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Abstract. Let D be a domain in R™"" and E be a domain in R™"'. A pair
of a smooth mapping f : D — E and a smooth positive function ¢ on D is
called a caloric morphism if ¢ - u o f is a solution of the heat equation in D
whenever w is a solution of the heat equation in £. We give the characterization
of caloric morphisms, and then give the determination of caloric morphisms. In
the case of m < n, there are no caloric morphisms. In the case of m = n, caloric
morphisms are generated by the dilation, the rotation, the translation and the
Appell transformation. In the case of m > n, under some assumption on f,
every caloric morphism is obtained by composing a projection with a direct
sum of caloric morphisms of R™*1.

§1. Introduction

For a non-negative integer k, R¥*! denotes the k + 1-dimensional Eu-
clidean space. The coordinates in R*¥+! is denoted by (¢, ) or (z¢,z) where
r=(x1,...,2k).

We shall use the following notation:

k
0 0 2 0
=(=—,...,— ), A=Y —, H==-A
v <8$17 ’&’lfk)’ Z@x?’ ot

A C?-function h is said to be caloric if h satisfies the heat equation
Hh = 0.

Since the heat operator H is hypoelliptic (see, e.g. [9]), every caloric function
is infinitely differentiable.
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Let m,n be positive integers and D a domain in R™*!. We denote by
(t,z) = (t,21,...,Zm), (1,9) = (T, y1,...,yn) the points of R™*+1 R"*! re-
spectively. We consider a mapping f(t,z) = (fo(t,x), fi(t,z),..., fu(t,x)) :
D — R"! and a weight function ¢ which preserve solutions of the heat
equation in the following sense. A pair (f, ) of C*-mapping f : D — R*+1
and a positive C%-function ¢ on D is said to be a caloric morphism if
f(D) is a domain in R"1 and if for every caloric function u on f(D),
o(t,z)(uwo f)(t,x) is also a caloric function on D.

In the case of m = n, the following three typical caloric morphisms are
known.

The Appell transformation
Let D = (0,00) x R™ (resp. = (—00,0) x R™). Put
1

s = "

Then f(D) = (—00,0) x R™ (resp. = (0,00) x R™) and (f, ) is a caloric
morphism.

1 x

2)s elta) =

Z e lz?/4t
t’t '

The dilation and the rotation in z
Let A > 0 and U be an (n,n)-orthogonal matrix. Put

ft,z) = (N, \Uz),  o(t,z) =1.
Then (f, ) is a caloric morphism from R"*! onto R+

The translation
Let a € R and b, ¢c € R". Put

ft.o)=(t+az+th+c), olta)=eilltrste
Then (f, ) is a caloric morphism from R"*! onto R"*1.
We give two simple examples in the case of m > n.

ExAMPLE 1. The symmetrization in R™ with respect to a subspace
with codimension 2.

Let m =2 4, n=m-—2and D = {(t,x) ; t > 0, |2'| > 0} (resp.
D = {(t,x);t < 0, |2'| > 0}), where 2/ = (x1,29,23,0,...,0) for x =
(x1,...,Tp). Put

fo(t) = —t71,
fl(tvx) = til‘x/’a
fittx) =t"ej,  25j<n,



CALORIC MORPHISMS 135

2
— |/~ L~ (m—2)/2 _|95|
plt,z) = o't exp (=)

Then f(D) = {(7,y);7 <0, y1 > 0} (vesp. f(D) = {(7,9);7 > 0, y1 < 0})
and (f, ) is a caloric morphism.

ExXAMPLE 2. The projection in x.
Let h be an arbitrary positive caloric function on R™~"+1, Put
flt,x, . o zm) = (Gx1, .o xn),  @(t,x) = h(t, Tpg1, ..oy Tm)-

Then (f, ) is a caloric morphism from R™*! onto R™*1.
In the case of m = n, Leutwiler [7] proved that every caloric morphism
has the following form:

at+ 0 Rx+tv+w
t.x) =
fn) = (S s )

C |y Rz+yw—6v|?
Wexp[—w}a v #0, (0)

Cexp[%t—i—%v-Rx], v =0,

(P(tax) =

where «, 3,7,d are real numbers with ad — 8y = 1, v,w € R", R is an
n-dimensional orthogonal matrix, C' > 0 and - denotes the inner product of
R™. It is a composition of the above three morphisms: the Appell transfor-
mation, the dilation, the translation.

The aim of this paper is to extend this to the case of m # n.

We first give a general characterization of caloric morphisms, which
is essentially obtained by Leutwiler. As its corollary, there are no caloric
morphism if m < n. Also by virtue of the characterization, we obtain a
new systematic way to construct a caloric morphism by a “direct sum” of
caloric morphisms in the case of m > n. It is remarkable that the direct
sum gives caloric morphisms of new type such that fy is a sum of fractional
linear functions. Note that in the case of m = n, fy is just a fractional linear
function.

Our main result is the determination of caloric morphisms (f, ¢) in the
case of m > n under the assumption that each f;, 1 < i < n is a polynomial
in x for every ¢t and that fj is real analytic. Under the assumption, we can
give an explicit form of caloric morphisms (Theorem 7 below). Although it
seems to be complicated, it turns out to be a direct sum of the caloric mor-
phisms of form (0) composed with a projection, as is shown in Corollary 10.
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§2. Characterization of caloric morphisms

DEFINITION 1. A pair (f,¢) of C2mapping f : D — R""! and a
positive C2-function on D is said to be a caloric morphism, if f(D) is a
domain and if for every caloric function uw on f(D), ¢(t,z)(uo f)(t,z) is
also a caloric function on D.

Remark 1. Using derivatives in the sense of distribution, we may as-
sume f and ¢ to be continuous rather than of C2. For the sake of simplicity,
we assume here that f and ¢ are of C2.

THEOREM 1. Let f = (fo, f1,.--,fn) : D — R be a C?*-mapping
such that f(D) is a domain and let ¢ be a positive C*-function on D. Then
the following statements are equivalent:

(i) (f, ) is a caloric morphism.

(ii) For every polynomial P(7,y) which is caloric and of degree < 4,

o(t,z)(Po f)(t x)
is caloric on D.
(iii) f and @ satisfy the following equations:
(1) Hep =0,
(2) pHfi=2Vp-Vfi, 1=i=Zn,
(3) Vfo =0,
< dfo -

where - denotes the inner product in R™.

