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THE BLOWUP OF SOLUTIONS FOR 3-D
AXISYMMETRIC COMPRESSIBLE EULER
EQUATIONS

HUICHENG YIN anD QINGJIU QIU

Abstract. In this paper, for three dimensional compressible Euler equations
with small perturbed initial data which are axisymmetric, we prove that the
classical solutions have to blow up in finite time and give a complete asymptotic
expansion of lifespan.

§1. Introduction

There are many results on the lifespan of classical solutions for non-
linear wave equations with small initial data ([1], [2] etc.). However, few
papers have treated the problem of the lifespan of solutions for higher di-
mensional compressible Euler equations. In fact, it is very difficult to deter-
mine whether the smooth solutions of compressible Euler equations blow
up or not. In [3], T. Sideris gave an upper bound for the lifespan of three
dimensional Euler equations under appropriate conditions. In the paper, we
will discuss 3-D problem with spherically symmetric initial data. Generally
speaking, the spherically symmetric initial data don’t satisfy the conditions
in [3], so we can’t give the upper bound of lifespan in light of the result
in [3]. For the 2-D isentropic Euler equations with rotationally invariant
data which are a perturbation of size ¢ of a rest state, S. Alinhac [4] has
established the lifespan of solution. For the general irrotational initial data
(not spherically symmetric) which is a small perturbation, we can also de-
termine the lifespan of classical solutions. This will be given in another

paper.

Consider the following initial data problem for 3-D compressible Euler
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equations:
Op + div(pv) =0

(1) O+ (vVW)v = _Vplo) _ ) Vo

pli=o = p+epo(z), v|t=0 = evo(x)

where p > 0 is a constant, c2(p) = dp/dp > 0, p(p) € C™ for p > 0, > 0
sufficiently small, v = (vy,v9,v3), = (21,22, 73), po(x),ve(z) € C(R?)
and have compact supports in |z| < Ry. Moreover we assume that vy(x) =

v{(z)z, where ¥ is a smooth function in R3, and v{(x), po(z) depend only

onr,r= \/xf—l—xg—l—xg.

MAIN THEOREM. Under the above assumptions, (1) has a C* solution
for 0 <t < T, where

limelnT, =79

e—0

2¢

(pc'(p) +©) i 7* 907 (q) + 3¢} (q) +
>

(q0qpo(q) + po(q))

ol

and ¢ = ¢(p), T. denotes the lifespan of smooth solution.

Remark. 1t is easy to know ming < g, [¢94v (q)+3qv? (q)+E(qdqp0(q) +
po(q))/p] < 0 unless v{ = 0, pg = 0. Moreover pc’(p) + & > 0 is known
(see [5]).

For proving Theorem, we note that the rotations of v are zero, then (1)
will be reduced into a nonlinear wave equation. As in [2], by constructing
an approximate solution and considering the difference of exact solution
and approximate solution, we easily get the lower bound of lifespan. On the
other hand, the spherical symmetricity of solution makes us to change (1)
into a 2 x 2 system equation in two variables (r,t). Hence by using the
properties of above approximate solution and imitating the proof in [4], [6],
[7], we may obtain the estimate of upper bound for the lifespan. Theorem
asserts that the solution of (1) blows up in finite time unless vg = 0, pp =0
in spite of any small €.

§2. The lower bound of lifespan T;

Under the assumptions of Theorem, we know the solution of (1) has
such a form in ¢t < T;: p(z,t) = p(r,t), v(z,t) = 0(r,t)z, where o(r,t)
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is a smooth function of (r,t). Because of rotv(x,t) = 0, there exists a
function w(z,t) € C*, such that v(x,t) = Vw(z,t), moreover w(z,t) has
compact support in z (by the finite propagation speed we know v has
compact support), and depends only on r. If we denote w(r,t) = w(z,t),
then O,w(r,t) = rv(r,t). Substituing v(z,t) = Vw into the second equation
in (1), then we have:

1
O Vw + V(E\WP) = —Vh(p)

where h/(p) = c%(p)/p, and h(p) = 0. Hence Ow + |Vw|?/2 = —h(p).
Noting h'(p) > 0, and by implicit function theorem, we know that

. 1 L
p:h 1(—(8tw+§|Vw|2)), p:h 1(0)
Therefore, from the first eqution in (1), it turns out

A=Y (= (0w + 3|Vw|?))
(h=1)(=(0ww + 5|Vw|?))

