isolated singularities. Also, if M is a

complete Kähler manifold of finite volume and bounded negative sectional

curvature, M is hyper 1-concave as shown by Siu–Yau in [25, §1–2]. More-

over, this example falls in the previous case, since by [17, Theorem 0.1] M

can be compactified to a projective variety by adding finitely many points.

Theorem 3.1. Let M be a hyper 1-concave manifold carrying a line

bundle (E, h) which is semi-positive outside a compact set. Let M̃ be a

Galois covering of group Γ and Ẽ the lifting of E. Then, for k −→ ∞

dimΓH
n,0
(2) (M̃, Ẽk) >

kn

n!

∫

M(61,h)

( ı

2π
c(E, h)

)n
+ o(kn) ,(3.1)

where the L2 condition is with respect to h̃ and any metric on M̃ .

Proof. Let us consider a proper function ϕ : M −→ (−∞, 0 ) which is

strictly plurisubharmonic outside a compact set. The fact that ϕ goes to

−∞ to the ideal boundary of M allows to construct a complete hermitian

metric on M . Namely we consider the function χ = − log(−ϕ) so that

∂∂̄χ = ϕ−2 ∂ϕ ∧ ∂̄ϕ − ϕ−1 ∂∂̄ϕ which is obviously positive definite on the

set where ∂∂̄ϕ is. We can now patch ∂∂̄χ and an arbitrary hermitian metric

on M by using a smooth partition of unity to get a metric ω0 on M such

1Note that not all 1-concave manifolds are hyper 1-concave. Indeed, the complement
of S

1
⊂ C ⊂ P1 in P1 is 1-concave but cannot possibly be hyper 1-concave since S

1 is
not a polar set in C. I have learnt this example from M. Colţoiu and V. Vâjâitu.
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that ω0 = ∂∂̄χ on M rK, K b M . It is easy to verify that ω0 is complete

since −χ is exhaustive and ω0 = ω + ∂(−χ) ∧ ∂̄(−χ), where ω = −ϕ−1∂∂̄ϕ

is a metric on MrK, so that d(−χ) is bounded in the metric ω0 . Note that

ω0 is obviously Kähler on M r K. Let us assume ıc(E, h) > 0 on M r K

(we stretch K if necessary). We equip E with the metric hε = h exp(−εχ)

and the curvature relative to the new metric satisfies ıc(E, hε) > εω0 on

M r K. We are therefore in the conditions of Theorem 2.1. Since hε & h

there is an injective Γ–morphism Hn,0
(2) (M̃, Ẽk, ω̃0, h̃ε) ⊂ Hn,0

(2) (M̃ , Ẽk, ω̃0, h̃).

By this relation and Theorem 2.1 for Hn,0
(2) (M̃ , Ẽk, ω̃0, h̃ε),

lim inf
k

k−n dimΓH
n,0
(2) (M̃, Ẽk, ω̃0, h̃) >

1

n!

∫

Ω(61,hε)

( ı

2π
c(E, hε)

)n
(3.2)

We let now ε ↘ 0 in (3.1); since hε converges uniformly together with

its derivatives to h on compact sets we see that we can replace hε with

h in the right-hand side of (3.1). Let M(q, h) be the set where ıc(E, h) is

non-degenerate and has exactly q negative eigenvalues. Then M(6 1, h) =

M(0, h)∪M(1, h). By hypothesisM(1, h) ⊂ K and onM(0, h) the integrand

is positive. Hence we can let Ω exhaust M to get (3.1).

Corollary 3.2. Let M be a hyper 1-concave manifold carrying a line

bundle which is semi-positive outside a compact set and satisfies Demailly’s

condition (D). Then M is Moishezon. In particular the conclusion holds

true if E is semi-positive and positive at one point.

Proof. By condition (D) and the previous result for Γ = {Id}, we have

dimH0(M,Ek ⊗KM ) > dimHn,0
(2) (M,Ek) > C kn with C > 0 and large k.

