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PETERSON-TYPE DIMENSION FORMULAS FOR
GRADED LIE SUPERALGEBRAS
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Abstract. Let T be a free abelian group of finite rank, let I' be a sub-semigroup
of T satisfying certain finiteness conditions, and let £ = Ga(a,a)EFXZg £(a,a) be
a (I' x Z2)-graded Lie superalgebra. In this paper, by applying formal differen-
tial operators and the Laplacian to the denominator identity of £, we derive a
new recursive formula for the dimensions of homogeneous subspaces of £. When
applied to generalized Kac-Moody superalgebras, our formula yields a general-
ization of Peterson’s root multiplicity formula. We also obtain a Freudenthal-
type weight multiplicity formula for highest weight modules over generalized
Kac-Moody superalgebras.

§1. Introduction

We first recall the binomial expansion

(1.1) (1—t)" = Zn:(—nk (Z) th.

k=0

This elementary product identity can be given a Lie-theoretic interpretation
as follows: Let £ = Cx1 & - - - & Cx,, be an n-dimensional abelian Lie algebra
with a basis z1,- - -, z,. Since £ is abelian, we have Hy(£) = A¥(£) and

dim Hy(£) = dim A¥(g) = (Z) .

Hence the binomial expansion (1.1) can be interpreted as the Euler-Poincaré
principle for the abelian Lie algebra £.
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Next, consider the Jacobi triple product identity

[o¢]
- - R(E=1)  k(kt1)
(12) J[a-p'¢ma—p" g1 =p"¢" ) =D (D)fp 7 ¢ =,
n=1 kEeZ

which arises from the theory of modular forms and theta functions. In [8],
V. G. Kac discovered a character formula, called the Weyl-Kac formula, for
irreducible highest weight modules over symmetrizable Kac-Moody algebras
with dominant integral highest weights. When applied to the 1-dimensional
trivial representation, the Weyl-Kac formula yields the denominator iden-
tity, and it was shown in [8] that the Macdonald identities ([19]) are equiv-
alent to the denominator identities for affine Kac-Moody algebras. In par-
ticular, the denominator identity for the affine Kac-Moody algebra Agl) is
equal to the Jacobi triple product identity.
In [2], R. E. Borcherds proved the product identity

(1.3) pt T (0 =p"a") ™™ = j(p) - i(a)

m>0
nez

for the elliptic modular function
o0
jlq) = Z c(n)q™ = ¢~ + 196884q + 21493760¢> + - - -,

n=-—1
and showed that (1.3) is the denominator identity for the Monster Lie
algebra. The Monster Lie algebra is a special case of generalized Kac-Moody
algebras and it played a crucial role in Borcherds’ proof of the Moonshine
Conjecture ([2], [5]).

In this paper, we consider general product identities of the form

(14) [T a-peayed—1e 3 (BHE,

(a,a)ET X Za (B,b)€ETXZ2

where v(a,a),((8,b) € Z and T' is a countable (usually infinite) sub-
semigroup of a free abelian group T of finite rank with a nondegener-
ate symmetric bilinear form. Suppose that we have a (I" x Zs)-graded Lie
superalgebra £ = @(aﬂ)erng £(a,a) such that

sdim £, 4y = (=1)*dim £, o) = v(a, a),
sdim H(S)(ﬁyb) = (—1)b dim H(E)(@b) = C(ﬁ, b)
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for all o, € T', a,b € Zs. Then the product identity (1.4) can be in-
terpreted as the Euler-Poincaré principle for the Lie superalgebra £ (see
Section 2). We call (1.4) the denominator identity for the (I' x Zs)-graded
Lie superalgebra £ = @, 4)erxz, £(a.a)-

In Section 3, by applying formal differential operators and the Laplacian
to the denominator identity of £, we derive a new recursive formula for the
dimensions of homogeneous subspaces of £ (Theorem 3.3). As an immediate
application, we recover some interesting recursive relations for the colored
partitions p,(n) and the Ramanujan’s tau-function 7(n) which can be found
in [20]. We also obtain a set of recursive relations for the coefficients ¢(n) of
the elliptic modular function j which can be used to prove the fact that the
coefficients of j are completely determined by the first 3 coefficients ¢(1),
¢(2) and ¢(3) (cf. [17]).

For Kac-Moody algebras, it is well-known that Peterson’s root multi-
plicity formula determines the root multiplicities recursively ([22]). In Sec-
tion 4, we show that when applied to generalized Kac-Moody superalgebras,
our recursive dimension formula yields a generalization of Peterson’s root
multiplicity formula (Theorem 4.3 and Proposition 4.4). For this reason,
we call our formula the Peterson-type dimension formula for graded Lie
superalgebras. Moreover, by applying the same technique that was used in
deriving our Peterson-type dimension formula, we also derive a Freudenthal-
type recursive weight multiplicity formula for highest weight modules over
generalized Kac-Moody superalgebras (Theorem 4.5).

In the final section, we illustrate how to apply our Peterson-type root
multiplicity formula and Freudenthal-type weight multiplicity formula with
the examples of rank 2 generalized Kac-Moody superalgebras and their
irreducible highest weight modules. We also discuss the application of our
Peterson-type root multiplicity formula to Monstrous Lie superalgebras. At
the end of Section 5, we present some tables of root and weight multiplicities
for these algebras and modules.
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to Hee-Chul Cho, Seung-Il Kim, and Seong-Hwa Kwon for their generous
help in making the tables of root and weight multiplicities. Part of this work
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§2. Graded Lie superalgebras

We recall some basic facts about Lie superalgebras. A Zs-graded vector
space £ = £5® £7 is called a Lie superalgebra if there exists a bilinear map
[,]:£x£— £ called the bracket, such that

[£a7 2b] - £a+ba
(21) [l’,y] = _(_1)ab[y,x]7
[z, [y, 2] = [lz, 9], 2] + (=1)*[y, [, 2]

for all z € £,, y € £, a,b € Zy. The homogeneous elements of £5 (resp.
£y) are called even (resp. odd).

Let I' be a countable (usually infinite) abelian semigroup such that
every element o € I' can be written as a sum of elements in I' in only
finitely many ways. Consider a (I' x Zg)-graded Lie superalgebra £ =
D (0.0)erxz, L) With dim £, 4) < oo for all (a,a) € T' x Zy. We define
the character of £ to be

che€= Y (dimLpqg)e™,
(a,a) €T XZo

where e(®® are the basis elements of the semigroup algebra C[T" x Zy] with
the multiplication given by e(®®)e(#b) — glatpatb),

On the other hand, we define the superdimension of the homogeneous
subspace £(4,q) by

sdim £5,0) = (—1)"dim £44) (€T, a € Zy).

a,a)

We introduce another basis elements of C[I' x Zj] by setting E(
(=1)%(®), Clearly, B EBY) = platfath) We define the superchar-
acter of £ to be

sch £ = Z (sdim £4,q)) E(®a)
(ov,a)€l X Z2

Note that ch £ = sch £. The only difference is that, in the supercharacter, we
allow the negative coefficients. Usually, they are the elements of C[[I" x Zs]],
the completion of C[I" x Z].
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The main purpose of this paper is to find an efficient recursive formula
for sdim £, 4) (@ € T'; @ € Zy). In deriving our superdimension formula, the
crucial role is played by the denominator identity for the Lie superalgebra
£ = ®(a,a)EFXZQ £(a,a)- In the following, we briefly recall how to derive the
denominator identity from the Fuler-Poincaré principle for Lie superalgebra
homology (see [8] and [20] for more details).