3
Ofw+2)  OpwdOpw —
k=1

3
+ ) Owdhwd;Opw = 0.
i,k=1

Now we determine the initial data w|;—g and Ow|;—o.
Obviously, wli—o = ¢ [5, sv{(s)ds.
Since 9;Vwli—o + V(|Vw|?)|1=0/2 = —c%(p)Vpli=o0/p, then we have

1
0rd,wli=o + 3 0 [r* (] (r))?]

=2 1 2
C C
= —65@,00 - 52 /O ( ;()p) )/’P:ﬁ+9€po depoarpo-

d9} po(8)0spo(s) ds — %T2(v?(r))2,

g(x,e) :_/R: [/01(02£p)),

then g(z,e) is smooth in z, ¢ and has compact support in r < Ry. So
Oywli—o = —€E%po/p + €%g(x,¢).

p=p+02po(s)
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Then for considering the lower bound of lifespan for (1), we only discuss
the lower bound of lifespan for the following problem:

( 3 —1 1 2
W (— (O + LVw]?))
o2 +2§ja 00w — 2
LT L RO T G (C (0 + 5 IVe]?)

3
+ Z 6iw8kw8i6kw =0
(2) ik=1
Wli=o = z-:/ sv?(s) ds
Ro
=2

c
Owli=0 = —55p0 + 52g(:v,z-:).

\

L (—(Ow w|? = P — -
It is easy to know (2_15(7(?5t:l|vvl‘2//2%§) =2 —2pc (p)Ow/e + O(|Vzpwl?).

we set
8t2w0 — 62Aw0 =0
T
(3) woli=0 = / sv?(s) ds
Ro
_9
C
8tw0|t=0 = ——p0
p
and

oU(s.a) __ pc(p) +c<8U(s,q)>2
0s 2¢2 0q
U(0,q) = Fo(q)-

Where Fy(q) is the Friedlander radiation field of (3). By [2, (6.2.12)], we
have

8@;” = 5[e5c (o [ sots)ds) + a5 mla)]

N o
—
0
4
=o
—~
)
SN—
QL
)
+
Q
no
4
=o
—
S
SN—
+
1ol
S
s
(e}
—
Q
S~—
N———

Set wy, = e[x(et)wo + (1 — x(et))r~U(eln(et),r — ct)], where x € C(R)
decreases, equals to 1 in (—o0, 1), and equals to 0 in (2,00). Then we have
the following conclusion:

LEMMA 1. For sufficiently small € > 0, and elnT < b < 19, then
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(i) (2) has a C™ solution for 0 <t <T.
In(1
() 108, — )l < LB g1 <o

o 1+1¢
B,b€
(iii) \ijvx,twa\ < T+t 18] = 0.

Proof. (i) Noting 8*Fy(q)/9q* = clg®04v{(q) +3qv{(q) +cad4p0(q)/p +
¢po(q)/pl/2, as in [2, Theorem 6.5.7], we know (i) holds.

(ii) By [2, Lemma 6.5.6] and S.Klainerman’s inequality in [8], we easily
know (ii) holds.

(iii) Its proof is similar to that in [2, Lemma 6.5.5].

From Lemma 1 (i), it is easy to know that hH(l)&ln T. > 1.

E—

Remark. We state that ming<a[q* 040 (q)+3qv} (q)+cq04p0(q)/p] < O
unless v9 = 0 and pg = 0. In fact, if ming<p/[g*0,00(q) + 3qv0(q) +
eq0,p0(q)/p] > 0, then 92Fy(q)/dq? > 0. Because Fy(q) has compact sup-
port in |g| < M, then 0Fy(q)/0q = 0, hence Fy(q) = 0. By [2, Theorem
6.2.2], we have v{ = 0, pg = 0.

