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LINEARIZATIONS OF ORDINARY DIFFERENTIAL

EQUATIONS BY AREA PRESERVING MAPS

TETSUYA OZAWA1 and HAJIME SATO2

Abstract. We clarify the class of second and third order ordinary differen-
tial equations which can be tranformed to the simplest equations Y ′′ = 0 and
Y ′′′ = 0. The coordinate changes employed to transform the equations are re-
spectively area preserving maps for second order equations and contact form
preserving maps for third order equations. A geometric explanation of the re-
sults is also given by using connections and associated covariant differentials
both on tangent and cotangent spaces.

§1. Introduction

In this paper, we consider second and third order ordinary differential

equations, and investigate the conditions under which those equations are

transformed to the simplest equations Y ′′ = 0 and Y ′′′ = 0, where the

coordinate changes used to transform equations are area preserving maps

for second order equations and contact form preserving maps for third order

equations.

The equivalence problem of ordinary differential equations are classified

into several categories, depending on the diffeomorphisms used to transform

the equations. An interesting version of the problem employs point trans-

formations (x, y) 7→ (X(x, y), Y (x, y)), and the study of second order equa-

tions in this category was originated by Tresse in [1]. In [2] and [3], Cartan

gave a geometric interpretation of Tresse’s results in terms of a projective

connection. For a resent works, see also Kamran-Lamb-Shadwick [5], who

discussed the equivalence problem under fiber preserving diffeomorphims

(x, y) 7→ (X(x), Y (x, y)).

Cartan also studied third order equations under the equivalence by

point transformations (x, y) 7→ (X(x, y), Y (x, y)) in [4]. On the other hand,
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Chern treated the problem with contact transformations (x, y, y′) 7→

(X(x, y, y′), Y (x, y, y′), Y ′(x, y, y′)), in [6]. In [7] and [8], Sato and Yoshikawa

completed the Cherns works on this category.

Our main theorems are the following:

Theorem 1.1. An ordinary differential equation y′′ + f(x, y, y′) = 0

can be transformed to the equation Y ′′ = 0 by an area preserving map

(x, y) 7→ (X,Y ), if and only if f(x, y, z) is a polynomial of degree 3 in the

variable z;

f = P + 3Qz + 3Rz2 + Sz3,

and P , Q, R and S satisfy the equations







Py −Qx = −2(PR−Q2)

Qy −Rx = −PS +QR

Ry − Sx = −2(QS −R2).

(1)

Theorem 1.2. An ordinary differential equation y′′′+f(x, y, y′, y′′) =

0 can be transformed to the equation Y ′′′ = 0 by a contact form preserving

map (x, y, z) 7→ (X,Y,Z), if and only if f(x, y, z, w) is a polynomial of

degree 3 in the variable w;

f = P + 3Qw + 3Rw2 + Sw3,

and the functions P , Q, R and S depend only on x and z, and satisfy the

system of equations







Pz −Qx = −2(PR−Q2)

Qz −Rx = −PS +QR

Rz − Sx = −2(QS −R2).

(2)

By Lemma 3.2 in which we prove that contact form preserving maps

are lifts of area preserving maps, we reduce the proofs of Theorem 1.1 and

1.2 to the same integrability condition, and therefore in both theorems we

have the same system of partial differential equations (1) and (2)

In Section 4, we interpret the integrability conditions in Theorem 1.1

and 1.2 as a flatness of a certain connection form, and show how to con-

struct the required coordinate change using the dual covariant differential

associated with the connection form.
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§2. Second order ordinary differential equation

In this section, we consider second order ordinary differential equations

y′′ + f(x, y, y′) = 0,

and their transformations by area preserving maps.

2.1. Transformations of equations

Being the (x, y, z)-space R3 regarded as a contact manifold whose con-

tact form is equal to dy − zdx, for a diffeomorphism ϕ : U → V be-

tween open sets U and V in R2, there exists a unique contact tranfor-

mation Φ : R3 → R3 which is a lift of ϕ with respect to the projection

(x, y, z) 7→ (x, y). If we write ϕ(x, y) = (X(x, y), Y (x, y)), then Φ is given

by

Φ(x, y, z) =
(

X(x, y), Y (x, y), Z =
Yx + Yyz

Xx +Xyz

)

.