Let C be the trivial 1-dimensional £-module. The homology modules
Hy (L) = Hi(L,C) are determined from the following standard complez:

O B o (9) i) B oy(2) — 0,

where the C(£) are defined by

Cr(2) = P A (L) ® (L)
p+q=k

and the differentials dy : Cx(£) — Ck_1(£) are given by

(21 A= Aap) @ (Y1 Yg))

= Z (_1)S+t([ﬂ3s,$t]/\501/\"'/\fs/\"'/\@/\"'Axp)@(yl‘”yq)
1<S<t<p

+ZZ S@IA AT A AT) @ ([T Yy T Yg)
s=1 t=1

- Z (lys,yed Nzr A Nap) @ (y1- - Ys - Ui -+ Yq)
1<s<t<q

for k > 2, x; € £5, yj € £1 and dy = 0 (cf. [4], [6]). Since the spaces Cj (L)
and the homology modules Hy(£) inherit the (I' x Zy)-gradation from that
of £, the supercharacters of Cy(£) and Hy (L) are well-defined. Hence by
the Euler-Poincaré principle, we obtain

o0

(—1)Fsch C(L) = > (—1)" sch Hy(L) .
0 k=0

M8

i
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(e 9]

C(L) =) (-)fCr&) =Cotalyg)o-

k=0
00

A(gg) =Y (~1)FAk(gg) = Co graAX(gg) o,

k=0
00

S(ET) = Z(_l)ksk(ET) =Co £T® S2(£T) o,
k=0

H(L) = (-1)"Hy(£) = —H\(£) ® Hy(£) © H3(L) &,
k=1

the alternating direct sum of superspaces. Then it is easy to see that
C(g) = A(L5) ® S(£y)

and that
schC(£) = H (1 — plaa

(a,a)ETXZo

)>Sdim Lla,a)

Therefore, we obtain the denominator identity for the (I' X Zy)- graded Lie
superalgebra £ = @(aﬂ)epng Liaa);

sdim £(4 4
(2.2) I1 (1—E<a’a>) @9 _ 1 4+ sch H(2).
(a,a)ET X Zo

We often deal with the I'-grading on £ defined by
2@ = '2(01,6) S5, E(Q,T) (Oé < F)

In this case, by setting sdim £, = dim 2(&,6) — dim 2(&5) and F(®0) = po
we have
sch €= () sdim £,) E,
ael
and (2.2) yields the denominator identity for I'-graded Lie superalgebra
£ = @aEF £0¢:
(2.3) [ @ - E*pd™®e =1 4 sch H(E).
acl

In the next section, we will derive Peterson-type recursive formulas for
sdim £, ) and sdim £, (o € I',;a € Z3). The main idea is to differentiate
both sides of the denominator identities (2.2) and (2.3).
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§3. Peterson-type formulas

Let T be a free abelian group with finite rank and let I' be a countable
(usually infinite) semi-subgroup in T such that every element o € I" can be
written as a sum of elements of I" in only finitely many ways. Let f@ = C®Zf
be the complexification of [. Choose a nondegenerate symmetric bilinear
form ( | ) on T'c and fix a pair of dual bases {u;} and {u}. Define a partial
ordering on I' by A > p if and only if A — p € T or A = pu. We will denote
by A > pif A > p and A # pu.

Suppose that we have a product identity of the form

(3.1) [I a-pedypea=1i N ¢(B3,0E,

(a,a)EFXZQ (ﬂ,b)GFXZQ

where v(a,a),((5,b) € Z. First, we define the partial differential operators
by
(EN) = Aug) EMY | 91 (EX) = (\|u') EXD,

Fix an element p € ['c. We define the p-directional derivative by
V(BM) = 3 (plu)d (B) = (o) B
and the Laplacian by
A(EX) =3 " 0'0,(EX) = (AN EX).
Let

C= Z C(v,a)EO and C* = Z C*(y,a) B0

(v,a)€l'xZ2 (v,a)€TlXZs

be the formal power series whose coefficients are given by

-G ¥ G,

dly
d: even
= 1 ¥ o=
0(771) - Z EV (Eal) )
dly
d: odd
C*(v,a) = (v11)C(,a) — > e, d)oW", a").

(v,a)=(v,a")+(v",a")
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ProrosIiTION 3.1. Let

D= [ a-peeopeo=14 N ((@bEEY.

(a,a) €T X Zo (B,b)ET' X Zo
Then the following differential equations hold:
(3.2) V,(D)=-V,(C)D, A(D) =-C"D.
Proof. First, note the following basic fact:

(alB) = (afu)(Blu’) for all o, B € Tc.

7

Using the formal power series log(1 —t) = — 372, +t*, we obtain
V(D) = DV ,(log D)
1 k(o,a
= DVp<— Z %l/(oz,a)E (o, )>

(ov,a)€l X Z2
E>1

= _Dvp(0)7

which yields the first equation. For the second one, observe the following
differential equation

-2 () 2 () ()

%

= A(log D) + > di(log D)d'(log D).

On the other hand, note that

A(log D) = — Z (kala)v(a, a) EF@®)

(a,a) €T X Zo
E>1

and that

Z di(log D)d' (log D)

S{- Y @l a)Ere )

(o ,a')ET X Zo
p=>1
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- Y @B

(o ,a")eT X Zy
q>1

_ Z (O/|O//)V(O/, a’)l/(o/, a//)Ep(o/,a/)+q(o//,a").
(o ,a’), (o ,a")ET X Zo
p,q>1

Combining the above identities, we have

— == Z kv(a, a)(ala) B

(a,0)ETXZo
k>1

+ Z I/(O/, a’)u(o/’, a//)(a/|a//)Ep(a/,a/)Jrq(a”,a”)
(a/,a/),(a”,a”)EFXZQ
P,q21

=— Y (BIB)C(B,0)ECD

(ﬁ,b)EFXZQ

Y (BINCE 0" B,

(ﬁ/’bl)7(ﬁ//’bll)er><22
It follows that
A(D) = -C*D.
U

By comparing the coefficients of both sides in Proposition 3.1, we obtain
the following recursive relations between v(a, a) and {(«, a) (o € T'ya € Zs).

THEOREM 3.2.  For (a,a) € T' X Zy, we have

(33)  (ple)Cla,a) + > (pIB)C(B,b)¢(ex — B,a — b) = —(pla)((a, a),

[B<a
beZo

(34)  C*(a,a)+ Y C*(B,b)((a — B,a —b) = —(a]a){(e,a).

B<a
beZo

O

As a direct consequence of (2.2) and (3.2), we obtain the main result of
this paper: the Peterson-type recursive superdimension formulas for graded
Lie superalgebras.
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THEOREM 3.3. Let £ = @ Liaa) be a (' x Zy)-graded Lie
(a,a) €T XZo
superalgebra with finite dimensional homogeneous subspaces and define

C(’y,ﬁ)zzasdlmﬁ(v + Z —sdlm):(%)

dly dly
d: even
C(y,1) = Z Esdlmﬂ(% T);
dly
d: odd
C*(y,a) = (Y)C(v,a) — > (WO, a)C (", a").

(v,a)=("a")+(v",a")

Then we have

(3.5)  (pl)C(a a)

== b) sdim H(L)(a_pa_p) — (pla) sdim H(L) (q0),

B<a
bEZo

(3.6) C*(a,a)
=— ) C*(B,b)sdim H(L)(a—ga—p) — (a|a)sdim H (L) q).

