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ANALYTIC DISCS IN SYMPLECTIC SPACES

LUCA BARACCO and GIUSEPPE ZAMPIERI

Abstract. We develop some symplectic techniques to control the behavior
under symplectic transformation of analytic discs A of X =

� n tangent to a
real generic submanifold R and contained in a wedge with edge R.

We show that if A∗ is a lift of A to T ∗X and if χ is a symplectic transformation
between neighborhoods of po and qo, then A is orthogonal to po if and only
if Ã := πχA∗ is orthogonal to qo. Also we give the (real) canonical form of
the couples of hypersurfaces of � 2n '

� n whose conormal bundles have clean
intersection. This generalizes [10] to general dimension of intersection.

Combining this result with the quantized action on sheaves of the “tuboidal”
symplectic transformation, we show the following: If R, S are submanifolds
of X with R ⊂ S and po ∈ T ∗

SX|R but ipo /∈ T ∗

RX, then the conditions
codT CS(T CR) = codTS(TR) (resp. codT CS(T CR) = 0) can be characterized
as opposite inclusions for the couple of closed half-spaces with conormal bun-
dles χ(T ∗

RX) and χ(T ∗

SX) at χ(po).
In §3 we give some partial applications of the above result to the analytic

hypoellipticity of CR hyperfunctions on higher codimensional manifolds by the
aid of discs (cf. [2], [3] as for the case of hypersurfaces).

§1. Real symplectic manifolds

Let X be a real manifold and T ∗X the cotangent bundle to X, (x, ξ)

symplectic coordinates, α = ξ dx the canonical one form, σ the two form,

H the Hamiltonian isomorphism, ν the Euler vector field, χ : T ∗X → T ∗X

a real symplectic transformation.

Let D be a C1 manifold, D∗ a C1 section of T ∗X over D. Suppose

D∗
χ

−−−→ χ(D∗)
yπ

yπ

D D̃,

and let po = (xo, ξo), qo = χ(po) = (x̃o, ηo).
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Proposition 1. ξo is orthogonal to TxoD if and only if ηo is orthog-

onal to Tx̃oD̃

Proof. We have

〈ξo, TxoD〉 = 〈ξo, π
′TpoD

∗〉 = 〈π∗ξo, TpoD
∗〉

= σ(Hπ∗ξo, TpoD
∗) = σ(−ν(po), TpoD

∗)

= σ(−χ′ν(po), χ
′TpoD

∗) = σ(−ν(qo), Tqo(χD∗))

= σ(Hπ∗(ηo), Tqo(χD∗)) = 〈π∗ηo, Tqo(χD∗)〉

= 〈ηo, π
′Tqoχ(D∗)〉 = 〈ηo, Tx̃oD̃〉.

A Lagrangian submanifolds Λ of T ∗X is a C1 submanifold whose tan-

gent plane λ(p) = TpΛ verifies λ(p)⊥ = λ(p), ∀ p (with ⊥ denoting the

σ-orthogonal). The intersection Λ1 ∩ Λ2 is said to be clean when it is a

manifold and when T (Λ1 ∩ Λ2) = TΛ1 ∩ TΛ2. All manifolds will be conic

i.e. invariant under Ṙ
+
.

Fix po = (xo, ξo) ∈ Ṫ ∗X:

Proposition 2. Let M1, M2 hypersurfaces, po a point of T ∗
M1

X ∩
T ∗

M2
X and set

R = π(T ∗
M1

X ∩ T ∗
M2

X).

Then T ∗
M1

X ∩ T ∗
M2

X is clean if and only if R is a manifold and there exist

real coordinates t = (t1, t
′, t′′) such that





M1 = {t1 = 0},

R = {t1 = t′ = 0},
M2 = {t1 = Q(t′) + O(t′)o(t′, t′′)}, Q non degenerate.