(iv) There ezists a continuous function A(t) =0 on D such that

() H{p(uo f)}(t,z) = At)*o(t,z)(Hu o f)(t, )

holds for every C? function u on f(D) where H in the right hand side
means the heat operator on R*H1.

Remark 2. By (3), fo depends only on t. And (4) shows that dfy/dt = 0
and |V f;(t,z)|? is independent of z, where | - | denotes the norm of R™.
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Proof.
(i)=>(ii) is trivial.
(ii)=-(iii): By the chain rule,

n

(©)  H{plPo P} = Ho(Po f)+ Y (ol fi ~ 2V V)G o f
=0 82
L ij)ayla o f.

4,7=0

Let P = 1. Then we have Hy = 0. Let P(yo,y) = i, 1 £ 4 < n in the
equation (6). Then we obtain

eHfi =2Vp-Vf;, 1=i=n.
Take a point p € D and put ¢ = f(p). Let P(yo,y) = (vi — @:)(y; — ¢5),

1 <4,j <n, i # j in the equation (6). Since (0?P/0y;0y;)(¢) = 1 and the
other derivatives of P vanish at ¢, we have

Vfip) -Vfip)=0, 1=Zi,j<n,i#j]

Since p is arbitrary,

in D. Let P(yo,y) = (yo—q0)> + (%0 —q0) (i — 4:)* + 15 (yi — @), L S i S .
Since (92P/0y3)(¢q) = 1 and the other derivatives of order < 2 vanish at g,
we have

(8) IV fo(p)]> = 0, and thus V fo(p) = 0.

Since p is arbitrary, (3) holds. Finally, let P(yo,y) = yo — q0 + %(yZ —q)?,
1 < < n. Since (9P/dyo)(q) = (8°P/dy?)(¢q) = 1 and the other derivatives
vanish at ¢, we have

(9) e(p)Hfo(p) = )|V fi(p))*, 1Zi<n.

Combining (7), (8) and (9), we obtain (4).
(iii)=(iv): Let u be of C? in f(D). By the chain rule

(1) H{p(uo f)} = Ho(uo f)+ Zwﬂfi v vmg—;‘_ o f
i=0 ¢
2

u
1= 0
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Substituting (1)—(4) into (10), we have

H{So(uof)}—¢Hf08—y()of—</?;‘vfi\ 8—yi20f:<p%Huof.

Putting A(t) = (dfo/dt(t))'/?, we obtain

H{g(uo f)}(t,x) = \&)*¢(t, 2)(Hu o f)(t, ).

Note that \(¢t) = |V fi(t,z)| by (4).
(iv)=(i) is evident. 0

COROLLARY 2. For every caloric morphism (f, @), f and ¢ are of C°.

Proof. By (2), ¢f; is caloric (1 £ i < n), so ¢f; is of C*°. Since ¢ > 0
and ¢ is caloric, f; is of C*°, 1 < ¢ < n. fy is of C* by (4). Thus f is a
C*°-mapping. O

COROLLARY 3. Let (f, ) be a caloric morphism from D to R"*1. Then
for any C?-function u on f(D), we have the following implications:

Huz=20= H{p(uo f)} 20,
Hu=s0= H{p(uo f)} < 0.

They immediately follow from (5).

COROLLARY 4. (i) Let (f,¢) = ((fo,---, fn),®) be a caloric morphism
from D C R™*L to R*L. Then fi(t) > 0 on D.
(ii) If n > m, there are no caloric morphisms.

Proof. (i) Suppose that f{(t9) = 0 for some (tg,z0) € D. Let I C R
be the connected component of {¢; fi(t) = 0} such that ¢, € I. Since fj is
a non-decreasing function, fo(t) # fo(to) for all ¢ ¢ I. So we have

f{(t.x) € Dit e I}) = f(D) N {(7,y) € R 7 = fo(to)}.
Then by (4)

Vfilt,z) =0, (t,z)eD,tel,1=i<n.
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This and (2) imply

%(t,x) =2Vlogy -Vfi=0, (t,z)eD,tel,1<i<n.
Therefore the set f({(t,z) € D;t € I}) consists of one point. Thus the
set f(D)NA{(r,y);7 = fo(to)} consists of one point. It is contrary to the
condition that f(D) is a domain. Therefore fi(t) > 0 for all ¢.

(ii) Let m < n. By virtue of (4), V f1, ...,V f, are n orthogonal vectors
in R™ with same length. Since n > m, we have Vf; =--- =V f, =0in D.
Then (4) gives f} =0 in D. This contradicts to (i). [

Let m,n, k be positive integers and let D, E be domains in R™*!, in
R™ 1 respectively. If (f, o) : E — R*! and (g,v) : D — R"*! are caloric
morphisms such that g(D) C E, then we can make a caloric morphism
(F,®) : D — R*! from (f,¢) and (g,¢) by the composition (F,®) =
(fog,(pog)y).

The next proposition provides a manner for the construction of new
caloric morphisms.

PrROPOSITION 5. Let [,mq,...,m;,n be positive integers and I be an
open interval. For each j = 1,...,l, suppose that D; is a domain in R™
and that (g;,¢5) = ((9j0,9j1, - - - Gjn), ©5) 5 a caloric morphism : I x D; C
R™itL — R Pyt

fot) = gio(t) + -+~ + gio(t),

filt,x1, .o Ty egmy) = 91(E, 21, - o s Ty)
+ 92i(, Ty 415 -+ > Ty by ) + 7 -
+ 91t Ty oty 1 Ty gy ), L S0 SN,
Ot x1, . Ty etmy) = @16 15+, Ty )02(E Tong 415 -+ s Ty ma ) =
O1(t, Ty ety 1415 - - - s Ty ey ) -

Then (f,) : I x Dy x --- x Dy ¢ Rmt—+mutl _ Rntl 45 g caloric mor-
phism.

We call the above caloric morphism (f, ) the direct sum of
(gl) @1)5 ey (gl) SOZ)
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Proof. For each j, we denote by H;, V; and A; the heat operator, the
gradient and the Laplacian in R™ 1. The heat operator, the gradient and
the Laplacian in R™+ 7+l are denoted by H, V and A. Since (gj, ;)
is a caloric morphism, (1), (2) and (4) show

dgjo
Hjpj =0, @jHjgji =2Vjp;-Vjgji, Vijgji-Vjigjk = Oik di ;
1<ik<n 1<j<1.