B<a
beZo

O

We return to the product identity (3.1). By setting v(a) = v(a,0) +

v, T), C(B) = C(B,0) + C(,T), and E* = B@D = E@D the product
identity (3.1) gives rise to another product identity of the form

(3.7) [Ja-En"@=14>"¢(s

ael per

C=> C(yE and C*=> C*(y)E

yel’ yel’
be the formal power series whose coefficients are given by

C() = o0+ =Y 7 (3),

dly

C*(y) = (YIM)C(y) — YW CHHCH"),
Y=y"+~"

Let



DIMENSION FORMULAS FOR GRADED LIE SUPERALGEBRAS 117

and define the partial differential operators, the p-directional derivatives,
and the Laplacian by

0i(EY) = Nw)E*,  9'(E*) = (A[u') B
(3.8) Vo (EY) = (plui)0'(BY) = (p| ) E*
=Y 90, (EY) = A NE

Then we can derive the Peterson-type recursive superdimension formulas
for I'-graded Lie superalgebras.

THEOREM 3.4. (a) Let

D=JJa-EY® =1+ ¢(B

acl’ perl

Then the following differential equations hold:
(3.9) V,(D)=-V,(C)D, A(D)=-C*D

(b) For any a € I', we have

(3.10) (pla)C () + Y (pBCB)(a = B) = —(pla)(a),

B<a
(3.11) C*(@) + Y C*(B)¢(a - B) = —(ala)((a).
B<a
0
THEOREM 3.5. Let £ = @Sa be a I'-graded Lie superalgebra with

aecl’
finite dimensional homogeneous subspaces and set

.
= Z Esdlmﬂg,
dly

C*(y) = (NCH = D (YWHCHHCH).

="+
Then we have

(3.12) (ple)C(a) = = (p|B)C(B) sdim H(L)a—p — (plar) sdim H (£)a,
[B<a
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(313)  C*(a)=— Y C*(8)sdim H()a_p — (ala) sdim H(L),.
B<a

i

Remark. We can determine the exponents v(«,a) (resp. v(«)) in the
left-hand side of (3.1) (resp. (3.7)) recursively from the coefficients {((3, b)
(resp. ¢(B)) in the right-hand side of (3.1) (resp. (3.7)), and vice versa.
In other words, we can determine the superdimensions of homogeneous
subspaces of graded Lie superalgebras recursively from the superdimensions
of homogeneous subspaces of its homology modules, and vice versa.

EXAMPLE 3.6. (a) Suppose that rankl' = 1. Take [' = 7, T = Zso,
and consider the product identity of the form
o0
(3.14) T - = ZC
n=1
where v(n),{(n) € Z and ((0) = 1. Let V = @,2, V,, be a Zso-graded
superspace with sdim V,, = —((n) for all n € Zo, and let £ = @, £, be
the free Lie superalgebra generated by V. Then the identity (3.14) can be
interpreted as the denominator identity for the free Lie superalgebra £ and
hence we have sdim £,, = v(n) (n € Zsg) (see [13]).
Take p =1 and let ( | ) be the multiplication in C. Then by Theorem
3.4(b), we obtain the following recursive relations between v(n) and ((n):

(3.15) 3 (Z du(d)) C(n—k) = —n(n).

k=1 dlk

In particular, we obtain

sdim £,, = —(/( —%Z(stdlmﬁd) n—k)—zgsdimﬂd.

k=1 dlk d|n
d>1

(b) Let r be a positive integer and set v(n) = —r for all n € Z~. Then
the product identity (3.14) yields the generating function for the r-colored
partitions of positive integers:

o
[Ha-q¢9" Zpr
n=1
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Hence the relation (3.15) gives the following recursive formula for r-colored
partitions:

(3.16) pr(n) = = > o1 (k)pe(n — ),
k=1

where o1(k) denotes the sum of all divisors of k.
(c) If we take v(n) = 24 for all n € Z, the product identity (3.14) is
the definition of Ramanujan’s tau-function:

(o] o0
[Ha-a* Z (n+1)q
n=1 =

Then the relation (3.15) yields the following recursive formula for the values
of 7(n):

(3.17) T(n+1):—% = ()t 1 k).

k=1

Remark. The recursive formulas (3.16) and (3.17) can be derived from
the equation (2.10) in [20]. Our method can be regarded as a generalization
of Macdonald’s method to several variables.

EXAMPLE 3.7. (a) Suppose that rankl = 2. Take I = Z x 7, T =
Z~o X Z~qo and consider the product identity of the form

m,n=1 m,n=1

where v(m,n),((m,n) € Z. Let V. = @ ,,—1 Vimn) be a (Z=o x Zxo)-
graded superspace with sdim Vi, ,y = —((m,n) for all m,n € Zo, and
let £ = @fno’nzl £(m,n) be the free Lie superalgebra generated by V. Then
the identity (3.18) can be interpreted as the denominator identity for the
free Lie superalgebra £ and hence we have sdim £(,, ,y = v(m,n) for all
m,n € Zsq (see [13]).

Let p = (1,0) and let ( | ) denote the standard inner product on C2.
Then by Theorem 3.4(b), we obtain the following recursive relations be-

tween v(m,n) and ((m,n):

(319) m Y %V (%g)

d|(m,n)
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= —mlm,n)— > k( > ! ( )) (s,1).

(mn)=(k,D+(s,t)  dl(kl)
Equivalently, we have

1 m n
(3.20) v(m,n) = dz rid ( )
d|(m,n)
1 1 k1
(m,n)=(k,1)+(s,t) d|(k,l)

It is worthwhile to note that the various choices of p and bilinear forms give
many different relations. For example, if we take p = (0, 1), then we get

(3.21) n rid (E’ E) = —n{(m,n)

— > l Z%(S,é) C(s,t).

(m,n)=(k,l)+(s,t) d|(k,l)

(b) Recall the elliptic modular function j defined by

(3.22) j(q) — 744 = ¢~ + 196884q + 21473760¢> + - - - = Z c(n)q".
n=-—1
In [2], Borcherds proved the product identity
p ' T @ =pmgm ™ = (o) - i(a),
m>0
nez
which is equivalent to
IT a=pmg)t™ =1 3" c(m+n—1)p"q"
m,n=1 m,n=1

This is the denominator identity for the (negative part of) Monster Lie
algebra which played a crucial role in Borcherds’ proof of the Moonshine
Conjecture ([2], [5]).
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By the relation (3.20), we obtain a recursive relation for the coefficients
¢(n) of the elliptic modular function j:

3:23) cmn) =c(m+n-1)- Y (")

+% > k Z%c(%) c(s+t—1).