Proof. Since π|T ∗

M1
X∩T ∗

M2
X has fiber-dimension ≡ 1, then clearly

T ∗
M1

X ∩ T ∗
M2

X is a manifold if and only if R is so. Take then real coor-

dinates t = (t, t′, t′′) in R
N ' X such that

M1 = {t1 = 0}, R = {t1 = 0, t′ = 0}, M2 = {t1 = g(t′, t′′)},

and po = (0;dt1), g(0, 0) = 0, dg(0, 0) = 0. We have

Tp0
T ∗

M1
X = {(u; t dt1) ; u ∈ TM1, t ∈ R},

Tp0
T ∗

M2
X = {(u; t dt1 + Hess(g)u ; u ∈ TM2, t ∈ R}.
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Since g|R ≡ 0 and dg|R ≡ 0, then Hess(g)u = 0 if u′′ = 0; therefore

g = Q(t′) + O(t′)o(t′, t′′). Next cleanness is equivalent to the implica-

tion: “Hess(g)u′ = 0 implies u′ = 0” which is in turn equivalent to non-

degeneracy of Q.

Remark 3. When codT ∗

M1
X(T ∗

M1
X ∩ T ∗

M2
X) = 1, then Q is necessarily

definite (positive or negative). Hence R = M1 ∩M2 and M1, M2 intersect

to the order 2 along R. Let M+
1 , M+

2 denote the (closed) half-spaces with

boundary M1, M2 (and inward conormal p). By the above remarks we must

then have either M+
2 ⊂M+

1 or M+
1 ⊂M+

2 .

§2. Complex symplectic manifolds

Let X be a complex manifold of dimension n, T ∗X the cotangent bundle

to X with symplectic coordinates (z, ζ), σ (= dζ ∧ dz) the canonical 2-

form on T ∗X, R a real submanifold of X, T ∗
RX the conormal bundle to

R in X, po = (zo, ζo) a point of T ∗
RX with ipo /∈ T ∗

RX. In this situation

we can identify, by a choice of coordinates, T ∗
RXzo to a totally real plane

R
l
y′ ⊂ C

n ' T ∗
zo

X.

For a vector ζ ∈ C
n we shall denote by |ζ| the Euclidean norm |ζ| =( ∑

i |ζi|
2
)1/2

. If | =m ζ| < | <e ζ| we also define ‖ζ‖ =
( ∑

i ζ
2
i

)1/2
(for the

determination of the square root which is positive over R
+). If B is a neigh-

borhood of zo, and Γz for z ∈ R ∩ B is a continuous distribution of cones

in T ∗
RXz such that Γzo is conic neighborhood of ζ0 in T ∗

RXzo , we consider

the neighborhood Σ = {(z,Γz) ; z ∈ R ∩ B} of p0 and denote by Σε its

ε-trumcation.

We have an identification

Σε −→ W

(z′; ζ) 7−→ z′ + |ζ|ζ
‖ζ‖ .

(1)

Here W is a wedge of X with edge R; for an identification X ' C
n (in

coordinates)

W ⊃ ((R ∩B) + Γ) ∩B

with Γ a cone of R
l ⊂ X. In fact we see that if ζ and ζ1 belong to Γz with

ζ 6= ζ1, then ζ/‖ζ‖ 6= ζ1/‖ζ1‖ because Γz ∩ iΓz = ∅. On the other hand

the normals issued from different points of the C2 manifold R cannot have

nontrivial intersection in a neighborhood of R; and this is still true if one

replaces normal directions ζ/|ζ| by ζ/‖ζ‖.
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In the identification (1) we shall call z′ the R-components of z and |ζ|

the distance to R. Thus X \R is foliated by the surfaces of fixed distance:

R̃t =
{
z = z′ + t

ζ

‖ζ‖
; (z′; ζ) ∈ T ∗

RX ×X B
}

, t > 0 small.(2)

We consider the symplectic transformation χ = χt of T ∗X into itself:

χ : (z; ζ) 7−→
(
z + t

ζ

‖ζ‖
; ζ

)
.

Let s±R(p) denote the number of respectively positive and negative eigenval-

ues for the Levi form LR(p) and also set

γR(z) = dim(T ∗
RXz ∩ iT ∗

RXz)

and

dR(p) = cod(R) + s−R(p)− γR.