We note that the first space is finite dimensional since M is 1-concave. By

the Siegel–Serre Lemma, dimH0(M,Ek⊗KM ) 6 C kκ(E), (k > 0), (see [16,

Proposition 5.7]), where κ(E) is the supremum over k of the generic rank

of the canonical meromorphic mapping from M to P(H0(M,Ek ⊗KM )∗).

We obtain κ(E) = n, that is, Ek ⊗KM gives local coordinates on an open

dense set of M for sufficiently large k.

Remark 3.1. (a) We can use Corollary 3.2 in the Nadel compactifica-

tion theorem [18, Theorem 0.1]. Let M be a connected manifold of dimen-

sion > 3 satisfying : (i) M is hyper 1-concave, (ii) M is Moishezon, (iii)

M can be covered by Zariski–open sets which are uniformized by Stein

manifolds. Then M is biholomorphic to M∗ r S where M∗ is a compact
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Moishezon space and S is finite. We see thus, that condition (ii) in Nadel’s

theorem may be replaced with the differential–geometric condition: M pos-

sesses a line bundle which is semi-positive outside a compact set and satisfies

Demailly’s condition (D).

(b) In general, it follows from a theorem of Rossi [22] that, a hyper 1- concave

manifold M of dimension n > 3, possessing a semi–positive line bundle

satisfying (D), can be compactified so that M is biholomorphic to an open

set of a compact Moishezon manifold which is the complement of a complete

pluripolar set. We can in fact prove a Kodaira–type characterisation (which

holds even for dimM = 2):

Proposition 3.3. A hyper 1-concave manifold carries a positive line

bundle if and only if M is biholomorphic to the complement of a complete

pluripolar set in a projective manifold.

Indeed, if E is a positive line bundle, ıAc(E)+ ı∂∂̄χ, A >> 0, is a complete

Kähler metric and Hörmander’s L2 estimates and Andreotti–Tomassini’s

theorem [4] show that E is ample and M can be embedded in the projective

space. By [1], we find a projective compactification of the image of M .

Proposition 3.3 and the Rossi example [22] of a non–compactifiable 1-

concave manifold suggest the following question. Is there a compactification

for any hyper 1-concave manifold of dimension 2 ?

(c) Using [18, Theorem 0.2] and the previous remark, we obtain: a manifold

M with dimM > 3 is biholomorphic to the regular part of a complex

projective space with isolated singularities if and only if M is hyper 1-

concave, admits a positive line bundle and has a covering with Zariski open

sets uniformized by Stein manifolds.

(d) The argument in the proof of Corollary 3.2 shows that the integral

appearing in Theorem 3.1 is finite. Thus, if E is positive outside a compact

set K then M rK has finite volume with respect to the metric ıc(E) (this

observation stems from [17]).

(f) Let X is a compact complex space of dimension n > 2 and with isolated

singularities. Suppose that we have a line bundle E on Reg (X) which is

semi-positive in a deleted neighbourhood of Sing (X) and satisfies (D). Then

X is Moishezon. This is a generalization of Takayama’s criterion [27] in the

case of isolated singularities.

We want now to study the following type of 1-concave manifold. Let X

be an irreducible compact complex space with isolated singularities and of
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dimension > 2. We know that Reg (X) is hyper 1-concave and we denote by

ϕ : Reg (X) −→ R the exhaustion function. Since ϕ is strictly plurisubhar-

monic outside a compact set we have that the sub–level sets Xc = {ϕ > c}
are 1-concave manifolds i.e. strongly pseudoconcave domains. In our previ-

ous paper [16] we have shown that in general if M is a 1-concave manifold

of dimension > 3 which carries a hermitian line bundle E which semi-

negative near the boundary and satisfies (D) then the Kodaira dimension

of E is maximal and M is Moishezon. The assumption about the change of

curvature sign (i.e. semi-negativity) near the boundary is imposed by the

construction of complete hermitian metrics ω0 and h0 as in Theorem 2.2

which give the L2 estimate needed and preserve condition (D) for h0. The

restriction on dimension comes from the fact that we need an L2 estimate

in bi–degree (0, 1).