(k,D)+(s,t)=(m,n) d|(k,l)

Applying the recursive relation (3.23) to the pairs (2,n) and (3,n), we have

B2) o2 =cnt ) - e (2) + 2 i c(j)en — ),

(3.25) c(3n) =c(n+2) — —c )+

where ¢(n) = 0 for non-integral values of n. On the other hand, by taking
the pairs (2,2n) and (4,n), we get

c(dn) =c(2n+1)+ % (c(n)?* — c(n)

~—
_|_
]
Q
—
<
~—
o
—~
[\
S
|
<
~—

j=1
—c(n+3)—£(2—n) (n)—ic %)
n—1 n—1 ;
i; n—j+2)+%j:1(0(2j)+%c<%>> (n—j+1)

OJ

42( 3o (2)) etn -,

where (n) = 1if n is even and {(n) = 0 if n is odd.
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Combining these relations, we obtain

c@n+1) =~ (e(n)? —e(m) = 3 eli)e(2n — ) +cln +3)
j=1
n—1
—@c(n) i (%) + i 2 c(j)e(n —j+2)
(3.26) _— ; =
+§ 2 <c(2]) + ¢ <§)> cn—j+1)
3/ 1 [ ,
+- c(3j)+ sc| =) | e(n—j).
12 (o3¢ (5) ) eto =

By applying (3.24) and (3.25) repeatedly, we can reduce (3.26) to a recursive
formula for ¢(2n + 1). U

Remark. It is well-known that the coefficients ¢(n) are determined by
the first 4 coefficients: ¢(1), ¢(2), ¢(3), and ¢(5) (see, for example, [2]). In
[17], J.-K. Koo and Y.-T. Oh showed that ¢(5) can be expressed in terms
of ¢(1), ¢(2), and ¢(3). Hence the first 3 coefficients completely determine
the elliptic modular function j. We can derive the same result using the
Peterson-type recursive formula. Actually our method can be generalized to
show that the coefficients of certain class of Thompson series are completely
determined by the first three coefficients (cf. [16]).

84. Generalized Kac-Moody superalgebras

In this section, we apply our superdimension formulas to generalized
Kac-Moody superalgebras to derive Peterson-type root multiplicity formula
and Freudenthal-type weight multiplicity formula for generalized Kac-Moody
superalgebras and their highest weight modules. We first recall some of the
basic structure theory and representation theory of generalized Kac-Moody
superalgebras.

Let I be a countable (possibly infinite) index set. A real square matrix
A = (a4j) jer is called a Borcherds-Cartan matriz if it satisfies: (i) a; = 2 or
(773 < 0 for all 7 € I, (11) Qi < 0if ¢ 7&], and Qg €7 IfCLZZ = 2, (111) Ai5 = 0
implies aj; = 0. We say that an index i is real if a;; = 2 and imaginary if
a; < 0 and denote by I'® = {i € I| a;; = 2}, '™ = {i € I| a;; < 0}. Let
m = (m; € N| ¢ € I) be a sequence of positive integers such that m; = 1
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for all 4 € I". We call m the charge of A. In this paper, we assume that
the Borcherds-Cartan matrix A is symmetrizable, i.e., there is a diagonal
matrix D = diag(s;| i € I) with s; > 0 (¢ € I) such that DA is symmetric.

Let 1°44 be a subset of I and set 1¢V°" = I\ 1°dd, We call i € I an even
index (resp. odd index) if i € I°¥*® (resp. i € [°99). The Borcherds-Cartan
matrix A is said to be colored by 1°99 if a;j € 2Z<o for all j € I whenever
i€ I n e,

Let h = (D,;c; Chi) @ (B,c; Cd;) be a complex vector space with a
basis {h;,d;| i € I}, and for each i € I define a linear functional o; € h* by

(41) ai(hj) = aji, Oéi(dj) = 6ij for all j € 1.

The free abelian group Q@ = @, ; Za; generated by «a;’s (i € I) is called
the root lattice associated with A. Let I = {«;| ¢ € I} and B be a basis of
h* extending II. Set B’ = B\ II. Since A is assumed to be symmetrizable,
there is a symmetric bilinear form ( | ) on h* defined by

(ai]aj) = 8;Q;j for 1,] € 1,
(>\|C¥2) = )\(Szhz) for A € B/,
(Ap) =0 for \,u € B'.

We can also define a nondegenerate symmetric bilinear form on § by

1
forall heb,i,j eI (cf. [7],[11]).

Let Q* =3 ,c; Z>o0y and Q~ = —Q™". We define a group homomor-
phism deg : QQ — Zso by

dega; =

0 if ieIeven,
1 if ¢ e 1094,

An element « € Q is said to be even (resp. odd) if dega = 0 (resp. dega =
1).

The generalized Kac-Moody superalgebra g = g(A, m, I°44) associated
with a symmetrizable Borcherds-Cartan matrix A = (a;;)i jer of charge
m = (my| i € I) colored by I° is the Lie superalgebra generated by the
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elements h;,d; (i € I), e, fir (i € I, k=1,2,---,m;) with the following
defining relations:

[hiy hj] = [hi, dj] = [ds, dj] = O,

[hiseji] = aijeji, (i, fa] = —ai; fi,

di, e = dijesi, [di, fu] = —0ij fji,

ek, f1] = 0ijorihi,

(adeir)' =" (1) = (adfir)' % (fi1) = 0 if azz = 2 and i # j,
leir, et = [fir, f] =0 if a;; =0,

deg h; = degd; =0,

dege; =deg f; =0 if 4 € 1°V°",

dege; =deg f; = 1 if i € 1094,

fori,jel, k=1,---,my, l=1,---,m;.

The abelian subalgebra h = (,c; Ch;) @ (P,;c; Cd;) is called the
Cartan subalgebra of g, and the linear functionals «; € h* (i € I) defined
by (4.1) are called the simple roots of g. For each i € I', let r; € GL(h*)
be the simple refiection on h* defined by

Tz(/\) =A\— )\(hZ)OtZ for A e h*

The subgroup W of GL(h*) generated by the r;’s (i € I™) is called the
Weyl group of g.

The generalized Kac-Moody superalgebra g = g(A4,m, I°d) has the
root space decomposition g = GaaeQ ga, Where

ga ={z € g| [h,z] = a(h)z for all h € h}.

If go # 0, then « is called a root of g and g, is called the root space of g
attached to a. We say that a root « is real if (o|a) > 0 and imaginary if
(aar) < 0. A root o > 0 (resp. o < 0) is called positive (resp. negative).
One can show that all the roots are either positive or negative. We denote
by ®, & and ®~ the set of all roots, positive roots and negative roots,
respectively. We also denote by @5 (resp. ®1) the set of all even (resp.
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odd) roots of g. Define the subalgebras g = @D co+ 9a- Then we have the
triangular decomposition :

g=9 ®hog"
For each a € ), we define the superdimension of g, to be

sdim g, = (—1)%¢* dim g,.

A g-module V is called h-diagonalizable if it admits a weight space

decomposition V = P V., where

peh”
Vio={veV|h-v=pu(h)v forall h € bh}.

If V,, # 0, then p is called a weight of V' and V, is called the p-weight space.
We denote by P(V') the set of all weights of V.

For \,v € b*, we define A\ > p if A — u € Q. We denote by O the cat-
egory of h-diagonalizable g-modules with finite dimensional weight spaces
such that there exist a finite number of linear functionals Aq,---, Az satis-
fying P(V)) C US_D(\;), where D(X) = {u € §*| p < A}. The morphisms
in O are g-module homomorphisms.

An h-diagonalizable g-module V is called a highest weight module with
highest weight A\ € b* if there is a nonzero vector vy € V such that (i)
eix-vox=0foralliel, k=1,---,my (ii) h-vy = A(h)vy for all h € b,
(iii) V = U(g) - vz, where U(g) is the universal enveloping superalgebra of g.
The vector vy is called a highest weight vector. For a highest weight module
V with highest weight A, we have (i) V = U(g™) - vy, (i) V =B, Vi,
Vi = Cuy, and (iii) dim V, < oo for all < A. Clearly, V is in category O.
A g-module M (\) with highest weight A is called a Verma module if every
g-module with highest weight A is a quotient of M (\). The Verma module
M () contains a unique maximal submodule J(A). Therefore the quotient
V(A) = M(X)/J(A) is irreducible.