Consider now a new manifold S ⊃ R, suppose p ∈ R×S T ∗
SX and note that

dS ≤ dR ≤ dS + codS R.(3)

Also notice that T ∗
SX ∩ T ∗

RX is clean. Let R̃ = R̃t, S̃ = S̃t (t � 1) be the

subspaces defined by (2). Denote by S̃+, R̃+ the closed half spaces with

boundary S̃, R̃ and inward conormal qo.

Theorem 4. Let R ⊂ S ⊂ X, and let po ∈ R×S T ∗
SX, ipo /∈ T ∗

RX.

(i) Assume

γR = γS .(4)

Then R̃, S̃ intersect at the order 2 along π(T ∗

S̃
X ∩ T ∗

R̃
X) with S̃+ ⊂ R̃+.

(ii) Assume

γR − γS = codS R.(5)

Then the same conclusion as in (i) holds but with S̃+ ⊃ R̃+ instead of

S̃+ ⊂ R̃+.

Proof. Consider

R ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sm = S, codSi+1
(Si) = 1.
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We have

Z = µ hom(ZSi+1
, ZSi

)p(6)

= µ hom(Z
S̃i+1

, Z
S̃i

)q[(dS̃i+1
− dSi+1

)− (d
S̃i
− dSi

)]

= RΓ
S̃+

i+1

(Z
S̃+

i

)z̃[(dS̃i+1
− dSi+1

)− (d
S̃i
− dSi

)].

Note now that

s−
S̃i

(q) = s−Si
(p) ∀ i.(7)

In fact we have

{
Ker(LSi

)
∼
←−
π′

TpT
∗
Si

X ∩ iTpT
∗
Si

X
∼
−→
χ′

TqT
∗

S̃i

X ∩ iTqT
∗

S̃i

X
∼
−→
π′

Ker(L
S̃i

),

dim T CS̃i − dimT CSi = codX Si − 1− γSi
,

(8)

i.e.

rank(L
S̃i

) = rank(LSi
) + (codCn T CSi − 1).(9)

On the other hand it is easily seen that

s+

S̃i

≥ s+
Si

+ (codCn T CSi − 1).(10)

Thus (9), (10) give (7). It follows from (7):

(d
S̃i+1
− dSi+1

)− (d
S̃i
− dSi

) = codT CSi+1
(T CSi).(11)

(i): Assume (4). Note that

γR = γS ⇐⇒ γSi+1
= γSi

∀ i(12)

⇐⇒ codT C

Si+1

T CSi = 1 ∀ i.

Thus in this case (6) gives:

Z ' RΓ
S̃+

i+1

(Z
S̃+

i

)z̃[1].(13)

We know on the other hand from Proposition 2 that S̃i and S̃i+1 intersect

at the order 2 along a 1-codimensional manifold (namely π(T ∗

S̃i+1

X∩T ∗

S̃i

X))

with either S̃+
i+1 ⊂ S̃i

+
or S̃+

i+1 ⊃ S̃i
+
. But (13) says that S̃+

i+1 ⊂ S̃+
i ∀ i.

Iteration of this inclusion gives the conclusion.
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(ii): Assume (5). We have

γR − γS = codS(R)⇐⇒ γSi
− γSi+1

= 1 ∀ i(14)

⇐⇒ codT CSi+1
(T CSi) = 0 ∀ i.

Thus we have in this case

Z ' RΓ
S̃+

i+1

(Z
S̃+

i

)z̃

which obviously implies S̃+
i+1 ⊃ S̃i.

§3. Application to analytic discs and symplectic transformations

Let R be a real submanifold of codimension l of a complex manifold

X of dimension n in a neighborhood of a point zo. Let us choose complex

coordinates such that T ∗
RXzo is the plane C

γ
z1,...,zγ × iRl−2γ

yγ+1,...,yl−γ
and write

z = (z′, z′′), z′ = z1, . . . , zl−γ . Let us introduce a new complex symplectic

transformation, that we still call χ:

χ : (z; ζ) 7−→

(
z +

ζ ′

‖ζ ′‖
; ζ

)

from a neighborhood of a conormal po = (zo, ζo) with ζo ∈ (Cl × iRl−2γ) \
(Cl × {0}) to a neighborhood of po = χ(po). For this transformation χ all

conclusions of §2 hold without modifications. In particular

R̃ := πχ(T ∗
RX) is a hypersurface.