Using

Vfi = (Vigii, Vagoi, .- Vigii),

~ (Vipr Vapg Vigi
VSO - QO 9 DRI 9
¥1 ©2 2]

Hf; = Higii + Hagoi + - + Higii,

we have
WV = S0(2V1801 : Vlgu’ 2Vaps - ng%,... ’ 2Vigpr - vl!)li)
Y1 2 ©1
= o(Hyg1; + Hagoi + - - + Higii)

and

Vii-Vie=Vigii- Vigik + Vag2i - Vagor + -+ + Vigii - Vigik

dgio  dgao dgio

:51 _— - e v

k(dt T T +dt)
dfo
— 6,00,
ik dt

On the other hand, since

Iy _ (i% 10p2 i%)
ot - ¥1 ot »2 ot "2} ot ’
A A A
Ag0:<p( 1<P1_|_ 2@2_1_..._’_1_(/91)’

®1 P2 2

we obtain Hy = 0. Thus (f, ¢) is a caloric morphism. [
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§3. Main result

In the case of m = n, the form of caloric morphism is explicitly deter-
mined by Leutwiler [7]. So hereafter, we assume m > n in the rest of this
paper.

In the sequel, we shall determine caloric morphisms (f, ), f = (fo, f1,

.., fn) in the case that f;, 1 <4 < n is a polynomial of x for each t and
that fy is real analytic.

PROPOSITION 6.  Let (f,) be a caloric morphism and assume that
fi, 1 <1 < n is a polynomial of x for each fized t. Then

A

where a;j, bj, 1 <4 =n, 1= 5 < m are C®-functions.

Proof. Let t be fixed. Suppose that f;(t,x) is a polynomial of degree
[ =2 1. Write f;(t,x) = h(t,x)+g(t, z), where h is a homogeneous polynomial
of degree [ and g is a polynomial of degree < [ —1. Since Vh # 0, the degree
of the polynomial |V f;|> = |Vh|?+2Vh-Vg+|Vg|? is equal to 21 —2. On the
other hand, |V f;|? is of degree 0 by (4) of Theorem 1. Thus deg f; < 1. []

Remark 3. We cannot replace real analytic functions in the place of
polynomials in the above proposition. In the above Example 1, f; is not a
polynomial.

Main result of this paper is the following

THEOREM 7.  Let (f,¢) = ((fo, f1,---, fn), ) be a caloric morphism
defined on a domain D C R™*L. Assume that for each 1 < i < n and each
t, fi(t,x) is a polynomial of x and that fo(t) is real analytic.

Then there exist a positive integer k < m/n and an orthogonal coordi-
nate of R™ denoted by (x1,...,Ty) again with four families a;, 1 < i < k,
Bi, 1215k, 6,05i<nand v, 1<i<n,1=j <k of real num-
bers satisfying a; > 0 and B; # B, © # j, and a positive caloric function
h = h(t,Zgps1, .- Tm) (in the case of m = nk, h is a positive constant)
such that f and ¢ are of form (1) or (II).
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k
(67 .
filtw) =) = = (@(nei T g) 0, 1SiSm,

= i
| P o
SD ) ’ ‘Tl/2 ﬁ —t )
j=1 J
(IT)
f __(llt%_ ji: +‘607
1<j< ﬂj _t
<j<k
filt, ) = ai(z; +vat) + Z SU(jfl)nJri + i) +6i, 1=i=mn,
1<]<k
’YZ ’YZ n z+’Y7,
go(t CC)—heXpZ[ 1t—|— 1 ] H |n/2 pz (G- 1)6+_t J) ]
J

<]<k

First we shall prove the assertion of the theorem in the case of n =1
under the assumption that log ¢ is a polynomial of x of degree < 2.

LEMMA 8.  Let (f,¢) = ((fo, f1),¢) be a caloric morphism from D C
R™*L to R Assume that fi and ¢ are of the following form:

filt,x) = a(t)a; + b(t)
j=1

o(t,z) =exp (ix Ut)z+o(t) -z + w(t)),

where ai,...,an, b and w are C*®°-functions, v is a C*°-vector and where
U is a symmetric (m, m)-matriz of C*-functions.

Then there exist a positive integer k < m and an orthogonal coordinate
of R™ denoted by (x1,...,Tm) again with four families o, 1 < i < k, f3;,
1<5i<k,6,i=0,1 and v, 1 £ 1 < k of real numbers satisfying a; > 0
and (; # B;, i # j, and a positive caloric function h = h(t,Tp41,...,2m)
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(in the case of m = k, h is a positive constant) such that f and ¢ are of

form (1) or (2).

(1)
folt) =3 % s
0 = )
=t ’
k s
filte) =Y 5, () + ) + 0,
j=1
wp +9;)?
Pl =it Hw Sl e

if Ul(to) is invertible or a(to) is orthogonal to the zero-eigenspace of Ul(tg)
for some tg.

(2)
t)=olt+ Y ﬂ] _t + do,
1<j<k
fi(t,x) = ar(z1 +7t) + Z $]+’Yj)+51,
1<j<k
_ n,m ] 1 o @+ )
1<j<k
otherwise.

Proof of Lemma 8. We may assume ty = 0 by some translation of ¢.
Since (f, ) is a caloric morphism, f; and log ¢ satisfy the equations

0log
ot

Hf  =2Vlogy-Vfi,

— Alogp — [Vlogp|* =

by (1) and (2). Then we have the following differential equations

2
tr U
U'=U?% v =0Uv, w'z—’i’ +—r2,

ad=Ua, b=a-wv,



144 K. SHIMOMURA

where a = (a1, ..., ay) and tr U denotes the trace of the matrix U.

Since U(0) is real symmetric, we have the spectral decomposition
U0) = Zé 1 AjP;, where ); is a real eigenvalue of U(0) with multiplic-
ity nj, and P; is the orthogonal projection of R™ to the corresponding

eigenspace. Since U(t) is the solution of U’ = U?,

l
A
=21
j=1

and so the solutions of a’ = Ua, v/ = Uv are

l l
Z Pao, u( Z

where ap = a(0) and vy = v(0).