Take a linear functional p € bh* satisfying p(h;) = %aii for all ¢+ € I.
Such a linear functional is called a Weyl vector of g. Note that (p|a;) =
p(sihi) = 3(ale) (i € I).

Let P be the set of all linear functionals A € b* satisfying

)\(hz) S Zzo for all i € I,
AMhi) € 2Z>q  for all i € [N [°9d,

A(hi) >0 for all 4 € I'™.
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The elements of P are called the dominant integral weights. For a dominant
integral weight A € P, let

(N ={8= Z kiai € QT[] (Mley) =0 for k; > 1,
(42) je[im
(Oél'|05j) =0 for k‘i,k‘j > 1, 1 #], (Oéi|05i) =0 for ,ICZ > 2}

For such an element § € ®(\), we denote |3] = Y, m ki and
m; mj +k;j —1
«»=1I (k) 11 ( T )
je]imneven v je[imﬂ[odd J

0 if A — p is even,
Tif A—p is odd.
the supercharacters of the highest weight modules are given in the following

For each p < A, we define degpu = { Then

proposition.

ProprosiTION 4.1. ([21], [23])
(a) For any A € b*, we have
EX
H (1 _ Ea)sdimga ’

aEQ—

sch M(\) =

(b) For any A\ € PT, we have

Z ex(w, B)EWATP=B)=p

weW
_ BT

H (1 - Ea)sdimga

acd—

where ex(w, B) = (—1)HW)HBl(_1)dea(w+p=F)=r)(3).
In particular, if A =0, we obtain the denominator identity:

(4.3) sch V/(X)

(4.4) [T @-Eopdmee =143 ¢(B)E”,
acd— BeD—
where ((B) = Z go(w,”). []
weW
yedt(0)

B=w(p—y)—p
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Let J be a finite subset of I"®, and let ®; = ® N (3_;c; Zay), <I>§ =
dF N &y and F(J) = &F\ q)(j][. We also denote Q; = QN (3¢, Zay),

QF =Q*NQyand QF(J) = Q*\ QF. Let g\ = p (EBC@J ga) , and
gg) = @aebi(J) go- Then we have the triangular decomposition :

g=0" @) @,

where g(()‘]) is the Kac-Moody superalgebra (with an extended Cartan sub-

algebra) associated with the generalized Cartan matrix Ay = ()i jes of
charge my = (m|i € J) colored by 1994 = 1°44 0 J. Let W, be the sub-
group of W generated by the simple reflections r; with j € J, and let
W(J) = {w € W|®, C ®*(J)}, where ®,, = {a € ®T|w~ta < 0}. Then
W (J) is the set of right coset representatives of W; in W. In the follow-
iréf%proposition, we recall the denominator identity for the Lie superalgebra

g’

ProprosITION 4.2.  ([13],[18]) Let J C I™ and let g(,‘]) = ®Daco- (1) ba
be the subalgebra of the generalized Kac-Moody superalgebra g defined as
above. Then we have

(4.5) [[ - Exdmee

aced—(J)

= 3 (—1) () seh Vi (w(p — B) — p),
weW (J)
BedT(0)

where Vy(u) is the irreducible highest weight module over g(()‘]) with highest
weight .
0

From now on, we will use the notation
) _ (T )
J J
H(g"") = P(-1) Hi(s™),
where

weW (J)
Bed™(0)
l(w)+|B|=k
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Then (4.5) can be also written as

[T - Eopdmee =schm ().
acd—(J)

The index set [ is assumed to be finite so that we can be guaranteed the
existence of dual bases for the nondegenerate bilinear form ( | ) on h*. Later,
we will explain how we can deal with the case when I is infinite (see the
remark after Theorem 4.8).

Let

C = Z C(y)E” and C*= Z C*(v)EY
Y€Q™(J) 1€Q™(J)

be the formal power series whose coefficients are given by

..
C(’Y) = ZESdlmg%7

dly
C*y)=(hcHn - D (HCH)CH).
y=y"+~"
¥ A"eQ™(J)

Then by Theorem 3.4, we obtain the following Peterson-type recursive root
multiplicity formula for generalized Kac-Moody superalgebras.

THEOREM 4.3.
(a) Let

D(J) _ H (1 - Ea)sdimga
acd—(J)
= Y () @8y seh Vi (w(p — B) — ),

weW (J)
Be@(0)

where Vj(u) is the irreducible highest weight module over g(()‘]) with highest
weight p. Then for any p € h*, the following differential equations hold:

V(DY) = -v,(C)DY, A(DW)) = —c*D),
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(b) For any p € b* and any v € Q= (J), we have

HNCH+ D (wh)CH)CH) = =i,
(46) 7/77:/,’251(‘])
C*+ Y. ") ==K,

¥='+~"
¥ "eQ™(J)

where ((v) = > (=1 HPle(8) sdim V; (w(p — 8) — )5 0
weW (J)
BeP™(0)
Take J = () and let p € h* be a Weyl vector of g. Then W (J) = W and
by definition of ®*(0) and W-invariance of ( | ), we have

(A+29,)(D9) = (A+29,)( 3 (~1)Hle(p)prePr) =,
weW
Bedt(0)
Hence we get

(A +2V,) (DY) = —(C* +2v,(C)) DD =0,

which implies C* 4+ 2V ,(C) = 0. Therefore we obtain Peterson’s root mul-
tiplicity formula extended to generalized Kac-Moody superalgebras.

PROPOSITION 4.4. ([17]) For any v € Q~, we have

(4.7) (Y+20MC) = D (hWHCH)CH”,
y=y'+"
v'eQT
where C(y) = Zésdimg%. 0
dly

Remark. To calculate the root multiplicities recursively, we would like
to make sure that (y|y +2p) # 0. If y € W - (—2a;) for some i € [N [°4d,
it may occur that (v|y +2p) = 0, but we already know that sdim g, = 1. If
v ¢ W-(—2a;), then one can show that (y|v+2p) < 0 and that the equality
holds if and only if v = —aq; for some ¢ € I. That is, if v is not a simple
root and v ¢ W - (—2q;) for all i € 1" N 1°4 then we have (y|y +2p) < 0.
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For the other extreme, take J = I'®. Then W (J) = {1} and we get

(M= ()Ve(B)sdimV;(-p),,

Be@t(0)

which is independent of the Weyl group W. For example, if a;; # 0 for all
i,j € I'™ then every element 8 € ®*(0) has the form 8 =0 or 8 = o;(i €
I'™). Hence we get

1 ifﬁ’:io
v)=19 _ Z m;sdim Vy(—cy)y otherwise.

ielim

Therefore, if the weight multiplicities of irreducible highest weight g(()‘])—
modules are explicitly known, then the Peterson-type root multiplicity for-
mula (4.6) gives a very efficient recursive formula for the root multiplicities
of g.

Finally, by the same technique that was used in deriving our Peterson-
type root multiplicity formula, we can derive a Freundenthal-type weight
multiplicity formula for highest weight modules over generalized Kac-Moody
superalgebras.

THEOREM 4.5. Let V' be a highest weight module over a generalized
Kac-Moody superalgebra with highest weight A € b*. Then, for any X < A,
we have

(4.8) (A + p2 — |A + p|?) sdim Vy

=2 Z (A + jola)(sdim g, ) (sdim Vi ja)

acdt
Jj>1

=2 > (A+ BB)C(B) sdim Vyys.
peQt
Proof. Recall that ([11])
schV = Z exsch M (), where ¢y € Z,cp = 1.

