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HEIGHT ONE MATRICES

MASAO OKAZAKI

Abstract. Let P1(Q) be the projective line over Q and H the Weil height on

P1(Q). A classical result in algebraic number theory, so called Kronecker’s theo-

rem, states that H(1, x) = 1 if and only if x ∈ Q is 0 or a root of unity. In [4],

Talamanca introduced some height functions on Mn(Q). The purpose of this pa-

per is to show analogues of Kronecker’s theorem for these heights: We determine

height one matrices relative to these heights.

1. Introduction

Let K be an algebraic number field. Throughout the paper, we employ the following

notation:

• Q: the field of rationals;

• Q: the field of algebraic numbers;

• C: the field of complex numbers;

• OK : the ring of integers of K;

• M∞
K : the set of all field homomorphisms from K to C;

• M0
K : the set of all non-zero prime ideals of OK ;

• MK := M∞
K ⊔M0

K ;

• | · |v: an absolute value on K defined for each v ∈ MK as

|x|v :=

{
|v(x)| (v ∈ M∞

K ),

#(OK/v)
−ordv(x) (v ∈ M0

K),

where ordv(x) is the order of x ∈ K for each v ∈ M0
K , i.e., if x ∈ K× and

(x) =
∏n

k=1 v
ek
k is the prime factorization of the fractional ideal (x), we set

ordv(x) :=

{
ek (v = vk for some k),

0 (v ̸= vk for any k),

and ordv(0) := ∞ for all v ∈ M0
K ;

• Kv: the completion of K by the absolute value | · |v;
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• Mn(F ): the ring of n× n square matrices over a field F .

For x⃗ = t(x1, . . . , xn) ∈ Kn, we set

H(x⃗) :=

( ∏
v∈MK

max{|x1|v, . . . , |xn|v}

)1/[K :Q]

.

As usual, we set H (⃗0) = 1. Now, we note the product formula∏
v∈MK

|x|v = 1 for all x ∈ K×,

and hence we have H(cx⃗) = H(x⃗) for all x⃗ ∈ Kn and c ∈ K×. Since we know

that the value of H(x⃗) is independent of the choice of K, we can consider H to be

a function on Qn
. The function H is called the Weil height, measuring a certain

kind of arithmetic complexity of x⃗ ∈ Qn
. Note that H(x⃗) ≥ 1 for all x⃗ ∈ Qn

. The

following theorem, which determines the vectors x⃗ ∈ Qn
which satisfy H(x⃗) = 1, is

an immediate consequence of Kronecker’s theorem (see, e.g., [1], Theorem 1.5.9):

Theorem (A) . Let x⃗ ∈ Qn
. Then H(x⃗) = 1 if and only if there exist a constant

r ∈ Q and a vector e⃗ ∈ Qn
such that each of entries of e⃗ is 0 or a root of unity and

x⃗ = re⃗.

Now for each v ∈ MK , we set a norm Nv on Kn with respect to | · |v:

Nv(x⃗) :=

{√
|x1|2v + · · ·+ |xn|2v (v ∈ M∞

K ),

max{|x1|v, . . . , |xn|v} (v ∈ M0
K).

In [4], Talamanca introduced some height functions on Mn(K):

H(A) :=

( ∏
v∈MK

∥A∥v

)1/[K :Q]

,

Hop(A) := sup
x⃗∈Qn\{0⃗}


 ∏

v∈MKx⃗

Nv(Ax⃗)

Nv(x⃗)

1/[Kx⃗ :Q]
 ,

where ∥A∥v denotes the operator norm of Kn
v ∋ x⃗ 7→ Ax⃗ ∈ Kn

v induced by Nv,

and Kx⃗ := K(x1, . . . , xn) for each x⃗ = t(x1, . . . , xn) ∈ Qn \ {⃗0}. As usual, we set

H(O) = Hop(O) = 1. Since the values of H(A) and Hop(A) are also independent

of the choice of K, we can also consider H and Hop to be functions on Mn(Q); see

Sections 2 and 3 for more details.

The main purpose of this paper is to show analogues of Theorem (A) for H
and Hop, i.e., to determine the matrices A ∈ Mn(Q) which satisfy H(A) = 1 or

Hop(A) = 1. Throughout this paper, we call a matrix scattered if no two non-zero

entries lie in the same row or the same column.
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Theorem 1.1. Let A ∈ Mn(Q). Then:

(1) H(A) = 1 if and only if there exist a constant r ∈ Q and a matrix B ∈ Mn(Q)

such that B is scattered, each of entries of B is 0 or a root of unity, and

A = rB;

(2) Hop(A) = 1 if and only if A has at most one non-zero row vector, or there

exist r ∈ Q and B ∈ Mn(Q) such that B is scattered, each of entries of B is

0 or a root of unity, and A = rB.