Let k be the cardinal of { Pj; Pjag # 0} (note that ag # 0 because of (4)
and Corollary 4). We may assume Pjag # 0,1 < j <k, Pjag =0,k <j =1
and A\; #0,1 <j <k, k+1<j <1 by some rearrangement of \i,...,\,
if necessary.

Assume that U(0) is invertible. Then \; # 0 for all j and the solutions
of ¥ =a-vand w = [v|>/4+trU/2 are

P 500,

f’jao . f’j’l)()

b(t) = — (1= Ajt)

+517

l
N | Pjvol® n;
wlt) = ;:1 (%(1 g 3 les )\]t)) + 0y

with some constants d; and ds. By f = |Vf1|2 we have
2 |P a0|
dt = +
/'“ ) EYCEPYI R
with some constant dg. Put
| Pjaol A Pjag 1 :
o = >0, e, =—>2—€cR" B=—, 15jZk.
S PY] 7 [\ Pjaql TN

Note that S1,..., 0 are mutually distinct. Adding m — k eigenvectors of
U(0) to {e1,...,ex}, in the case of m > k, we obtain an orthonormal basis
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{e1,...,em} of R™. For j > k, we denote by A; the eigenvalue of U(0)
1
corresponding to e; and put §; = IV By the orthogonal coordinate of R™

defined by {ey,...,en}, we write z = (z1,...,2,,) again for every z € R™.
Putting v; = e; - 22:1 Pvyg/Ni, 1 < j < m, we obtain

m
1 (zj +5)°
p(t,z) =C exp ,
jHl\ B =tz 4B — 1)
where C' is a positive constant.
Put

zj + ;)
Ck<1j_£ t|1/2 o (4(]@‘ —]t)) '
Then h = h(t,zk41,...,2Zn) is a positive caloric function and
7! (2 +5)°
@(t,x)—hjl_[lw 172 exp 05—t

Assume that U(0) is not invertible. Then there are two cases: ag is
not orthogonal to the zero-eigenspace of U(0), or ag is orthogonal to the
zero-eigenspace. They are equivalent to A\; = 0, or A\;y+1 = 0, respectively.

If Ay =0, then b(t), w(t) are given by

PCLO P’UQ
b(t) =P Progt ——+9
(t) = Prag - 1U0+Z (1—At)+ 1
1<]<k
| Progf? | Pvol® n
) =100 — IO Dlog(1— A\jt)) +6
wit) ==t 3 (4Aj(1—Ajt) p los(l =% )+

1<j<l

with some constants 67 and d. Thus

Pja
fot) = [Pragft + > ‘1_0‘“ + b0
1<<k
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with some constant dg. Put

) P;a, )
|Pjaol, j=1, 0 =1,
o = | Pja| e; = \Pa()]
J 0] . J
\;\,‘ » I>1 Ay o
J ‘)\ Pa()] ’

B = )\ij, 1<j<k.
Note that 3; are mutually distinct. Adding m — k eigenvectors of U(0)
to {e1,...,ex}, in the case of m > k, we obtain an orthonormal basis
{e1,...,em} of R™.If j > k and U(0)e; = Ajej for some \; # 0, we put
Bj = 1/X;. By the orthogonal coordinate of R™ defined by {e1,...,emn}, we
write © = (x1,..., %) again for every z € R™.
Putting v; = e; - (Prvo + Y_1.i<; Pivo/ i), 1 < j < m, we obtain

2
o
folt) = aft+ > I+ b,
Bt
<j=k
(6%
fi(t,z) = ai (g +1t) + § (xj + ) + 61,
~ B —1
1<j<k
2 2
(zj +5)
p(t,x) =C exp ]t+—:c exp ,
o jgo E ] H 19, —t|1/2 408 1)

where Jy = {j; U(0)e; = 0}, J1 = {J; U(O)ej # 0} and where C' is a positive
constant.
Put

ht,2) =C ] exp [ﬁ“rﬁw} 11 ! exp(ijr%)Q.
’ 4" 2 1B, — 72 Y 4B — t)

J€Jo JjEJ1
k<j<m k<j<m

Then h = h(t,zg41,...,Tm) is a positive caloric function and

1 (x4 7;)?
o(t, ) = hexp Pylt—l—Fyl exp ~—2 J
[T+ ]ka TR

Finally, if Ay = 0, then b(¢), w(t) are given by

_ Pjag - Pjuvg
b(t) = Z Aj(l_Ajt)wl,
1S5k
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| Py 100 ( | Pjvo|? nj
" t+ E log(1 — At ) + 0
w(t) 4 , AN (1= Nt) 2 og(1 = A1) 2
JFk+1

with some constants §; and d. Thus

|l'a0F
t) = _— (5
fo®) ZAJQ—M) 0
1555k

with some constant dg. Put
[Pjaol —_ AjPjao 1

YN YT yPaol b = pYR

1Sjsk

Note that 3; are mutually distinct. Adding m — k eigenvectors of U(0)
to {e1,...,ex}, in the case of m > k, we obtain an orthonormal basis
{e1,...,em} of R™. If j > k and U(0)e; = Ajej for some \; # 0, we put
Bj = 1/Xi. By the orthogonal coordinate of R™ defined by {e1,...,emn}, we
write © = (x1,..., %) again for every x € R™.