Of course, usually we are given an overall positive bundle E on M . We

show that for manifolds Xc as before we can also apply the criterion in [16]

alluded to by modifying the metric. Let us consider a covering {Uα} of X

and embeddings ια : Uα ↪→ C
Nα such that E|Uα is the inverse image by

ια of the trivial line bundle Cα on CNα . Moreover we consider hermitian

metrics hα = e−ϕα on Cα such that ι∗αhα = ι∗βhβ on Uα ∩ Uβ ∩ Reg (X).

The system h = {ι∗αhα} is called a hermitian metric on E over X. It clearly

induces a hermitian metric on E over Reg (X).

Theorem 3.4. Let X be an irreducible compact complex space with

isolated singularities and let Xc be the sublevel sets of the hyper 1-concave

manifold Reg (X). Assume that there exists a holomorphic line bundle

E −→ X with a smooth hermitian metric such that condition (D) is fulfilled

on Reg (X). Then for sufficiently small c there exists a metric on E such

that E is negative in the neighbourhood of ∂Xc and
∫
Xc(61) (ıc(E))n > 0.

Proof. Let π : X −→ X be a resolution of singularities of X. Let us

denote by Di the components of the exceptional divisor. Then there exist

positive integers ni such that D :=
∑
niDi admits a smooth hermitian

metric such that the induced line bundle [D] is negative in a neighbourhood

Ũ of D (cf. [23]). Let us consider a canonical section s of [D], i.e. D = (s),

and denote by |s|2 the pointwise norm of s with respect to the above metric.

By Lelong-Poincaré equation ϕ = log |s|2 is strictly plurisubharmonic on

Ũ rD. By using a smooth function on X with compact support in Ũ which

equals one near D we construct a smooth function χ on X rD ' Reg (X)
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such that χ = − log(− log |s|2) on ŨrD. Since log |s|2 goes to −∞ onD, this

is the analogue of the function constructed in the proof of Theorem 3.1 . As

there we show that ı∂χ∧ ∂̄χ 6 ı∂∂̄χ. Let us consider a metric ω on Reg (X)

which on every open set Uα as above is the pullback of a hermitian metric

on the ambient space C
Nα , ω = ι∗α ωα . Since the singularities are isolated we

may assume that the metric is distinguished, that is, in the neighbourhood

of the singular points ωα is the euclidean metric. We consider then the

metric (Kähler near Sing (X)) ω0 = Aω + ∂∂̄χ where A > 0 is chosen

sufficiently large (to ensure that ω0 is a metric away from the open set

where ∂∂̄χ is positive definite). It is easily seen that ω0 is complete by the

same argument as in the proof of Theorem 3.1 . This kind of metrics were

introduced by Saper in [23]. They have finite volume.

Let us consider now a neighbourhood U of the singular set. We assume

that U is small enough so that there are well defined on U a potential ρ for ω

and a potential η for the curvature ıc(E) (they are restrictions from ambient

spaces). By suitably cutting-off we may define a function ψ ∈ C∞(Reg (X))

such that ψ = −χ− η−Aρ near Sing (X) . Since the potentials ρ and η are

smooth, they are bounded so that ψ tends to ∞ at the singular set Sing (X).

Let us consider a smooth function γ : R −→ R such that γ(t) = 0 if t 6 0,

γ(t) = t if t > 1 and the functions γν : R −→ R given by γν(t) = γ(t − ν)

for all positive integers ν . Let us denote the hermitian metric on E by h

and let us consider the following metric on E : hν = h exp (− γν(ψ)), with

curvature ıc(E, hν) = ıc(E, h) + ıγ′ν(ψ)∂∂̄ψ + ıγ′′ν (ψ)∂ψ ∧ ∂̄ψ. On the set

{ψ > ν + 1} we have γν(ψ) = ψ − ν so that γ′ν(ψ) = 1 and γ′′ν (ψ) = 0

and therefore ıc(E, hν) = ıc(E, h) + ı∂∂̄ψ. Since ψ goes to ∞ when we

approach the singular set we may choose ν0 such that for ν > ν0 we have

{ψ > ν+1} ⊂ U where U is a sufficiently small neighbourhood of Sing (X).