A<A
IX+pl2=|A+p]?
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For convenience, set
A =schV,

B = Haefb_(l _ Ea)sdimga’

D= > e E?.
A<A
A+l 2=|A+p]|?

Then by Proposition 4.1 (a), we have AB = D. Applying the Laplacian and
the p-directional derivative yields

(A +2V,)(AB)

= A(A+2V,)(B) + B(A+2V,)(A) +2AB Y 9;(log A)9' (log B).

7

On the other hand, since |\ + p|? = |A + p|?, we get
(A +2V,)(D) = (A|A +2p)D.

Recall that (A +2V,)(B) = 0. Hence by combining these equations, we
conclude

(A+2V,)(A)+2)  0;(A)d (log B) = (A|A + 2p) A.
By comparing the coefficients of E*, we obtain the desired result. U

Remark.

(a) By taking a look at the formula (4.8), a natural question arises:
what would happen if |\ + p|?> = |A + p|?? If A € PT, we can prove that
A+ p|2 < |A + p|? for all weights A < A and that the equality holds if and
only if A = A.

(b) In [17], the Freudenthal-type weight multiplicity formula was de-
rived for generalized Kac-Moody superalgebras using the Casimir operator.

(c) Our results in this section also hold when I is infinite. If § =
Y kjaj € Q7  let J = {j € Ilk; # 0} and we can apply our theorems
to the generalized Kac-Moody superalgebra g(A;, m J,If}dd) which corre-
sponds to the finite index set J.
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§5. Examples and tables

In this section, we illustrate how to apply our Peterson-type root mul-
tiplicity formula with the examples of rank 2 generalized Kac-Moody su-
peralgebras and Monstrous Lie superalgebras. We also give an example
of computing the weight multiplicities for irreducible highest weight mod-
ules over rank 2 generalized Kac-Moody superalgebras. At the end of this
section, we present some tables of root and weight multiplicities for these
algebras and modules.

EXAMPLE 5.1. Let A = (a) be a rank 1 Borcherds-Cartan matrix of
charge m = (r) with 1°dd = I, and let g = g(A, m, I°9) be the associated
generalized Kac-Moody superalgebra. Here, we have a =2, a = 0, or a < 0,
and r € Z~g. We denote by «a the only simple root of g.

If a = 2, then g is the 5-dimensional ortho-symplectic Lie superalgebra
osp(1,2) and we have

-1 ifn=1,
sdim g0 = 1 if n =2,
0 if n > 3.

If @ = 0, then g is the Heisenberg Lie superalgebra sl(1,2r) and we
have
—r ifn=1,

S0 gna = { 0 ifn>2

If a < 0, then the simple root « is odd and imaginary with multiplicity
> 1. We identify the root lattice with Z by setting a = 1 and choose
=1 50 that (u|1) = 1.

For n > 1, the formula (4.6) yields

ol
n—1

—nC(—n) =Y _kC(=k)((—n + k) + n((—n).
k=1

Since ((—1) = r and ((—n) = 0 for n > 2, we get nC(—n) = —r(n —
1)C(—n + 1), which gives

(5.1) C(—n)=C(n) =
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Hence we obtain

. 1 1.
sdim gpa = E(—r)” — Z p sdlmg%a.
d>1
d|n
If we apply the Mdbius inversion to (5.1), we get the Witt formula for
free Lie superalgebras:

a3

sdim g0 = + 3 pu(d) (1),
din

In particular, the subalgebra g = @, > 9na (resp. g— = D,>; 9-na) 18
the free Lie superalgebra generated by the subspace g, (resp. g—a).

2 _
EXAMPLE 5.2. Let I = {0, 1} be the index set and let A = (—b _Z)

(a,b,c € Z>p) be a Borcherds-Cartan matrix of charge m = (1,r). Take
1°4 = 11} and let g = g(A4,m, I°!) be the associated generalized Kac-
Moody superalgebra. We identify o = mag +nay € Q with (m,n) € Z x Z
and choose p € h* such that (u|(m,n)) = m. We would like to apply our
Peterson-type root multiplicity formula (4.6) with J = {0}. In this case,
the subalgebra g(()‘]) is isomorphic to sl(2,C) + b.

(a) If a,b,c > 0, then

Ho(g") = C,
Hy(g") = Vy(—an)®,
He(@Y) =0 for k > 2,

where Vj(—aq)®" is the r-copies of (a+ 1)-dimensional irreducible si(2, C)-
module, and we have

1 if (m,n)=(0,0),
((—m,—n) = sdimH(g(_J))(_mv_n) =< r f0<m<an=1,
0 otherwise.

Therefore we obtain

: L.
sdlmg(myn):C(m,n)— Z Esdlmg(%%),

d>1
d|(m,n)
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where C(m,n) are determined recursively by

—r ifl<m<an=1,
—LZkC(k,n—l) ifl<m<a,n>2,
m
C(m,n) = "=
—% Z kEC(k,n—1) ifm>a,n>2,
k=m—a
0 otherwise.

(b) If a,b > 0 and ¢ = 0, then Hk(g(_‘])) = Vj(—kay)®", and hence we
have

C(=m, —n) = sdim H(g"))(_, )

if (m,n) = (0,0),

1
_ ("”JFZ_l) if0<m<nan>1,
0

otherwise.

Therefore we obtain

: L.
sdlmg(mm):C(m,n)— Z Esdlmg(%%),

d>1
d|(m,n)

where C(m,n) are determined recursively by

( —r ifl<m<a,n=1,

1 r4+n—101-—1 r=n-—1
1D VI I (R U (i

1<i<n—1

()<k<m

if1<m <na,n>2,
C(m,n) =

1 r+n—1-1
- > k( . >C(k,l)

1<i<n—1

o(l)<k<m

if m > na,n > 2,

0 otherwise.
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Here o(l) = max{1l,m —a(n —1)}.
We present the root multiplicity tables for these generalized Kac-Moody
superalgebras in Table 5.1 — Table 5.5.

ExamMpPLE 5.3. Let g be the rank 2 generalized Kac-Moody superal-
gebra considered in Example 5.2 and let V(A) be the irreducible highest
weight g-module with highest weight A, where A is defined by A(h;) = \;
(1=0,1). Set

W(m,n) = sdim V(A)A—mag—na;, (M, n € Z>0).

Then by the Freudenthal-type weight multiplicity formula (4.8), we obtain

N(m,n) =2 Y (bkXo+aldy —b(m — k)(2k — al) + a(n — 1) (bk + cl))

0<k<m
0<i<n

xC(k, )W (m — k,n —1),
D(m,n) = 2(bmXg + an)y) — (2bm? — 2abmn — acn?) + 2bm — acn,

and C(k,l) are determined by the recursive formulas in Example 5.2.
In Table 5.6 — Table 5.8, we present the weight multiplicity tables for
these modules over rank 2 generalized Kac-Moody superalgebra g.