Let c̃ : (a, b) → R3 be the Legendrean lift of the graph of a function

y = y(x). Then along the image curve Φ ◦ c̃, it holds that

dZ

dX
=
dZ

dx

/

dX

dx

=
∆

(Xx +Xyy′)3
[

P + 3Qy′ + 3R(y′)2 + S(y′)3 + y′′
]

,

where P , Q, R and S are functions of x and y given by






















∆P = YxxXx −XxxYx

3∆Q = YxxXy + 2YxyXx −XxxYy − 2XxyYx

3∆R = 2YxyXy + YyyXx − 2XxyYy −XyyYx

∆S = YyyXy −XyyYy,

(3)

and ∆ = YyXx − YxXy . This shows the following

Lemma 2.1. In order that the equation

y′′ + f(x, y, y′) = 0,(4)

can be transformed to the equation

Y ′′ = 0,(5)

the function f(x, y, z) has to be a polynomial of order 3 in the variable z;

f(x, y, z) = P + 3Qz + 3Rz2 + Sz3.(6)
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2.2. The integrability condition

Now, we consider the following equivalence problem: what is the neces-

sary and sufficient condition on P , Q, R and S, under which the equations

(4) and (5) can be transformed to each other through the natural lifts of area

preserving maps.

Let ϕ(x, y) = (X,Y ) be an area preserving map. Differentiating ∆ =

XxYy −XyYx ≡ 1 by x and y , we get

0 = XxxYy +XxYyx −XxyYx −XyYxx

0 = XxyYy +XxYyy −XyyYx −XyYxy.

Combining these two identities with four equalities (3), we obtain the fol-

lowing system of equations:

















P

3Q

3R

S

0

0

















=

















Xx 0 0 −Yx 0 0

Xy 2Xx 0 −Yy −2Yx 0

0 2Xy Xx 0 −2Yy −Yx

0 0 Xy 0 0 −Yy

−Xy Xx 0 Yy −Yx 0

0 −Xy Xx 0 Yy −Yx

































Yxx

Yxy

Yyy

Xxx

Xxy

Xyy

















,

and consequently the relation

















Yxx

Yxy

Yyy

Xxx

Xxy

Xyy

















=

















Yy −Yx 0 0 0 0

0 0 0 0 Yy −Yx

0 0 Yy −Yx 0 0

Xy −Xx 0 0 0 0

0 0 0 0 Xy −Xx

0 0 Xy −Xx 0 0

































P

Q

R

S

Q

R

















.

These are second order partial differential equations onX and Y . We remark

that X and Y satisfy the same equations, namely both X and Y satisfy











Xxx = XyP −XxQ

Xxy = XyQ−XxR

Xyy = XyR−XxS

(7)

The compatibility condition among these equations

∂

∂y
(Xxx) =

∂

∂x
(Xxy),

∂

∂y
(Xxy) =

∂

∂x
(Xyy)
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will impose the following relations

0 =
∂

∂y
(Xxx) −

∂

∂x
(Xxy)(8)

=
∂

∂y
(XyP −XxQ) −

∂

∂x
(XyQ−XxR)

= XyyP −XxyQ+XyPy −XxQy

−XxyQ+XxxR−XyQx +XxRx

= (XyR−XxS)P − (XyQ−XxR)Q+XyPy −XxQy

−(XyQ−XxR)Q+ (XyP −XxQ)R−XyQx +XxRx

= −Xx(Qy −Rx + PS −QR) +Xy(Py −Qx + 2PR − 2Q2)

0 =
∂

∂y
(Xxy) −

∂

∂x
(Xyy)(9)

=
∂

∂y
(XyQ−XxR) −

∂

∂x
(XyR−XxS)

= XyyQ−XxyR+XyQy −XxRy

−XxyR+XxxS −XyRx +XxSx

= (XyR−XxS)Q− (XyQ−XxR)R+XyQy −XxRy

−(XyQ−XxR)R+ (XyP −XxQ)S −XyRx +XxSx

= −Xx(Ry − Sx + 2QS − 2R2) +Xy(Qy −Rx + PS −QR).

Lemma 2.2. In order that there exists a coordinate change (X,Y ) which

preserves the area elements and satisfies the equation (7), it is necessary and

sufficient that P , Q, R and S satisfy the system of equations











Py −Qx = −2(PR−Q2)

Qy −Rx = −PS +QR

Ry − Sx = −2(QS −R2).

(10)

Proof. If the map (X,Y ) is a coordinate change, then the derivatives

(Xx,Xy) and (Yx, Yy) are linearly independent. Thus if the coordinate func-

tions X and Y satisfy (7), then the coeffecients of Xx and Xy in the ex-

pressions (8) and (9) are equal to zero.

On the other hand, if the equations (10) are satisfied, then the com-

patibility conditions of the equations (7) are satisfied. Then we see that
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there exists an area preserving map (X,Y ) which satisfies (7). A geometric

explanation of the map (X,Y ) will be given in Section 4.