We shall deal with analytic discs in X and denote A = {A(τ) ; τ ∈ ∆}

(where ∆ is the unit disc in C). We shall say that A is “attached” to R if

∂A ⊂ R. The transformation above defined has the great advantage of giv-

ing a rule to interchange analytic discs “attached” to R and R̃ respectively.

Assume that R is defined by a system of equations r = 0 (r = r1, . . . , rl−γ)

with ∂rj |zo = dzj , j = 1, . . . , γ, ∂rj |zo = −i dyj , j = γ + 1, . . . , l − γ and

that ζo = (. . . , 0,−i, 0, . . .) where −i is in the (l − γ)-th position. We write

z = (z′, z′′), z′ = (z1, . . . , zl−γ); we similarly write ζ = (ζ ′, ζ ′′), ∂ = (∂′, ∂′′)

and so on. Let A be a “small” analytic disc attached to R with A(1) = zo.

It is easy to prove existence of an (l − γ) × (l − γ) matrix G, real on ∂∆

with G(zo) = id such that

G∂′r extends holomorphically from ∂∆ to ∆.
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To this end it is enough to solve the Bishop equation

G=m ∂′r − T1(G<e ∂′r) = id l−γ×l−γ on ∂∆(15)

where T1 is the Hilbert transform with T1( · )|1 = 0. Note that (15) is

solvable, in suitable Banach spaces, by the implicit function theorem, due

to | <e ∂′r| � 1. Let λ = (. . . , 0, 1, 0, . . .)G and define

A∗ = (A(τ);λ∂′r|A(τ)), Ã =

{
A(τ) + λ

∂′r(A(τ))

‖λ∂′r(A(τ))‖

}
.

It is clear that, if π : T ∗X → X is the canonical projection, then

Ã = πχA∗.(16)

It is also obvious that A∗, and hence Ã are holomorphic discs and that

∂Ã ⊂ R̃

due to λ∂r|∂A ↪→ T ∗
RX|∂A. If we apply Proposition 1 to A∗ ⊂ T ∗XR we get

<e〈∂τ Ã, ζo〉 = 0; if we apply it to iA∗ ↪→ T ∗XR we get =m〈∂τ Ã, ζo〉 = 0

which implies ∂τ Ã ∈ T CR̃.

Let W be a “wedge” with edge R (cf. [8]). For an open cone Γ ⊂
(TSX)zo the so called “profile” of W , in an identification by coordinates

X ' C
n = TzoR ⊕ (TRX)zo , and for a neighborhood B of zo, W has the

form

W = ((B ∩R) + Γ) ∩B.

Let OX be the sheaf of holomorphic functions on X. Let S be a sub-

manifold of X which contains R and which has ζo among its conormals at

zo. Let CS|X , BS|X be the complexes of CR microfunctions and CR hyper-

functions along S respectively. Let sp : H0(π−1BS|X) → H0(CS|X) be the

spectral morphism, and define

SS(u) = supp sp(u), u ∈ BS|X .

Note that SS(u)zo = {0} if and only if u is a holomorphic function in

a neighborhood of zo. Let ζo ∈ T ∗
SXzo , take Γ ⊂ {<e〈z, ζo〉 > 0}, and set

W± = ((B ∩R)± Γ) ∩B.

Theorem 5. Assume
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(i) A ⊂ R ∪W− (resp. A ⊂ R ∪W+),

(ii) γS = γR (resp. γR − γS = codS R),

(iii) TzoA ⊥ ζo,

(iv) A 6⊂ R in any neighborhood of zo.

Then for f ∈ (BS|X)zo we have po /∈ SS(b(f)) (resp. −po /∈ SS(b(f))).

Remark 6. It is not necessary to assume A 6⊂ R in order to get an

analytic disc Ã ⊂ S̃∓ \ S̃ which is the only fact we really need in the proof.