EXAMPLE 5.4. Let I = {—-1} U {1,2,3,---} be the index set and let
A = (=(i + 7))ijer be the Borcherds-Cartan matrix of the Monster Lie
algebra ([2]). Consider a normalized g¢-series F'(q) = > -2 f(n)¢"™ such
that f(—1) =1, f(0) =0, and f(n) € Z for all n > 1. We define the charge
of the matrix A to be m = (|f(¢)| : i € I) and set I°V*™ = {i € I| f(i) > 0},
1°4 = {5 ¢ I| f(i) < 0}. (We neglect those i’s for which f(i) = 0.) Then
the generalized Kac-Moody superalgebra g = g(A,m, °) is called the
Monstrous Lie superalgebra associated with the normalized g-series F'(q) =
S fn)a” ([13)).

We identify the simple roots «; (i € I) with (1,7) € Z x Z and define
a nondegenerate symmetric bilinear form on Z x Z by ((k,l)|(m,n)) =
—(Im + kn). Set p = (1,0) so that we have (p|a;) = —i = 3(oy|a;) for all
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1 € I. We would like to apply our Peterson-type root multiplicity formula
(4.6) to the Monstrous Lie superalgebra g.

Take J = {—1} and consider the triangular decomposition

(

g= J)@Q(J)@Q(J)

where g5 = (1, f-1,h-1) + b = 1(2,C) + b, 85 = @B, 1 8(zm 4n)-
Since W (J) = {1}, we have

Ho(g")) = C,
H1(g(,‘])) — @VJ EBlf( |

H(@)y=0 if k>2

where Vj(—q;) is the i-dimensional irreducible si(2,C)-module. Hence the
()

denominator identity for the Lie superalgebra g’ is equal to
oo o0
[I @ =prgrypdmeemn =1 3" f(i+j—1)p'¢,
m,n=1 1,j=1

where p = EC19) | ¢ = EO~1_ Therefore, we obtain

. 1 .
sdim g, ) = f(m+n—1) — E Esdlmg(%%)
a>1
d|(m,n)

(mn)=(k,1)+(s,t)  d|(k,])

In Table 5.9 and Table 5.10, we present the root multiplicity tables for
the Monstrous Lie superalgebras associated with the Thompson series 754
and TQ B-



Root multiplicity tables of g(A,m, 1°!) in Example 5.2

DIMENSION FORMULAS FOR GRADED LIE SUPERALGEBRAS

(Here each entries in the tables represent sdimgag+na;-)

Table 5.1 : r=1,a=2,¢>0

m\n | 1|23 ]4]| 5 6 7 8 9 10

1 1111 1 1] -1 1 -1 1

2 121212 -3]4| 4 4 -5 6

3 0O|1(-2|4] -6 |8 |-11| 14 | -17 | 21

4 0O|1]-2|4]-9 |16 |-23| 32 | -46 | 63

5 0(0]|-1{4|-10]|21|-38]| 63 | -98 | 145

6 0(0]0|2|-9 |24|-51] 96 |-172 | 288

7 00| 0|1 -6 |21 |-56]| 127 | -256 | 474

8 0(0|]0]|0| -3 |16]-b1] 136 |-323 | 681

9 0(0]0]0] -1 8 | -38 | 127 | -348 | 835

10 0(0|]0]0O}| O 4 | -23 | 96 | -323 | 900

Table 5.2 : r=1,a=3,c¢>0
m\n| 1|2]| 3] 4 5 6 7 8 9 10

1 11|11 -1 1 -1 1 -1 1
2 1121212 -3]4 -4 4 -5 6
3 112131579 | -12 15 -18 22
4 0|24 7 |-13|21] -29 | 39 -54 72
5 O (1]|-4]10]-20]|36]| -59 | 91 | -134 190
6 0O [1]-3]10|-27|57|-104 | 176 | -288 | 449
7 0 [0]-2]10]-31|76|-161 | 309 | -550 | 924
8 0 [0]|-1] 7 |-31]|93]|-222| 474 | -939 | 1727
9 00| 0] 5 |-27]96|-274 | 666 | -1449 | 2905
10 00| 0] 2 |-20] 93| -304 | 836 | -2039 | 4490
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Table 5.3 :r=2,a=1,¢>0

m\n| 1 ]2| 3|4 5 6 7 8 9 10
1 2 14|-8]16|-32| 64 | -128 | 256 | -512 1024
2 0 |3|-8]22]|-64]|164 |-384 | 888 | -2048 | 4624
3 0 |0]|-2]16|-64| 212 |-640 | 1792 | -4776 | 12288
4 00| 0] 3 |-32]|164 |-640 | 2228 | -7168 | 21536
5 0O(0[0]| O | -6 | 64 |-384 1 1792 | -7168 | 25804
6 0O(0|0] O 0 11 | -128 | 888 | -4776 | 21536
7 010|070 0 0 -18 | 256 | -2048 | 12288
8 010|070 0 0 0 30 -512 | 4624
9 010|070 0 0 0 0 -56 1024
10 00|00 0 0 0 0 0 105
Table 54 :r=2,a=2,¢>0
m\n| 1 ]2]| 3 4 5 6 7 8 9 10
1 214 -8 16| -32 64 -128 256 -512 1024
2 21 7]1-16 38| -96 | 228 | -512 1144 -2560 5648
3 0 |4]|-18 |64 |-192 | 532 | -1408 | 3584 -8872 21504
4 0 | 3]|-16| 73| -288 | 968 | -2944 | 8492 | -23552 | 63024
5 0| 0| -8 | 64| -326 | 1344 | -4864 | 16128 | -50176 | 148684
6 0|0 -2 |38]-288 | 1511 | -6528 | 25056 | -88400 | 291936
7 00| O |16 |-192 | 1344 | -7186 | 32512 | -131072 | 485376
8 0|10] O 3 | -96 | 968 | -6528 | 35386 | -165376 | 692880
9 0[]0 O 0 | -32 | 532 | -4864 | 32512 | -178568 | 855040
10 0|10] O 0 -6 228 | -2944 | 25056 | -165376 | 916949
Table 5.5 :r=2,a=3,¢>0
m\n| 1 [2] 3 4 5 6 7 8 9 10
1 |24 -8 16 | -32 64 -128 256 -512 1024
2 | -2|7|-161] 38 | -96 | 228 -512 1144 -2560 5648
3 |-2|8|-26| 8 | -224| 596 | -1536 3840 -9384 22528
4 0 [7]-32| 121 | -416 | 1288 | -3712 10284 -27648 72240
5 0 |4]-32]| 160 | -646 | 2304 | -7552 | 23296 -68608 194764
6 0 [3]-26| 172 | -864 | 3595 | -13312 | 45656 | -147792 | 456304
7 0 [0]-16 | 160 | -992 | 4864 | -20626 | 79104 | -281600 | 946176
8 0 [0] -8 | 121 | -992 | 5840 | -28416 | 122274 | -480768 | 1762000
9 0 [0] -2 | 80 | -864 | 6184 | -35072 | 170496 | -742448 | 2974720
10 010] O 38 | -646 | 5840 | -38912 | 215216 | -1043968 | 4588149




Weight multiplicity tables of g(A,m, °) in Example 5.3
(Here each entries in the tables represent W(m,n).)