Theorem 2.1. An ordinary differential equation y′′ + f(x, y, y′) = 0

can be transformed to the equation Y ′′ = 0 by an area preserving map

(x, y) 7→ (X,Y ), if and only if f(x, y, z) is a polynomial of degree 3 in the

variable z ;

f = P + 3Qz + 3Rz2 + Sz3,

and P , Q, R and S satisfy the equations (10).

§3. Third order ordinary differential equation

In this section, we consider third order ordinary differential equations

y′′′ + f(x, y, y′, y′′) = 0,(11)

and their transformations by contact form preserving maps.

3.1. Transformations of third order ordinary differential

equations

Let the (x, y, z, w)-space be regarded as the third order jet space

(x, y, y′, y′′). For a contact diffeomorphism ϕ : (x, y, z) 7→ (X,Y,Z), let

Φ : (x, y, z, w) 7→ (X,Y,Z,W ) denote the canonical lift of ϕ;

Φ(x, y, z, w) =

(

X,Y,Z,W =
Zx + Zyz + Zzw

Xx +Xyz +Xzw

)

.

Along the image curve Φ◦c̃ where c̃(x) = (x, y(x), y′(x), y′′(x)), we calculate
dW
dX

as follows: using the notation

[[A,B]] = ZAXB − ZBXA

for A,B = x, y, z, xx, xy, · · · , zz, and

η(αβ, γ) = the number of y’s in {α, β, γ},

ζ(αβ, γ) = the number of z’s in {α, β, γ},

dW
dX

is equal to

dW

dX
=
dW

dx

/

dX

dx
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=
d

dx

(

Zx + Zyz + Zzw

Xx +Xyz +Xzw

) /

(Xx +Xyz +Xzw)

=
1

(Xx +Xyz +Xzw)3
[ ∗ ∗ ],

where we denote

[ ∗ ∗ ] =
∑

[[αβ, γ]]zη(αβ,γ)wζ(αβ,γ)(12)

+[[y, x]]w + [[y, z]]w2 + ([[z, x]] + [[z, y]]z)w′,

and, in the summation
∑

, αβ and γ run over the set {xx, xy, xz, yy, yz, zz}

and {x, y, z} respectively.

Thus we obtain

Lemma 3.1. The equtaion (11) is transformed to the equation

Y ′′′ = 0

by the lift Φ of a contact transformation ϕ, only if the function f(x, y, z, w)

is a polynomial of degree three in the variable w;

f(x, y, z, w) = P + 3Qw + 3Rw2 + Sw3.

3.2. Contact form preserving maps

We investigate maps ϕ which preserve the contact forms, that is, the

maps ϕ(x, y, z) = (X,Y,Z) which satisfy

dy − zdx = dY − ZdX

= (Yx − ZXx)dx+ (Yy − ZXy)dy + (Yz − ZXz)dz.

For such a map ϕ, the coordinate functions X, Y and Z satisfy

Yx − ZXx = −z

Yy − ZXy = 1

Yz − ZXz = 0.

From the identities Yxy = Yyx, Yyz = Yzy and Yxz = Yzx , we get

ZyXx = ZxXy

ZzXy = ZyXz

ZzXx = ZxXz + 1,
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in other words,

0 =

∣

∣

∣

∣

Xx Xy

Zx Zy

∣

∣

∣

∣

=

∣

∣

∣

∣

Xy Xz

Zy Zz

∣

∣

∣

∣

,

1 =

∣

∣

∣

∣

Xx Xz

Zx Zz

∣

∣

∣

∣

.

Since (Xx, Zx) and (Xz, Zz) are linearly independent at each point (x, y, z),

this implies

Xy = Zy = 0,

thus X and Z are functions only on the variables (x, z), and the equality

Yy ≡ 1 implies that Y can be written as

Y (x, y, z) = y + ψ(x, z)

for some function ψ(x, z). Since ψ satisfies

ψx = −z + ZXx, ψz = ZXz,

ψ can be written as

ψ(x, z) =

∫

ZdX − zdx.

Therefore we obtain

Lemma 3.2. If ϕ : (x, y, z) 7→ (X,Y,Z) preserves the contact form,

then X and Z are functions only on the variables (x, z), the transformation

(x, z) 7→ (X,Z) is area preserving, and the function Y is of the form

Y = y +

∫

ZdX − zdx.