Putting v; = e; - (Pr+1v0 + Zlgigl’#kﬂ Pivg/N;), 1 < j < m, we obtain

k Oé2
folt) = > . + 0o,
Jj=1 7
k 5
Zﬁ ! (zj +5) + 01,
j=1"7
oAl Jt+_ H () + ;)
o " 11/2 P A -0
j€Jo J

where Jo = {j; U(0)e; = 0}, J1 = {J; U(O)ej # 0} and where C' is a positive
constant.
Since 1,...,k € Jq,

1 (2 +75)°
h(t,z CHexp{]t—F—x]} H 75 €XP J __ 17
j€Jo 2 j€i1 |IBJ N t| / 4(ﬁj B t)
k<j=m

is a positive caloric function and

o H (zj + 7))

exp )
1252k ] t\l/Q A — 1)
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For the proof of Theorem 7, we may assume that f is a caloric morphism
of the form

(11) fitt,w) =Y ag(B)a; +bi(t), 1ZiZn,
=1

by virtue of Proposition 6. Denote by a;(t) the row-vector (a;;(t), ..., a;,(t)).
We introduce the functions pg(t), qx(t), & = 1 which will be used in the
proof of Theorem 7. We define p;(t) and ¢1(t) by

PO = 300 @) = (0~ (D)

Recall that f)(t) > 0 for all ¢ by virtue of Corollary 4). For k = 2, we
0
define p(t) and gx(t) inductively by
G4 (t) | k-2
12 t) = —1(2
B k , 9 2k—-3 , 1/2
(13) ar(t) = NoTES (pk(t) - pi(t) + mf]kq(ﬂ) ;

if gx—1(t) #0. We put r;(t) e R™, 1 < i < n by

1
Ti(t) == —ai(t),
|ai(t)]
(Note that |a;(t)| = 1/ fi(t) > 0 for all i and t because of (4)). And we put
Tnt+1(t), ..., Tkn(t) inductively by
L) 1<i<n

Q) -

(14) ripa(t) = 1

) (T;(t) + qj—l(t)ri—n(t))7
j—Dn+1=5isjn, 2555 k-1,

it q(t) #0,1<j <k 1.
The following is the key lemma to prove Theorem 7.

LEMMA 9.  Let | be a positive integer. Assume that q1,...,q are de-
fined on an open interval I C R. Then the following statements hold.

(1) If @ # 0 on I, then r1(t),...,7a41)n(t) defined in (14) are orthonor-
mal C*-vectors of R™. Adding arbitrary C*-vectors r(j41)p+1(t), . -, Tm(t)
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such that {ri(t),...,rm(t)} forms an orthonormal basis of R™ for each
t e, in the case ofm (4 1)n+ 1, we take the change of variables

T=1

on DN (I xR™). Then there exists a C*-function Y;41(T,&mrty - Em) on
DN (I xR™) such that

gm0 =3( 3 Lo+ Lamesn + a0+ nn)

k=1 4=(k—-1)n+1
+ sz)l-l—l(T? é-ln-‘rlu cee 7§m)a

a m
J

In+1<i< (14 1)n,

and
a m 8 8 — /
l;lﬂ ~ Aetpyr — Z ggrl (% _ E (r(7) - m(ﬂ)fj’)
4 k=int1 oK bminn

(I+1)n

+ > (2141_21(11 )%€f +quz( )Bi—n(T )&) =0,

i=In+1

where
Y
2V 1y
1 / <5 <
ﬂ' _ %(ﬁz—n - plﬁi—n): n + 1 = 1 = 2”7
=

k k—2
m(ﬁzﬁn — PiBi—n + - 1%715@'_2“),

kn+1<i<(k+1)n,2<k <1,

and

(19 pr) = [ (o) + B2 ar
(k—1)n+1<i<kn1<k<L.
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(ii) If qi(t) = 0 for all t € I, then ri(t),...,1n(t) defined in (14) are

orthonormal C*°-vectors of R™ and satisfies the equations

0 ifl=1
16) 1 (t) = { ’ : ’
(16)  7(1-1ynsi(t) ~q-1(Or—2)nti(t), ifl 22,

for all t € I. Add arbitrary C*™-vectors rip4+1(t),...,rm(t) such that
{ri(t),...,rm(t)} forms an orthonormal basis of R™ for each t € I, if nec-
essary. We take the change of variables (t,x) — (7,§) defined in (1). Then
there exists a C*°-function Yi11(7,&mt1, - -+, &m) on DN (L xR™) such that

(17) log (T, €)
-1

kn
=2 ( 2 ipk(T)glg T iqk(T)fifi—l—n + Bi(T)& + pz‘(T))

k=1 i=(k—1)n+1

1<i<n,

in

£ Y (0@t s+ )

i=(l-1)n+1
+ lerl(Ta gln+17 coe 7£m)7

and
0 - 0
(18) S Ay = [Vevual + 30 04(0)-r(r) et =
J,k=ln+1

where B; and p;, 1 < i < In are defined in (1).

Proof. We shall show the lemma by induction.
First we shall deal with the case of [ = 1. By (4) and Corollary 4,

ai(t) . aj(t) = sz(t,:c) . ij(t,.’b) = (Sljf(/](t) > O, 1 § /) § n,

which shows that {ri(¢),...,r,(¢)} is an orthonormal system of R™ for
each t. Let 741(t),..., 7m(t) be m — n orthonormal C'*°-vectors such that
{r1(t),...,rm(t)} is an orthonormal basis of R™. By the chain rule,

9 m9g 0 0 N 9
at 8t8T 29t 05, af+z7“'
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where r;(7) = (ri1(7),...,7im(7)), 1 < @ < m. Since 71(7),...,rn(7) is
orthonormal, we have

A, = Ag,
Vau - Vv = Veu - Vev.

Since (f, ) is a caloric morphism, Theorem 1 (2) and Proposition 6 imply

(19) Wlogp Vfi= 9 1<i<n

By (11) we have
(20) fi(m,8) =/ fo(7)& + bi(7)

and hence

al // ,
Hp =G = g hie Z 7)E + (7).

Then (19) becomes

m

o1l 1 1
(21) pe = gP(D+ 5 D) i (r)g + i)
3 j:l
Hence we have
(22) ri(7) - ri(r) = ri(r) - ri(1), 1=14,5 =,

because (0/0¢;)(0logp/0¢;) = ri(T) - rj(7). On the other hand, r;(7) -
r;(T) = 0;; implies

(23) ri(1) - ri(T) = —ri(7) - 73(1), 1=4,5 <m.
Therefore
(24) ri(t) - ri(r) =0, 1=1i,j<n.