§3. The upper bound of lifespan T,

Assume that w,, b are defined as above, when eIlnT < b, we set p, =
h=H(—(Biwa + |Vwal?/2)). Since

1
== [0 (<0000 ST 1 =)+ i)
X {8t(u —Uug) + %(Vu + V)V (u — Ua)}

then by lemma 1, then we obtain

Cape?In(1/e)
¢ _ < ZBb <
(4) |8x,t(p Pa)‘ — 1 4t ’ |/8| — 2
and o
¢ _ 5\ < B,b€ >
o) 000~ P < T2 1520

Set a(r,t) = Orw(r, t), ag(r,t) = Orwy(r,t). For the smooth solution of (1),
we have
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LEMMA 2. (a) a, p satisfy the following system:

2
Orp + adrp + p(aroz + ;a) =0

© 0

oo+ adra + Orp=0

(b) Set p = p+ Art)/r, & = Br,t)/r, 71 = (0.Alp + 8,B/)/2,
Zy = (=0,A/p+ 0,B/c)/2, then (Z1,Z3) satisfy the following system:

OiZ1 + (a+¢)0rZ1 = Q1
OrZs + (a —€)0r Zz = Qo

where
2 YAVA B
1 / 142 / 2
= —— 3 —_— _——
o (c+dp)+=—0Bp+ )+ (=)
7 cA JdA  JdBp c“(p)yipA  Bp AB cr
+55 3B+ = (Y (o0
T 2 2c P c 20 2pr  2p
+£§[B_%_(CQ<P>)@ Bp A A Br B o per
T p p c 2c P 2 20 2pr 2 2p
1 A 25 11 B? 2 A?  3AB B
+—2<—C—+B—p—)+—3[———(c(p))/———JFpC—J
r 2p 2p r c P 2c 2p 2p
ABc
2p2r4’
YAVA B Z3 B
Q, =2 2(30’p—2A——)+—2(—2A—|———c',o)
r r r r
Zir,2(p)upA er JdBp JdA Bp  p Bce
el Tt Ty, Ty )
+£§[23_z_(c2<p>)f&_%+6’39_0’_f4_@ e, ) Bl
T 2 p c P 2c 2 2p  2p 2pr
1/ cA pB 17 B? 2 A? 3AB pB
LAy L[Sy
r 2p 2p r c P 2c 2p 2p
ABc
2p%r4

Remark. 1t is very important to appear the factor cr(p — p)/2p in the
coefficients of Z; /r% in Q1, or we can’t give the upper bound of lifespan 7.

of solution to (1).
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Proof. (a) It can be verified directly, we omit it.
(b) Since Z1+ Zs = 0,B/c = (a+r0,a)/c, Z1 — Zy = (rOrp+p—p)/p,
thus

VA Z B Z1— 7 A
a=Ort%) B o _ph-2) 4
T T T T
9 O (Zy + Za)  dp(Z% —Z3) Al (Zy+Zy) 2c(Z1+ Z3) 2B
PRa = + - - =
r r2 rs r2 rs
0. (21 — Z 71— 752 A(Zy—Z 20071 — Z 2A
83p:pr(1 2)+P(12 2)” (13 2)  2p( h 2)+_3.
T T T T T
then
B c(41— Z
021+ Z2) = ——0,(Z1 + Z2) = cOn(Z1 — Za) — %
c B 2B? QB(Zl + ZQ)
—(Zy + Z2)* + = (Zy + Zo) —
T( 1+ Z2) +r2( 1+ Z2) 3 2
Ep)\i[P*(Z1 = Zo)*  2pA(Z1 — Zo) A
(8) —( ) - P 73
p Ccr cr Ccr
C(Zl — Z2)2 CA(Zl — ZQ) 20(21 — Z2) CA
- + 5 T ]
T p’f‘ T pT
(21 + Z5)? 'vB(Z, + Z
WP (Z1 + Z) Lep ( L 2)
T cr
and
B 2c
o2y — Zy) = —?(Z1 — Zy) — O (Zy — Z) — 7(212 )
2cA(Z1 + Z3) 3AB  B(Zy — Z3)?  2B(Z) — Z)
+ 2 B 3 2 + 2
p’f‘ p’f‘ T T
dp. o o dA(Z1+Zy) 2B Bp(Zy — Zs)
(72 _ 7 e s 2= ZAsEl #e)
9) . (23 5) + 2 + 2 o2
pBc ﬁC(Zl + ZQ) pB B(Z% — ZQQ) BC(Zl + Zg)
— - _|_ .
02r3 or or? r2 or3
+C(Zl + 22)2 n B(Zl + ZQ) ABc B AC(Zl + ZQ)
r r2 p2rd or? :

From (8) and (9), it is easy to obtain (7). Hence Lemma 2 is proved.