Bearing in mind the meaning of η and ρ together with the definition of ω0

it is straightforward that ıc(E, hν ) = −ω0 on {ψ > ν + 1}, that is (E, hν)

is negative on this set. We denote Ων the compact set {ψ 6 ν + 2} . We

decompose this set in Ω′
ν = {ψ 6 ν} and Ω′′

ν = {ν 6 ψ 6 ν + 2}. On Ω′
ν we

have γν(ψ) = 0 and ıc(E, hν ) = ıc(E, h) . We infer that

(4.3)

∫

Ω′

ν(61,hν)
(ıc(E, hν))

n =

∫

Reg (X)(61,h)
1Ω′

ν
α1 · · ·αn dV0

where α1, · · · , αn are the eigenvalues of ıc(E, h) with respect to ω0 and

dV0 = ωn
0
/n!. Since ıc(E, h) is dominated by the euclidean metric near

Sing (X), ıc(E, h) is dominated by ω and by ω0. Hence the product α1 · · ·αn
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is bounded on Reg (X). Since Reg (X)(6 1) has finite volume with respect

to ω0 the functions |1Ω′

ν
α1 · · ·αn| are bounded by an integrable function.

On the other hand 1Ω′

ν
−→ 1 when ν −→ ∞ so that the integrals in (4.3)

tend to
∫
Reg (X)(61,h) (ıc(E, h))n which is assumed to be positive. Thus it

suffices to show that the integral on the set Ω′′
ν i.e.

∫
Ω′′

ν (61,hν) (ıc(E, hν))
n

tends to zero as ν −→ ∞. For this purpose we use the obvious bound∫
Ω′′

ν (61,hν) (ı c(E, hν ))
n 6 sup | δ1 · · · δn| · vol (Ω′′

ν) where δ1, · · · , δn are the

eigenvalues of ıc(E, hν) with respect to ω0 and the volume is taken in the

same metric. We use now the minimum-maximum principle to see that (i) δ1
is bounded below and δ2, · · · , δn are bounded above on the set of integration

Ω′′
ν(1, hν) and (ii) δ1, · · · , δn are upper bounded on Ω′′

ν(0, hν). For this we

need the domination of ıc(E, h) by ω and the boundedness of γ′ν and γ′′ν .

Since vol (Ω′′
ν) −→ 0 as ν −→ ∞ our contention follows. Hence for large ν

the metric hν does the required job.

Since the manifold Xc is compact Theorem 3.4 can be used to prove

stability results for perturbation of the complex structure of Xc. Since our

approach relies on the use of a sufficiently positive line bundle E we need to

consider perturbations of the complex structure which lift to a perturbation

of E. This kind of situation was studied by L. Lempert in [15, Lemma 4.1].

Corollary 3.5. Let X be a Moishezon variety with isolated singular-

ities and dimension n > 3. Let J denote the complex structure of Reg (X).

Let E = [Z], where Z ⊂ Reg (X) is a compact non–singular hypersurface.

Assume that E satisfies (D). Then for sufficiently small c and any complex

structure J ′ on Xc such that (1) J ′ is sufficiently close to J in the C∞

topology, and (2) T (Z) is J ′ invariant, there exists a J ′–holomorphic line

bundle E′ on Xc which is negative near bXc and satisfies (D). In particular

(Xc,J ′) is a Moishezon pseudoconcave manifold and any compactification

of (Xc,J ′) is Moishezon.

Proof. Let us first choose c0 such that for c < c0 there exists a ‘good’

hermitian metric h on E over a neighbourhood of Xc as in Theorem 3.4.