Then by (21) and (24),

o =logp— Y (3191(7)«52 +
=1

m

> (U - 1y (T)€& + BilT)E + pu(T))

j=n+1

DN =
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is a C'*°-function of 7,&,41,...,&n. Thus we have
(25) logo(,§)
m

—Z( D&+ D () ()& + BTG+ pi(r))

Jj=n+1

+ ¢2(77 §n+17 v 7£m)
On the other hand, v¥; := log ¢ satisfies

0
¢1 — Ay — [V |2 =0

because ¢ is a positive caloric function. In the coordinate (7,&1,...,&m),
the above equation is

0
(26) Q’Z“ + Z 91 — Actyy — Vet |2 = 0.

k=1 85]
Js
Then from (25), we have
o 9
—1_2(4 D1 fz‘f‘ Z fzfg"’ﬂ()fi—f—/?;(T))‘Fa—:,
=1 ] n+1
1 m

P&k + 5 > (1) ()& + Br(r), 1< k<,
M _ j=nt1
&k 1, a¢2

- ! . <k<

2 Z(T’L(T) Tk(T) 85 n + 1 = k = m)

Agipy = —pl(T) + Agtho.

Substituting these into (26) and comparing the coefficients with respect to
&1, ..., &, we obtain the following:

(1) ) RN~ 5 D () ) () re(r) =0,



CALORIC MORPHISMS 153

S ! 8¢2
-2 3 () e
b3 G k) )G =0, 1<i<n,
Jyk=n+1
and
(29) %_Agw— > ai(%— > (rk(f)-rj(f))ﬁj)
T womin 98k N Ok j=nt1
F130 D U ) k)G = 0.
i=1 jk=n+1

Since ri(7) - rj(r) = 0,1 < i,j < n, ri(t) = Z (ri(1) - 7 (7))7 (1) for

1 =i < n. Hence (27) gives
(30) (1) ri(T) = ()65, 1545 S n.

(Note that ¢1(7)? = |ri(1)]?> = 0.)

If ¢ # 0 on an open interval I, then (24) and (30) show that 1 (7),...
rn(7),71(7), ..., 7} (7) are linearly independent for all 7 € I. Therefore m =

2n. Putting

9

Titn(T) = —=, 1=Zi=<n,

we have an orthonormal system {r1(7),...,72,(7)} of R"™. Adding m — 2n
C>®-vectors ron41(7),...,"m(7) if m = 2n 4+ 1, we obtain an orthonormal
basis {r1(7),...,rm(7)} of R™. Then

TZ/-(T)'TJ-(T) = qU(T)rign(7) 7(T) = @1 (T)0i4m,j, 1ZiSn, n+l1=j<m.

By (25), (28) and (29)

n

log o(7,€) =3 (371(E + 501 (Disn + B + pilr))
=1

+¢2(T7§TL+17 e 7§m)a
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1 0
FUH(7)Sien + B1(7) = Pa(F)T) = 2 () 3
+ ql Z z+n ))5] =0, 1 g { g n,
j=n+1

and

%%_&w—Ej@@@@—EZMﬁ%Mﬂ%)

k=n-+1 Ok \ O, j=n+1

+ QI Z£z+n -

If ¢1(7) =0 for all 7 € I, then by (30), 7} =0, 1 < i < n on I so that

tog o(7,€) = 3 (371 (D€ + Bi(r)& + pi(r)) + ol nsn, - G,

i=1
and

8¢2 2 “ 87#2
- A -V / =
5~ B~ Vel + 3 (D) i) 5 =
J,k=n+1
Thus the assertion in the case of [ = 1 is shown.
Assume [ 2 2 and that the assertion for 1,...,l— 1 holds. Suppose that
q1 # 0,...,q.—1 # 0 on some open interval I. Then ¢; is defined on I and

r1(7), ..., 7, (7) defined in (14) are orthonormal C'*°-vectors on R". By the
assumption on 1,...,1—1, there exists a C°°-function ¢;(7, {u—1yn+1,- - - &m)
such that

(31) loge(r,€)
-1 kn

= ( > ipk(T)fz‘Z + %Qk(T)figi—i-n + Bi(T)& + ,Oi(T)>

k=1 i=(k—1)n+1

+ sz)l(Tv f(l—l)n—‘rlu s 7§m)a

0 1 1 - ,
3 Gty Y (0 n+AE)
! j=(1—1)n+1

(—1)n+1<i<in,
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and

CORATR WS DI N I C G RT3

k=(—-1)n+1 gk 8£k j=(1-1)n+1

+ Z (4(2;_7—13)2%1(7)25? + ;:—TQIfl(T)ﬁi—n(T)gi) =0.

=(-1)n

By (23) and (32)

(34) ri(r)-ri(r) =0, (I-1)n+1<i,j<1In
for 7 € I. Put
(35) i1
in 1 1 m
=vi— Y (€5 D U )& + (& + pil)).
i=(l-1)n+1 j=ln+1
Then )41 is a C*°-function of 7,41, -..,&n (Iin the case of m = In, we

have (1/20) 3770, 41 (ri(7) -75(7))§; = 0 and 9141 depends only on 7). From
(35) follow

In m
Wy (g + g S ) )6ty + B + ()

i=(l-1)n+1 j=ln+1
011
+ or ’
1 1 &,
3P p(T )‘Sk‘i‘ﬂ Z (r(7) - (7)€ + Br(T),
j=In+1
o (—Un+1<k<in,
&k, l
1 u 5,
5 Y G n)E+ T 1Sk m,
i=(I—)nt1 b
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m

8¢l /
o= D (re(r) (1)
ok j(l§n+1k S
(1 A-1 &K,
§pl(7)fk T Z (r(7) - (7)€ + Br(T),
j=In+1

) J (I—1n+1<k<in
) 241 & ” B

I 3 G0 ns - X 040 (g +

e J—"+ In+1<k<m,
and

n
Agtyy = 51?1(7) + Aty

Substituting these into (33) and comparing the coefficients with respect
to §1—1)n+1,- - - »&in, We obtain the following:

36) (b)) = + g (7))

_ 2l4;|;1 Z (T;(T) . Tk:(T))(T} (7—) 'Tk(T)) =0,
k=Iin+1

) ) (T) + T (7)),

-1
(—1n+1<i<in,
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and
) " Oy (O mo
(38) To — Actiyy = > Tt (%— DIRCICRATGIY
k=In+1 j=In+1
2A-1 & ,
g > Z () (i (1) - ri(7)) €€k

i=(-1)n+1 jk=In+1

in

Py S B () =0

t=(-1)n+1 j=In+1

Let P, = Fi(7) be the orthogonal projection of R™ to the orthogonal com-
plement of the subspace generated by {r1(7),...,7,(7)}. By (36) and (13),
we have

(39) Pyl Pn“;- = q?éij, (—1Dn+1=4,j<In.