3.3. Equivalence problem of O.D.E. through contact form

preserving maps

Let ϕ : (x, y, z) 7→ (X,Y,Z) be a contact form preserving map. We

suppose that the equation

0 = P + 3Qy′′ + 3R(y′′)2 + S(y′′)3 + y′′′

is transformed to the equation

0 = Y ′′′
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by the map ϕ. By the formula (12), we see that P , Q, R and S are functions

of the derivatives of X and Z . Since our functions X and Z depend only

on (x, z) , we get the following

P = ZxxXx −XxxZx

3Q = 2ZxzXx − 2XxzZx + ZxxXz −XxxZz

3R = 2ZxzXz − 2XxzZz + ZzzXx −XzzZx

S = ZzzXz −XzzZz.

This system of equations is completely the same as (3) , provided that we

use the variables z and Z in place of y and Y in (3). Therefore the necessary

and sufficient condition for the existence of the transformation ϕ is the same

as that obtained in Theorem 2.1. Thus we proved

Theorem 3.1. An ordinary differential equation y′′′+f(x, y, y′, y′′) =

0 can be transformed to a standard equation Y ′′′ = 0 by a contact form pre-

serving map (x, y, z) 7→ (X,Y,Z), if and only if f(x, y, z, w) is a polynomial

of degree 3 in the variable w ;

f = P + 3Qw + 3Rw2 + Sw3,

and the functions P , Q, R and S depend only on x and z, and satisfy the

system of equations






Pz −Qx = −2(PR−Q2)

Qz −Rx = −PS +QR

Rz − Sx = −2(QS −R2).

(13)

§4. Connections on R2 and the equation of the geodesics

In this section, we consider the equation of geodesics of a certain type of

covariant differentials on the tangent bundle TR2, and reformulate our re-

sults in Section 2 using dual covariant differentials on the cotangent bundle

T∗R2.

4.1. Covariant and dual covariant differentials

Consider P = R2 × GL2(R) as a principal GL2(R)-bundles over R2,

on which GL2(R) is acting on the left.

Let dgg−1 denote the right invariant Maurer-Cartan form on GL2(R).

Then each connection form ω ∈ Ω1(P, gl2(R)) is decomposed into the ver-

tical and the horizontal components

ω = dgg−1 + Ad(g)ωh,
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where ωh is a gl2(R)-valued 1-form on R2.

Given a connection form ω, we denote by ∇ the associated covariant

differential on the tangent bundle TR2, and by ∇∗ the dual covariant dif-

ferential on the cotangent bundle T∗R2.

If we identify a map ξ =

(

u

v

)

: R2 → R2 with a section of TR2 by

ξ(x, y) = u(x, y)
∂

∂x
+ v(x, y)

∂

∂y
,

then ∇ is, by definition, given by

∇

(

u

v

)

= d

(

u

v

)

− ωh

(

u

v

)

.

If we use the Christoffel symbol, ωh is given by

ωh = −

(

Γ1
11 Γ1

12

Γ2
11 Γ2

12

)

dx−

(

Γ1
21 Γ1

22

Γ2
21 Γ2

22

)

dy.

The dual covariant differential ∇∗ is given by

∇∗(u, v) = d(u, v) + (u, v)ωh,

where we identified a map α = (u, v) : R2 → R2 with a section

α(x, y) = u(x, y)dx + v(x, y)dy ∈ Γ(T∗R2) = Ω1(R2).

We remark that the flatness of ω

dωh − ωh ∧ ωh = 0

and that of the corresponding covariant differentials ∇ and ∇∗ are all equiv-

alent.

4.2. Geodesics on R2

In the following lemma, we will derive the equation of the functions

y = y(x) whose graphs are ∇-geodesics on R2.

Lemma 4.1. The graph of a function y = y(x) is a ∇-geodesic, if and

only if y(x) satisfies the ordinary differential equation

y′′ + Γ2
11 +

(

Γ2
12 + Γ2

21 − Γ1
11

)

y′ +
(

Γ2
22 − Γ1

12 − Γ1
21

)

(y′)2 − Γ1
22(y

′)3 = 0
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Proof. By definition, a parametrized curve t 7→(x(t), y(t)) is ∇-geodesic,

if it satisfies














d2x

dt2
= −

{

+Γ1
11

(dx

dt

)2
+

(

Γ1
12 + Γ1

21

)dx

dt

dy

dt
+ Γ1

22

(dy

dt

)2}

d2y

dt2
= −

{

+Γ2
11

(dx

dt

)2
+

(

Γ2
12 + Γ2

21

)dx

dt

dy

dt
+ Γ2

22

(dy

dt

)2}

.