Here again S̃∓ are the closed half spaces with boundary S̃ and inward

conormal ∓ζo. Thus let S : r′ = 0, R : r′ = 0, r′′ = 0. Assume for instance

there is an analytic “lift” A∗ i.e. a holomorphic section of T ∗X over A such

that:

A∗|∂A ⊂ T ∗
RX \ T ∗

SX

i.e. A∗ = (A; θ∂r) with θ∂r extending holomorphically, θ real over ∂A,

θ′′ 6≡ 0. Then

∂Ã ⊂ R̃ ⊂ S̃− but ∂Ã 6⊂ S̃.

Proof. Let {Br} (resp. {B̃r}) be the family of spheres with center zo

(resp. z̃o) and radius r. We can find a sequence of subdiscs Aν such that

Aν ⊂ A ∩Brν , ∂Aν 6⊂ R

(for a sequence rν → 0). Suppose we are proving the statement for po. By

the discussion above, these are interchanged to analytic discs Ãν such that

∂Ãν ⊂ (R̃− ∩ B̃sν ) ⊂ (S̃− ∩ B̃sν ) but ∂Ãν 6⊂ S̃,

(since R̃− ⊂ S̃− due to γR = γS) for a new sequence sν → 0). By Proposi-

tion 1 we also have

Tz̃oÃν ⊂ T C

z̃o
S̃.(17)

We then enter [3, Theorem 1] and conclude that holomorphic functions

f̃ in
◦

S̃−∩B̃ν extend to a full neighborhood of z̃o; thus germs of holomorphic

functions on
◦

S̃− extend to C
n at z̃o. Now we introduce a quantization φK

of χ by a kernel K. This induces a “microlocal” transformation of OX .

CR hyperfunctions u at zo are transformed into sums of boundary values

b(f̃+)+b(f̃−) on S̃ of germs f̃± ∈ OX

( ◦

S̃±
)
z̃o

in such a way that po /∈ SSb(f)

if and only if f̃− extends at z̃o. The proof is complete.
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If we take R = S in Theorem 5 and consider wedges W± with edge S we

regain [2, Proposition 7] by a new method of “reduction to a hypersurface”.

If moreover we assume that A is orthogonal to any conormal ζ ∈ T ∗
SXzo

(instead of the only ζo) we get:

Corollary 7. Assume

(i) A ⊂W∓ ∪ S but A 6⊂ S in any neighborhood of zo,

(ii) TzoA ⊂ T C
zo

S.

Then any f ∈ OX(W∓)zo extends holomorphically to a full neighborhood of

zo.

Proof. We apply Theorem 5 to all p ∈ ±Γ∗ and conclude that ±Γ∗ ∩

SSb(f) = {0}. On the other hand recall that there is an elementary estimate

of microsupport; for f ∈ OX(W∓)zo we have SSb(f)zo ⊂ ±Γ∗. Hence we

can conclude SSb(f)zo = {0}.

Example 8. In C
4 let

S = {y3 = z1z2 + z̄1z̄2, y4 = 0}, ∓p = ∓dy3 + λdy4,

R = {y2 = 0, y3 = z1z2 + z̄1z̄2, y4 = 0},

A = Cz1
× {0} × {0} × {0}.

We can find a section λ∂r ∈ (T ∗
RX\T ∗

SX)|∂A which extends holomorphically.

For that just notice that the tangent direction u = (1, 0, . . .) to A verifies

u ∈ Ker(LR)(λ∂r). Hence Remark 6 applies and yields ±p /∈WF (f).

§4. Appendix. Positivity of Lagrangians (cf. [4])

We shall further exploit here the techniques of §2 to give an extension

of the results of [4].

Let X be a complex manifold, R and S real submanifolds of X with

R ⊂ S. Recall that T ∗
RX ∩ T ∗

SX is clean and that (3) of §2 holds. Let

p ∈ R×S T ∗
SX, ip /∈ T ∗

RX.