DIMENSION FORMULAS FOR GRADED LIE SUPERALGEBRAS

Table 5.6 : r =1,a =2,¢> 0,A(ho) =1,A(h1) =0

m\n |01 ]2[3|4] 5|6 7 8 9 10
0 1{0]01 0|0 0 0 0 0 0 0
1 1(-1j1]-1]1 -1 1 -1 1 -1 1
2 0O(-1(2|-3| 4] -5]6 -7 8 -9 10
3 |0/0|2]|-5]9|-14]20| -27 | 35 | -44 54
4 |00 |1]|-5]13]|-26|45| -71 | 105 | -148 | 201
5) 010(0]-3|13]-35|75|-140 | 238 | -378 570
6 00 ]0|-1]9 |-35]|96|-216 | 427 | -770 | 1296
7 00 ]0| 0] 4 ]-26]096|-267 | 623 | -1288 | 2436
8 |00 |0 0] 1 |-14]|75]|-267| 750 |-1800 | 3858
9 |00 0| 0] 0| -5 145|-216 | 750 | -2123 | 5211
10 |0 O0|0] 0] 0] -1120|-140| 623 | -2123 | 6046
Table 5.7 :r =1,a=2,¢> 0,A(ho) =0,A(h1) =1
m\n |0 1|23 ]|4] 5 6 7 8 9 10
0 1(-1(1]-1|1 -1 1 -1 1 -1 1
1 O(-1|2|-3] 4| -5]| 6 -7 8 -9 10
2 |0|-1|3]|-6|10]|-15| 21 | -28 | 36 -45 55
3 0]01]2]|-7T]16]|-30| 50 | -77 112 | -156 210
4 0]01]1]|-6]|19]|-45| 90 |-161 | 266 | -414 | 615
5 0] 01]0]|-3]16]-511|126 |-266 | 504 | -882 | 1452
6 [0 0|0]|-1]|10|-45| 141 | -357 | 784 | -1554 | 2850
7 [0, 0]|0] 0| 4 ]|-30]126 |-393 | 1016 | -2304 | 4740
8 [0/0]|0] 0| 1|-15| 90 |-357 | 1107 | -2907 | 6765
9 0, 0j0)J0O] 0] -5 50 | -266 | 1016 | -3139 | 8350
10 (000} 0] 0| -1 21 | -161 | 784 | -2907 | 8953
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Table 5.8 : r =1,a=2,¢> 0,A(ho) =1,A(h1) =1

m\n 0| 1]2] 3 4 5 6 7 8 9 10
0 1]1-1]11] -1 1] -1 1 -1 1 -1 1
1 1{-2(3|-4 |5 ]| -6 7 -8 9 -10 11
2 0(-2|5] -9 |14]|-20]| 27 | -35 44 -54 65
3 O-1]5]-13|26]|-45| 71 |-105| 148 | -201 265
4 00 |3]-13|35]|-75| 140 | -238 | 378 | -570 825
) 00 |1] -9 |35]|-96| 216 | -427 | 770 | -1296 | 2067
6 00 ]|0] -4 |26]|-96| 267 | -623 | 1288 | -2436 | 4302
7 00 |0 -1 |14]|-75] 267 | -750 | 1800 | -3858 | 7590
8 0j0]0]| O 5 | -45 | 216 | -750 | 2123 | -5211 | 11505
9 0[0]0] O 1 |-20 | 140 | -623 | 2123 | -6046 | 15115
10 (0] 0]0| O 0] -6 | 71 | -427 | 1800 | -6046 | 17303

Monstrous Lie superalgebra associated with 754
(Here each entries represent sdimg,, )

Table 5.9
m\n | 1 2 3
1 4372 96256 1240002
2 96256 10795008 431529984
3 1240002 431529984 42616961892
4 10698752 10128277504 2125795885056
) 74428120 166564106240 68134255043715
6 431529984 2126227415040 1588198806411264
7 2206741887 22327393665024 29030493318777216
8 10117578752 | 200750502117376 437155796944945152
9 42616961892 1588198806411264 5614282459787463036
10 | 166564106240 | 11283779936849920 | 63071424165763399680
m\n | 4 5
1 10698752 74428120
2 10128277504 166564106240
3 2125795885056 68134255043715
4 200750502117376 11283613372743680
5 11283613372743680 1040545340935546700
6 437157922740830208 63071424165763399680
7 12748902531008430080 2776078010473426349320
8 296560986580914798592 94724982482640008642560
9 5729955600122990051328 2622912698569732740150840
10 | 94724993766253381386240 | 60941641644938584748902400
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m\n | 6 7
1 431529984 2206741887
2 2126227415040 22327393665024
3 1588198806411264 29030493318777216
4 437157922740830208 12748902531008430080
) 63071424165763399680 2776078010473426349320
6 5729957188321796462592 365905674143822100234240
7 360905674143822100234240 32901400981362568466623924
8 17653726811858612022411264 2182844606054987051800985600
9 676781767952182209443807232 112867667380626713409166646166

—
o

21390391153642343366410813440 | 4734083066463091210586418544640

z
S

8

© 00 ~J O Uk Wi+

—_
o

10117578752

200750502117376
437155796944945152
296560986580914798592
94724982482640008642560
17653726811858612022411264
2182844606054987051800985600
194804003233778348867415179264
13307182910011920334374580912128
726344627267043576138497719009280

b3
S

9

© 00 3O U Wi+

—
o

42616961892

1588198806411264
5614282459787463036
5729955600122990051328
2622912698569732740150840
676781767952182209443807232
112867667380626713409166646166
13307182910011920334374580912128
1180772370567563904378531394829748
82539410782781631041963275207495680
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m\n | 10
1 166564106240
2 11283779936849920
3 63071424165763399680
4 94724993766253381386240
) 60941641644938584748902400
6 21390391153642343366410813440
7 4734083066463091210586418544640
8 726344627267043576138497719009280
9 82539410782781631041963275207495680
10 7290799226637980819592664955451443200

Monstrous Lie superalgebra associated with Thp

(Here each entries in the tables represent sdimg(m,n))

Table 5.10
m\n | 1 2 3 4
1 276 -2048 11202 -49152
2 | -2048 49152 -614400 5373952
3 11202 -614400 14478180 -216072192
4 | -49152 5373952 -216072192 5061476352
) 184024 -37122048 2390434947 -83300614144
6 -614400 216072192 -21301241856 1063005978624
7 1881471 -1102430208 160791890304 -11164248047616
8 | -5373952 | 5061476352 -1063005978624 | 100372723007488
9 14478180 | -21301241856 | 6300794030460 -794110053826560
10 | -37122048 | 83300614144 | -34065932304384 | 5641848336678912
m\n | 5 6
1 184024 -614400
2 -37122048 216072192
3 2390434947 -21301241856
4 | -83300614144 1063005978624
5 1945403602764 -34065932304384
6 -34065932304384 794110053826560
7 | 478625723149576 -14515166263443456
8 | -5641848336678912 218578429975461888
9 57567784186189368 -2807138079496716288
10 | -520271697765971968 | 31535729115847852032
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m\n | 7 8
1 1881471 -5373952
2 -1102430208 5061476352
3 160791890304 -1063005978624
4 -11164248047616 100372723007488
) 478625723149576 -5641848336678912
6 -14515166263443456 218578429975461888
7 337945040343588276 -6374456847628238848
8 -6374456847628238848 148280443106626633728
9 101150679669913197462 -2864978197116521938944
10 | -1388038765923851599872 | 47362494062244172660736
m\n | 9 10
1 14478180 -37122048
2 -21301241856 83300614144
3 6300794030460 -34065932304384
4 -794110053826560 5641848336678912
) 57567784186189368 -520271697765971968
6 -2807138079496716288 31535729115847852032
7 101150679669913197462 -1388038765923851599872
8 -2864978197116521938944 47362494062244172660736
9 66600077798590855556532 -1311456320500974276980736
10 | -1311456320500974276980736 | 304708210826051412574371
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