We shall show that
(40) Pri=ri+q_arien, (—1)n+1ZiZIn.
By recalling the definition of P, (34) implies

(I-)n

Piry=ri— Y (rf-rj)r;.

j=1
If 1 <5< (I—1)n, then by (14),
o Q1T j+n, 1<j<n
’ qkTj+n — qk—17j—n, ( ) 1Sj<kn, 25k=1-1,
and so
(41) i1y = —ri T =~ 16 jn,

(l-1n+1<i<in, 1S5 (1-1)n.
Thus (40) holds.

If ;(t) # 0 for all t € I, then (39) and (41) imply that
71(7), -+, "14+1)n(7) defined in (14) are orthonormal C'*°-vectors of R™ on
I where

Tign(T) = e (i) + @1 (T)Tien(7)), (—1)n+1=<4i<In.
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In the case of m > (I+1)n, we choose arbitrary C'*°-vectors 7(;11),41(7), -,
Tm(7) such that {ri(7),...,rn(7)} forms an orthonormal basis of R™ for
each t € I. Then we have

ri(T) - ri(7) = q(T)0i4n,; (—1n+1ZiZIn,In+1=j<m.
From (35) follows

(] (7—7 g(lfl)n+1v---a£m)

in
= Y (Gr0E — galain + ()& + ()

t=(-1)n+1
+ ¢l+l(7-7 éln-i-h .. 7§m)7

which implies
l%wﬁf)

>y (P4 + qan(iisn + A+ i)

k=1 i=(k—1)n+1
+ sz)l-l—l(Ta éln-i-la cee 7§m)

From (37) and (38) follow

81/)1 . 1 q/(T) |
351_2U+U<$@)_U_UMWD&
* : Z (ri(7) - (1)) + Bi(T),

2(1+1) j=(4+1D)n+1

In+1=i< (14 1)n,

and

0 0 0 “
Uil pga - Y (S )y () )

W 98 N 0& Pl ¥
(+1)n
20 —1 [ —
- Z ( 4l2 ( ) 5@ +—QI( )ﬁz n( )gz) =0.
i=in+1

Assume ¢;(t) = 0 for all ¢ € I. Then (39) gives
Pri=0, (I-1)n+1Zi<In.
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This and (40) show
(1) = —qu—1(T)ricn(7), (—1n+1=i<In.
Substituting this into (35), we have

in

DTyt m) = (sz( )&+ Bi(r )fH—Pz‘(T))

i=(1—1)n+1
+ sz)l-l—l(Ta éln-i-la cee 7§m)7
which implies
log w(T, £)
1
= Z Z (Z ()& + Qkaz( T)Ei&ivn + Bi(T)&i + Pi(7)>

k=1 i=(k—1)n+1

in

1
+ Y (ZPI(T)‘S? + Bi(1)&i +pz‘(7)) + Vi1 (7, S 1 - -5 Em)-
i=(1—1)n+1
From (38) follows
0 “ 0
Pl A — Vet P+ . (rk(r) - my(m)g 20 = o,
or . O,
J,k=ln+1

Thus the assertion for [ is shown. []

Proof of Theorem 7. For each t € D, there exists a positive integer
I < m/n such that ¢;(t) = 0. In fact, if ¢1(¢) # 0,...,qk(t) # 0, then by
Lemma 9, (k+ 1)n <

Assume that ¢ # 0,...,q;—1 # 0 and ¢; = 0 on an open interval I.
Then by (14) and (16), we obtain n systems of linear differential equations:

T 0 @ 0 T
(42) — =
dt : :
' - o di- ‘
T(1—=1)n+i O —q—1 0 T(1—1)n+i
T
Tn4i

el |

T1-1)n+i
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for 1 £ i < n. Fix arbitrary g € I and let S(¢t) = (sjk(t))é. w1 be the
solution of the initial value problem

) 450 = Qs()

S(t()) = Ila

where I; is the ([,]) unit matrix. Then S(¢) is an orthogonal matrix for
every t € I, because Q(t) is skew symmetric. Then by (42), we have

ri(t) ri(to)
Tnti(t) Tni(to)
o = S(t) s L 1<i<n
T(-1)n+i(t) T(1-1)n+i(to)
This means that r1(t),ra2(t),...,r;,(t) are contained in the in-dimensional
space V' spanned by the constant vectors 71 (o), r2(t0), - .., rin(to) for every
t. Therefore we can choose constant vectors 7y,+1,...,7, which are the

orthonormal basis of the orthogonal complement of V. Put z; = r;(to) - z,
1< 5 <mforxzeR™ Then

l

(44) iyt = D Sk Tty 1Si<m, 1
k=1

[IA
<.
[IA

and if m = In + 1,
=z, In+1=j=m.

Then ;41 is a C*-function of t,x;,41,...,2y and so the equation (18)
reduces to

OVr1
ot

Therefore @11 (t, Tint1, - - -, Tm) = €Xp 41 is a positive caloric function (in
the case of m = In, ¥4 is equal to a constant). From (20) follows

— Aty — [Vipga |2 = 0.

l

fi= Z A(t)s1k ()T (j—1)n4i + i),

k=1

where A(t) =/ f{(t). On the other hand, by (17) and (44) we have



CALORIC MORPHISMS 161

log ¢
'
—Z { Z Tk (D)2 (—1)n4i% (ke 1)n+l+z 5035 (D) (j—1)n+i + wilt)
=1 “j k= 1 Jj=1
+wl+17
where

dk o
Uij = Zpkskiskj + Z ?(SkiSkJ’,l’j + skJrl’Z-skj)’ 1 g i, ] g 1,
=1
and

Vi = 284 tyntiSkis Wi = D Plh-tnair 1 SiS=m, 1S5S0

Put

j=1
g(t X1, 7561):( 0 t)vg’il(twrh '7'Tl))7 1§/L§n7
L1 ‘1

(46) iltior. @) = exp | Y qu(Dagm+ Y Soi (b + i),

J,k=1 j=1

1<i<n.
Then
filt,z) = ga(t, i, Tniy -+ = 1)nti)s

o(t,r) = @ H it Tiy Ty - -+ s T(1—1)nti)-
=1

We shall prove that each pair (g;,;), 1 <4 < n is a caloric morphism from
I xR to R'L. By Hg;1 = 0g;1/0t and (43), we have

n

Hgin = (N (t)s1;(t)a; + A(t)s);(£)z;) + b(t)

j—l

— Z t)s1j(t)x; + At)q(t)s2;(t)x;) + by(t).
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On the other hand,

1 l
1
2V log ¢; - Vgi1 = Z EA(ujkslk + ukjslk)a:j + Z )\’UijSlj
Jik=1 i=1
l

= Z A(p1sijz; + qis25x5 + 205;),
j=1

because u;; = uj; and S is orthogonal. Hence
Hgjy =2Vlogy; -Vgi1, 1=iZn.