Theorem 9. (i) Suppose

dR − dS = codS R.(18)
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Then there exists a germ of a homogeneus complex symplectic transforma-

tion χ of T ∗X from a neighborhood of po to a neighborhood of qo = χ(po)

which interchanges

T ∗
RX

∼
−→ T ∗

R̃
X, T ∗

SX
∼
−→ T ∗

S̃
X,

for a pair of hypersurfaces R̃, S̃ with s−
R̃
(qo) = 0, s−

S̃
(qo) = 0 and such that

R̃, S̃ intersect at the order 2 along π(T ∗

R̃
X ∩ T ∗

S̃
X) with R̃+ ⊃ S̃+.

(ii) Suppose

dR = dS .(19)

Then there exists χ such that the same conclusion as in (i) holds but with

S̃+ ⊃ R̃+ instead of S̃+ ⊂ R̃+.

Remark 10. Generally, the transformation χ of §2 does not suffice for

the conclusion of Theorem 9.

Proof. Consider

R = S1 ⊂ S2 ⊂ · · · ⊂ Sm = S, codSi+1
Si = 1.

Put ãi = d
S̃i
− d

S̃i+1
, ai = dSi

− dSi+1
. By the result of §2 we have

Z ' RΓ
S̃+

i+1

(Z
S̃+

i

)z̃[ai − ãi].

Recall that 0 ≤ ai ≤ 1. Thus (18) and (19) are equivalent to ai = 1 ∀ i and

ai = 1 ∀ i respectively.

We recall that if a submanifold Λ ⊂ T ∗X is R Lagrangian (i.e. La-

grangian for σR the real part of σ) and verifies

dim(TpoΛ ∩CH(ζo dz)) = 1,(20)

then Λ is symplectically equivalent to the conormal bundle to a hypersur-

face. (Note here that if Λ = T ∗
RX, then (20) is equivalent to ipo /∈ T ∗

RX,

hence this latter condition characterizes the higher codimensional manifolds

R which are “symplectically equivalent” to a hypersurface.) In particular

for any family of Lagrangian manifolds Λi, i = 1, . . . ,m which satisfy (20)

we can find χ such that

Λi
∼
−→

χ
T ∗

Mi
X, cod(Mi) = 1 ∀ i.(21)
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Also we can arrange (cf. [6]) that

s−Mi
(qo) = 0 for at least one i.(22)

We shall apply the above remarks for Λi = T ∗
Si

X.

(i): We take in this case χ such that

T ∗
Si

X
∼
−→ T ∗

S̃i

X, cod(S̃i) = 1 ∀ i, s−
R̃
(qo) = 0

Assume s−
S̃i

(qo) = 0; we show that





S̃+
i+1 ⊂ S̃i

+
,

s−
S̃i+1

(qo) = 0 ∀ i.
(23)

In fact we are in the situation
{

ãi = −s−
S̃i+1

(qo),

ai = 1,

whence ai − ãi = s−
S̃i+1

(po) + 1 and

Z = RΓ
S̃i+1

(Z
S̃i

)z̃
[
1 + s−

S̃i+1

]
.(24)

But since we know from Proposition 2 that S̃i, S̃i+1 intersect at the order 2

along a 1-codimensional submanifold with either of the inclusions S̃+
i+1 ⊂ S̃+

i

or S̃+
i+1 ⊃ S̃+

i , then (24) implies (23).

Hence induction applies and gives the conclusion
{

S̃+ ⊂ R̃+,

s−
S̃
(qo) = 0.

(ii): We take now χ:

χ : T ∗
Si

X
∼
−→ T ∗

S̃i

X, cod(S̃i) = 1 ∀ i, s−
S̃
(qo) = 0.

Assume s−
S̃i+1

(qo) = 0; we show that





s−
S̃i

(qo) = 0,

S̃i
+
⊂ S̃+

i+1.
(25)
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In fact we have {
ãi = +s−

S̃i

(qo),

ai = 0

Thus ai − ãi = −s−
S̃i

and therefore

Z = RΓ
S̃+

i+1

(
Z

S̃+

i

)
z̃

[
− s−

S̃i

]
,

which implies (25). The conclusion will follow again by induction.

Remark 11. Recall the semiorder relation of positivity “<” between

Lagrangians in the sense of [5]. Thus we have in fact proved that T ∗
RX <

T ∗
SX in case (i) (resp. T ∗

SX < T ∗
RX in case (ii)).
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