We use now the description of the lifting of J ′ with properties (1) and (2)

as given in [15]. Namely, Z determines a new J ′ holomorphic line bundle

E′ −→ (Xc,J ′). There exists a finite open covering U = {U} of Xc such

that E and E′ are trivial on each U and they are defined by multiplicative

cocycles {gUV } where gUV is J –holomorphic on U ∩ V and {g′UV } where

g′UV is J ′–holomorphic on U ∩ V for U, V ∈ U . Moreover gUV and g′UV
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are as close as we please assuming J and J ′ are sufficiently close. (By

‘close’ we always understand close in the C∞ topology.) Next we can define

a smooth bundle isomorphism E −→ E′ by resolving the smooth additive

cocycle log(g′UV /gUV ) in order to find smooth functions fU , close to 1 on

a neighbourhood of U such that g′UV = fU gUV f
−1
V . Then the isomorphism

between E and E′ is given by f = {fU}. The metric h is given in terms

of the covering U by a collection h = {hU} of smooth strictly positive

functions satisfying the relation hV = hU |gUV |. We define a hermitian

metric h′ = {h′U} on E′ by h′U = hU |f−1
U |; h′U is close to hU . The curvature

form of E′ is given by ı
2πc(E

′) = 1
4π d ◦ J ′ ◦ d (log h′U ). Therefore, when J ′

is sufficiently close to J , ı
2πc(E

′) is negative near the boundary of Xc and,

since the eigenvalues of ı
2πc(E

′) are close to those of ı
2πc(E), E′ satisfy the

condition (D) i.e.
∫
Xc(61) (ıc(E′))n > 0. We can apply thus [16, Corollary

4.3] to the strongly pseudoconcave manifold (Xc,J ′) to conclude.

Remark 3.2. If [Z] is positive, part of the stability property follows

from the rigidity of embeddings with positive normal bundle. Indeed, as-

sumeNZ = [Z] �Z is positive in (Xc,J ′) (for any c such that this manifold is

still pseudoconcave). Then Ph. Griffiths [10, p.387] has shown that there ex-

ists a neighbourhood W of Z such that the mapping Φ : (Xc,J ′)−− → P
N

given by [mZ] is an embedding of W for large m. Thus (Xc,J ′) is Moishe-

zon. Our result deals with the slightly more general situation of a ‘big’

embedding i.e. when [Z] is not ample but satisfies condition (D). More-

over we have a useful quantitative way of measuring whether the perturbed

structure is Moishezon.

Corollary 3.6. Let (Xc,J ′) and E′ be as in Corollary 3.5. Then

there exists hermitian metrics on Xc and E′ and a positive constant C

such that for any Galois covering X̃c −→ Xc of group Γ, for k −→ ∞:

dimΓH
0
(2)(X̃c , Ẽ′

k
) > C kn , the L2 condition being with respect to lifts of

the hermitian metrics on Xc and E′.

Proof. We know that we have a metric h on E′ satisfying the conclusion

of Theorem 3.4. Then, as in Theorem 2.2, we can construct metrics ω0 and

h0 in order to obtain (2.10). Note that the integral in (2.10) depends on

the modified metric h0 so we cannot always infer that it is positive even

if (E′, h) satisfies (D). But under the assumption of semi–negativity of h

near the boundary we can construct an h0 such that the integral in (2.10)

is positive (cf. Corollary 4.3 of [16]). Thus we conclude by Theorem 2.2.
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§4. Weak Lefschetz theorems

Nori [20] generalized the Lefschetz hypersurface theorem. Assume X

and Y are smooth connected projective manifolds and Y is a hypersurface in

X with positive normal bundle and dimY > 1. Then the image of π1(Y ) in

π1(X) is of finite index. Recently, Napier and Ramachandran [19] proposed

an analytic approach and generalized Nori’s theorem showing that Y may

have arbitrary codimension (but dimY > 1). They use the ∂̄–method on

complete Kähler manifolds to separate the sheets of appropriate coverings.