Since f = A%,
dfO o 2
dt - ’vf]ﬂ’ .

By the assumption, (¢, x) and ;41 are caloric functions, ;1 is indepen-
dent of x1,...,x, and

n
H it Tiy Tty -+ s T—1)nti)
i=1

is a caloric function. Hence we have

n

Z(KSﬁi)(tv$iaxn+ia e T yntd) = 0,
=1

where K¢; = (1/p;)Hyp;. We have also Ky; = (9logy;/0t) — Alogp; —
|V log ¢;]?. Comparing the coefficients with respect to x;, we see that Ky;
depends only on t. Therefore

l

dlog p; 1 1
o Alogii = [VIog il = Y (Pl iysi — 3uis — 7v5)-
j=1
Since
P q1
uir ... Uy . O
—tg| @1 P2 S,
noo--.oug ' Lo
0 =
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and
(vit, -5 vit) = 2085, Brvis - - Bu—1)n+i) S,
we have
: 1 : pj 2
;( (G=n+i — % ) ;(p@ 1n+z_§_ﬁ(j—1)n+i):0

by the definition of p; in (15). Therefore each ¢; is a positive caloric function.
Thus (g;, i) is a caloric morphism. By (45) and (46), each (g;, ¢;) satisfies
the assumption of Lemma 8. Therefore there exist a positive integer k < [,
an orthogonal coordinate of R™ denoted by (z1,..., 2, ) again and positive
caloric functions h; = hi(t, Tkniis - - s T(1—1)n4i)s 1 =4 = n (in the case of
k=1, h1,...,h, are positive constants) such that f and ¢ are of form (1)
or (2) with four families a;, 1 S i <k, B, 1 £ i Sk, 6;, 0 =9 < n and v,
1 <i=<n,1=j =k of real numbers satisfying a; > 0 and 3; # 3, © # j:

e

fi(ta .Cl?) = gil(ta Liy- - 7x(l—1)n+z T(j—1)n+i + 7@]) + 5

n
()D(t?x) = Pl+1 H @Z(ta Liy .- 7x(l—1)n+i)

=1
(Z(—1ynti + 7ij)°

= h;
WZHI ]le —t|1/2 R T

+507

fo(t) = adt + Z

1<j<k ﬂ] _t
fl(tv x) - gil(ta Lijyen- 7x(l—1)n+i)

= o1 (xz + %‘175) + Z
1<j<k

@

m(x(j—l)n-&-i + ij) + i,
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n
o(t,x) = i1 H @it Tis 5 T(—1)n+i)

i=1

- Y,
4 1

= Y111 1_[1hi exp [Tﬂt =+ %xz]
1=
1 (T(j—tyn+i +%ii)?
X H exp
_1[1/2 T
M= 1050
Put h = ¢;11h1 -+ hy. Then h = h(t,xgps1,-..,2m) iS & positive caloric

function. We obtain the required form of (f,¢) on D N (I x R™). Since fy
is of C, the form of (f,¢) holds on the closure I of I, if I is contained in
the interval where fy is defined. Thus (f, ) has the required form on each
open interval where ¢; > 0,...,¢q;_1 > 0. Fix an open interval I such that
@1 > 0,...,q—2 > 0. The analyticity of fy and (13) implies that ¢;_; is an
analytic function on I. Therefore, the zero-points of g;_; is discrete, which
is denoted by {o,}_,, (M, N may be —o0, 00, respectively). For each v,
fo is of form

2
%)
Z + 507 te (0'1/7170-1/]’
it
folt) = ko 2
(o ~
Z = - +507 le [JV70V+1)7
— —t
j=1"~J

in the case of (1). Then k =k, a; = ay, @j = f; and 80 = 60, because fj is
of C°. Therefore (f, ) has the required form on each interval where ¢; >
0,...,q—2 > 0. In the case of (2), the same argument holds. Consequently,
(f, ) is of a required form on D. This completes the proof of Theorem 7. []

COROLLARY 10. Let (f,¢) be the same as in Theorem 7. Then (f, )
1s equal to the composition of a the direct sum of k caloric morphisms of

R™ and a projection R — RFn+1,
Proof. 1In the case of (I), we put

2
[0} .
L +507 jzla

gjo(t) = 9

J>1
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ﬁl_t(xz"i‘%])"i‘(s j:1>

(67 .
/3 it(xl—i_FY’U) J>17

gji(t,xl,. .. ,xn) =

i T Vij )
it z1,...,xn) = 5= t]"/Q expz 10, _Jt)

for1<i<mnand1=j=<k. In the case of (II), we put

aAt+ 8, j=1,

gjo(t) = a2
>,
B —t
( a1 (i +virt) + 01, j=1,
gji(t,xl,...,xn) = a].
. i), y > 17
ﬂj _t(xz""}’zj) J
~ YA,
: i1 )
expz [th—k %xl}, j=1,

<pj(t,:1:1, e ,xn) =

551 +'Yzj .
e S

for 1 =i <nand 1= j < k. Then each pair (g;,¢;) = ((gj0,--->9jn): ©5),
1 £ j = k is a caloric morphism. (g1,p1) is defined on R™ \ {t # (1}
in the case of (I) and on R" in the case of (I). For j > 1, (gj,¢;) is de-
fined on R™\ {t # B3;}. Let (p,%) be the projection R™1 — Rkn+1 guch
that po(t) = ¢, pi(t,z1,..., &m) = 3, 1 <0 < kn and Y(t, z1,...,Tm) =
h(t,Zgns1,---,Tm). Then (f,p) is equal to the composition of the direct
sum of (g1, ¢1),---,(9k, pr) and (p, ). 0
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