Denote Ff\E as the integral curves of 0y £ (a+ ¢)0, passed through (A, 0)
in the plan (r,t), D as the strip domain bounded by FJISLO and Fjofl where
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o0 is taken such that (q*0,09(q) + 3qv}(q) + 2404p0(q)/p + Ep0(q)|g=00/P)
is minimum. D, = D N{t > 1/2¢}. As in [4], [6], [7], for any T satisfying
1/2e <T < ebe b < 19, we define

J(t)= sup /]Zl r,s)|dr, M(t)= sup (|A(r,s)|+|B(r9)|),
1/2e<s<t 1/2e<s<t
(r,s)eD (r,s)eD
and V(t) = sup s|Zy(r,s)|.
1/2e<s<t
(r,s)eD

LEMMA 3. There exist some constants Ji, M1, V1 > 0, for sufficiently
small € > 0 and any t satisfying 1/2e <t < T < ¢, such that J(t) <
Jie, M(t) < Mye, V(t) < Vie'/2. Moreover r > &t /2 in D..

Proof. Firstly we verify the lemma for 1/2e <t < 1/e.
Set p = pg + p. It turns out

QZIZT(MJF&“_‘I)JF(MJFE)
c P c
and 9 oy 9 o
D kWY N e e R )
p c p c
Since
t‘222 . r(—a’"o‘“ . %)
c p
St‘r(_arp_'_ara_araa)+(_pa_p+p+g)
P c p c

1
< cte(€ +eln —).
£
Noting that
Or g . Orpa _ (P - ﬁ)araa . (C - E)arpa + pOrg — €O pq

c p pc pc pc
and
0 Fo(r —ct
5Oty — COhpa = ge(éﬁr + 01)0) (wa M)
_ 2F0(T — Et) 8qF0(r — Et)
tep [ 73 B 72 }

O(|Vaiwal?) + O(|VwaV,wa)).
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Thus, by
Fy(r —ct) Cj &
8 (wq — ( < , >0, (r> =t
:v,t(w‘l r ) — (1—|—t)2 ‘5’— (T—2 )
we know

oy Orpg 1 1/2

t|Zs| < tr|— — —| + cte(e +eln —) < ctee

c p €

ie.,
V(t) < ctee/?.
On the other hand, owing to the width of D is finite and |Z;| < ctee,

(Iral +[r(p = p)I) < ctee.

then
M(t)= sup

1/2e<s<t

J(t) < ctee,
(r,s)eD

We choose My = (2¢2+2¢p)J1, Vi = Ji, s.t. J(1/2¢) < Jye/4, M(1/2¢) <
Me/4 and V(1/2¢) < Jye'/?/4.
Now we verify the lemma as 1/2e <t < T’ < T. For this aim, as in [4],
we first claim that:
(i) On Ty C D, then |r — é — A| < cte. In particular, for ¢ > 1/2¢ and

¢ small enough, then r > 3¢t/4.
In fact, along F;\r C D, dr —¢edt = (o + ¢ — ¢) dt, then

¢
|r—ct—)\|§ct6/ oo+ c—¢|dt
0

(10) .
< cte/ ——dt < cteeln(1 4+ t) < cte.
o T+t

(ii) If (r,t) € T, N De, (r',t") € T, N D, t' < t, then t — 1’ < cte. In

particular, ¢’ > t/2 for sufficiently small e.

In fact,
‘ d( . )| < ctee
S lraet—
dt W=
and Loy
Ir(t) 4+t —p— (r(t') +ét' — p)| < cteeln N j: . < cte.