In the sequel we use the Morse inequalities to study non–necessarily Kähler

manifolds. First we introduce the notion of formal completion (see [7]). Let

Y be a complex analytic subspace of the manifold U and denote by IY the

ideal sheaf of Y . The formal completion Û of U with respect to Y is the

ringed space (Û ,O
Û
) = (Y,proj limOU/IνY ). If F is an analytic sheaf on U

we denote by F̂ the sheaf F̂ = proj limF ⊗ (O/IνY ). If F is coherent then

F̂ is too. Moreover by [7, Proposition VI.2.7] the kernel of the mapping

H0(U,F) −→ H0(Û , F̂) consists of the sections of F which vanish on a

neighbourhood of Y . Hence for locally free F the map is injective.

Theorem 4.1. Let M be a manifold and E −→ M be a line bundle

in one of the situations of Theorem 2.1, 2.2 or 3.1 and assume that the

integral in (2.1), (2.10) or (3.1) respectively, is positive. Let moreover Y

be a connected compact complex subspace of M satisfying: (i) for any k,

dimH0(M̂ , F̂k) <∞, where Fk = O(Ek ⊗KM ), (ii) the image G of π1(Y )

in π1(M) is normal in π1(M). Then G is of finite index in π1(M).

Proof. We follow the proof given in [19]. Since G is normal there exists

a connected Galois covering π : M̃ −→ M such that the group of deck

transformations is Γ = π1(M)/G. The cardinal |Γ| equals the index of G

in π1(M). Let Ẽ = π−1E. By applying, after case, Theorem 2.1, 2.2 or 3.1,

there exists C > 0 such that for large k, dimΓH
n,0
(2) (M̃ , Ẽk) > C kn. (Remark

that Theorem 2.2 is also valid if we twist Ẽk with any Γ-invariant bundle.)

Let us choose a small open neighbourhood V of Y such that π1(Y ) −→
π1(V ) is an isomorphism; so the image of π1(V ) in π1(M) is G. Hence, if

we denote by  the inclusion of V in M , there exists a holomorphic lifting

̃ : V −→ M̃ , π ◦ ̃ = . Since ̃ is locally biholomorphic the pull–back

map ̃ ∗ : Hn,0
(2) (M̃ , Ẽk) −→ Hn,0(V,Ek) is injective. On the other hand

H0(V,Fk) ↪→ H0(V̂ , F̂k) = H0(M̂, F̂k). By (i) the latter space is finite
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dimensional so dimHn,0
(2) (M̃ , Ẽk) < ∞. But dimΓH

0
(2)(M̃ , Ẽk ⊗ K

M̃
) > 0

for k > C−1/n. If Γ were infinite this would yield dimHn,0
(2) (M̃, Ẽk) = ∞,

a contradiction. Therefore |Γ| < ∞ and dimHn,0
(2) (M̃ , Ẽk) > C |Γ| kn > |Γ|

for k > C−1/n. Thus |Γ| 6 dimH0(M̂ , F̂k) for large k.

Remark 4.1. (a) By a theorem of Grothendieck [11], condition (i) is

fulfilled if Y is locally a complete intersection with ample normal bundle

NY (or k–ample in the sense of Sommese, k = dimY − 1).

(b) We can replace condition (i) with the requirement that Y has a funda-

mental system of pseudoconcave neighbourhoods {V }. Then dimH0(V,Fk)
is finite by [1]. This happens, for example, when Y is a smooth hypersur-

face and NY has at least one positive eigenvalue, or, if Y has arbitrary

codimension, when NY is sufficiently positive in the sense of Griffiths [10,

Proposition 8.2].

(c) Condition (ii) is trivially satisfied if π1(Y ) = 0. Thus, if M contains a

simply connected subvariety satisfying either (a) or (b), π1(M) is finite.

(d) It follows from Remark 2.1 that, Theorem 4.1 holds for compact mani-

folds M , and also for Zariski open sets in Moishezon manifolds.

(f) By Corollary 3.6, Theorem 4.1 can be applied to the perturbed structures

considered there.
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