(14)

Since dy
dx

= dy
dt

/

dx
dt

, we have

d2y

dx2
=

d

dt

(dy

dt

/dx

dt

)/dx

dt

=
(d2y

dt2
dx

dt
−
dy

dt

d2x

dt2

)/(dx

dt

)3
.

Substituting for d2y
dt2

and d2x
dt2

the right hand sides of (14), we obtain the

required equation.

4.3. Torsion free flat connection

Lemma 4.2. Suppose a connection form ω is flat, that is, the horizon-

tal component ωh satisfies

dωh − ωh ∧ ωh = 0.

Let α = (u, v) = udx + vdy be a local ∇∗- parallel section. If ∇ is torsion

free, then α is a closed 1-form.

Proof. By definition, ∇ is torsion free, if ∇ satisfies

∇ξη −∇ηξ = [ξ, η]

for all vector fields ξ and η. In the Christoffel symbol, this is equivalent to

the symmetricity

Γk
ij = Γk

ji (∀i, j, k)

If a local section α = (u, v) = udx+ vdy of T∗R2 is ∇∗-parallel, then u

and v satisfy

0 =
( ∂

∂x
u,

∂

∂x
v
)

+ (u, v)

(

Γ1
11 Γ1

12

Γ2
11 Γ2

12

)

0 =
( ∂

∂y
u,

∂

∂y
v
)

+ (u, v)

(

Γ1
21 Γ1

22

Γ2
21 Γ2

22

)

.
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The symmetricity on
{

Γk
ij

}

implies that

∂

∂y
u =

∂

∂x
v,

and thus the closedness of α.

Suppose that ∇ is flat and torsion free. Let α and β be ∇∗-parallel local

sections of T∗R2 on a simply connected nighborhood U of the origin (0, 0).

By Lemma 4.2, there exist functions X and Y on U such that

α = dX, β = dY.

Define a map ϕ : U → R2 by

ϕ = (X,Y ).

If dX and dY are linearly independent at one point on U , then they are so

at all points.

Proposition 4.1. ∇-geodesics are transformed to lines by the above

map ϕ.

Proof. Since the transformation matrix J(ϕ) is equal to

(

α

β

)

, it fol-

lows, from the fact that α and β are parallel, that J(ϕ) satisfies

dJ(ϕ) + J(ϕ)ωh = 0.

By multiplying J(ϕ)−1 from the right, we obtain

dJ(ϕ)J(ϕ)−1 + Ad(J(ϕ))ωh = 0.

This means that the horizontal component of the connection form that

is obtained by the gauge transformation with respect to J(ϕ) is equal to

zero. Thus the corresponding Christoffel symbols all vanish. Therefore we

conclude that all ∇-geodesics are transformed into lines by the map ϕ.

Remark. Lemma 4.2 and Proposition 4.1 still hold for higher dimen-

sional spaces.
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4.4. Linearization of geodesics

In the following, we will show that the graphs of all solutions of the

equation

y′′ + P + 3Qy′ + 3R(y′)2 + S(y′)3 = 0

are geodesics of a certain connection, and interpret the results in the pre-

vious sections using the connection.

Given smooth functions P ,Q, R and S on R2, we associate a connection

form ω whose horizontal component is equal to

ωh = −

(

Γ1
11 Γ1

12

Γ2
11 Γ2

12

)

dx−

(

Γ1
21 Γ1

22

Γ2
21 Γ2

22

)

dy

=

(

Q R

−P −Q

)

dx+

(

R S

−Q −R

)

dy

and by ∇ and ∇∗ respectively the corresponding covariant differential and

its dual. We remark that the connection form ω is sl2(R)-valued and torsion

free.

The following three lemma are verified by direct calculations:

Lemma 4.3. The graph of a function y = y(x) is ∇-geodesic, if and

only if it satisfies the equation

y′′ + P + 3Qy′ + 3R(y′)2 + S(y′)3 = 0.

Lemma 4.4. ω is flat, if and only if P , Q, R and S satisfy







Py −Qx = −2(PR−Q2)

Qy −Rx = −PS +QR

Ry − Sx = −2(QS −R2).

Lemma 4.5. For a function X, dX is ∇∗-parallel, if and only if X

satisfies






Xxx = XyP −XxQ

Xxy = XyQ−XxR

Xyy = XyR−XxS.

Since ω is sl2(R)-valued, the map ϕ = (X,Y ) constructed in Section

4.3 is area preserving. Now Theorem 2.1 is a corollary of Lemmas 4.3, 4.4

and 4.5 , and Propositions 4.1.
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