Then imitating the proof in [4], we know the statement (ii) holds.
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Choosing u = —a — ¢, along the integtal curve in D, we write

d(Zy(dr + pdt)) = [(a + ¢+ p)0rZ1 + Z10pp — Q1)dr A dt = Qdr A di

where
~  IZ B, Z3, B
Q=- ! 2(c+20/p-|-—) ——2(6——)
r r r
Z cA cA JdpB c? A Bp AB cr
Ahpp A A B (Clypd Bp B ()]
r p 2 2c p c 2p  2pr  2p
A (El)ypA  ¢Bp A cd Bp Be e -2
T P P c 2c 2 20 20 2 2p
1 ( cA pB) 1 [ B? (62(p))/A2 3AB ch}
r2Y 2p 2p L ¢ p 7’ 2 2p 2p?
cAB
2p%r4

As in [4], we have

. 1 ~
(i) / . |Z1(r,t)]dr < J(2—€) + /1/2€<3<t |Q| drds
(rt)e (r,s)eD

1 ~
(ii cte/ Zi(ry )| dr < J(— +/ Q| drds
) '~ (z,t)ND- | ) (25) 1(/;2)%575 @

where I'"(z, t) is the integral curve of 9; — (a+ ¢)0, passed through (x,t) €

D..
In D,, for sufficiently small e, we have

V151/2 Mie M1252+M1V153/2 €

’Q‘SCte[‘Zl‘( 2 + 2 3 3 t_Q
Vie Me, = Viel/? Mie = M3Pe?  Mpe?
+3 (1+ - )+ 5 (Mye +1t) +  t st
Hence

~ 1 ~ 1

3/2
1 f2e<s<t |Q| drds < cteJie / , J(t) < J(%) + | /2e<s<t |Q| drds < §J15.
(r,s)eD (r,s)eD

In order to estimate M (t), we note that

AB  pB
A+ (a— )0 A= —2pcZ) + = - =

T T

B> A(pA

OB+ (o — )0, B = —26°Z; + — +
r p T
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Then, for € small enough, we have
3
(141 + 1B 1) < 2.

Similarly, V (t) < Vie'/2/2.

Therefore, by continuous induction, we know that Lemma 3 holds.

Along I'j C D, we define w(t) = —Z1(r(t),t). It is easy to know that
w satisfies the equation:

(11) w'(t) = ap(t)w? + ay (t)w + az(t)
where
d +c
ao(t) = (5=2) (1), 1),
2, 1 cA JdA JdBp A(p)pA
pu— —_— —_— B —_— —_— —_
a1 () (30p+r)+r2[3 + 5 o ( p ) -
_Bp _AB e _7)}
20 2pr 2pp Iy
Z B, 732 A P A ¢B A JdA
wt) = -2~ By 2l A W)ypd  eBp  cd A
T r r P P c 2c P 2

Bp Bce cor ﬁcr}_l(_% B—@)
2p 2p

11 B 2(p)\,A2 3AB pBc] cAB

__[_7 ~( p ) 2c 2p 2p2} C2p2rt

Lemma 3 and the above calculation give out the following estimates

,50,(/3) +é 61/2 1/2

_ 9
a(t) = B 067, Jar(0)] < ety laa(t)] < cte"r

and
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As ¢ is small enough, from the proof in Lemma 3, we know r(1/2¢) >

(¢/2)(1/2¢). So it tumns out:
08 (w0 - =11 eyt S ﬁ <ctes?, 5] >0
and
WA B R
o %ﬁaqFo(;((zii)) —%) %_ﬁr(%) [_331’0(;((23 ~3)
AR

Substituting them into (12), we obtain
1 €2 Fy(r(k) — &
_ q 0( (25) 26)—1—0(6).

w(z) = ¢

By (10), |r(1/2¢) — ¢/2e — 0| < ctecIn(1 + 1/2¢), then
(0004p0(0) + po(@0))]| + ofe)

1 € c
w(2_€) =3 [Ugaqv?(%) + 3000} (00) + p

Denote K = ([, [az(t)| dt) exp(f{). |a1 ()
)

dt), and note the equation (11)
satisfies the conditions of [2, Lemma 1.3.2.] in 1/2¢ <t < T, so we obtain:

(/1/T25 ao(t) dt) exp(— /1;[25 lai(t)| dt) < (w(2—1€) _ K)fl

that is
PP £ 10T 4 12 + O(e))ectes™?

C
c c
< {—— (Ugﬁqv?(ao) + 3000?(00) + anaqpo(ao) + tPO(JO))

1

+o(e) + Ct€63/2] .

Let € — 0, we get
lirr(l)alnT€ < 79.
e—

(13)
Combine (13) with the conclusion in §2, we know Theorem holds.
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