2. The Weil L2-height

As mentioned in Section 1, we defined H and Hop by using the L2-norm Nv for

each v ∈ M∞
K , while H is defined by using the L∞-norm for each v ∈ MK . So the

following height functions are more suitable when we study H and Hop; for x⃗ ∈ Kn,

we set

H2(x⃗) :=

( ∏
v∈MK

Nv(x⃗)

)1/[K :Q]

,

H+
2 (x⃗) :=

( ∏
v∈MK

max{1, Nv(x⃗)}

)1/[K :Q]

.

As usual, we set H2(⃗0) = 1. By the product formula, we have H2(cx⃗) = H2(x⃗) for

all c ∈ K×. We can also consider H2 and H+
2 to be functions on Qn

. The function

H2 is called the Weil L2-height. Note that H2(x⃗) ≥ 1 for all x⃗ ∈ Qn
. Now we have

Hop(A) = sup
x⃗∈Qn\{0⃗}


(∏

v∈MKx⃗
Nv(Ax⃗)

)1/[Kx⃗ :Q]

(∏
v∈MKx⃗

Nv(x⃗)
)1/[Kx⃗ :Q]

 = sup
x⃗∈Qn\{0⃗}

{
H2(Ax⃗)

H2(x⃗)

}
.

Consequently, we can consider Hop to be a function on Mn(Q); we will show

Hop(A) < ∞ in the next section.

The following lemma is an analogue of Theorem (A) for the Weil L2-height.

Lemma 2.1. Let x⃗ ∈ Qn
. Then:

(1) H2(x⃗) = 1 if and only if x⃗ has at most one non-zero entry.

(2) H+
2 (x⃗) = 1 if and only if each of entries of x⃗ is 0 or a root of unity and x⃗

has at most one non-zero entry.

Proof. (1) We know that the former condition implies the latter condition by the

inequality H2(a, b) > H2(a) for any a, b ̸= 0, and that the latter condition implies

the former condition by the product formula.
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(2) We know that the latter condition implies the former condition. So we shall

prove the converse. Take any x⃗ ∈ Qn
with H+

2 (x⃗) = 1. By the inequality H(1, x⃗) ≤
H+

2 (x⃗) and Theorem (A), each of entries of x⃗ is 0 or a root of unity. By the inequality

H2(x⃗) ≤ H+
2 (x⃗) and (1), x⃗ has at most one non-zero entry. □

3. Some basic properties of H and Hop

In this section, we summarize some basic properties of H and Hop.

First, we shall make some remarks on the operator norms mentioned in Section

1. Let B = (bij) ∈ Mn(Kv). It is known that

∥B∥v =
√

sp(B∗B) if v ∈ M∞
K , (3.1)

∥B∥v = max
i,j

{|bij|v} if v ∈ M0
K , (3.2)

where B∗ is the adjoint of B and sp(B∗B) is the maximum eigenvalue of B∗B. Thus

we find that for any A ∈ Mn(K), we have ∥A∥v = 1 for all but finitely many v ∈ MK .

Therefore to set H, as is in Section 1, makes sense. We also find that the value of

H(A) is independent of the choice of K, and hence we have Hop(A) ≤ H(A) < ∞.

Thus we find that to set Hop, as is in Section 1, also makes sense.

Next, to study H, we introduce an auxiliary height H+:

H+(A) :=

( ∏
v∈MK

max {1, ∥A∥v}

)1/[K :Q]

,

where A ∈ Mn(K). By (3.1) and (3.2), we have the following:

Lemma 3.1. For any A ∈ Mn(Q), we have H+(A) = H

(
1 t0⃗

0⃗ A

)
.

Thus we can consider H+ to be a function on Mn(Q). The following inequalities

play important roles in the proof of the main theorem.

Lemma 3.2. Let A = (⃗a1, . . . , a⃗n) ∈ Mn(Q). Then for any 1 ≤ j ≤ n:

(1) H2(⃗aj) ≤ Hop(A);

(2) H+
2 (⃗aj) ≤ H+(A).

Proof. Let (aij) := A, K := Q(a11, . . . , ann) and e⃗j :=
t(0, . . . ,1

∧
j-th

, . . . , 0).

(1) We have

H2(⃗aj) =
H2 (Ae⃗j)

H2 (e⃗j)
≤ Hop(A).
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(2) We have

H+
2 (⃗aj) =

( ∏
v∈MK

max

{
1,

Nv(Ae⃗j)

Nv(e⃗j)

})1/[K :Q]

≤ H+(A).

□

Let F be R or C, and B ∈ Mn(F). We know that

∥B∗∥ = ∥B∥, (3.3)

where ∥ ·∥ is the operator norm induced by the standard L2-norm on Fn. Therefore,

for any A = (aij) ∈ Mn(K) and σ ∈ M∞
K , we have

∥tA∥σ = ∥(σ(aji))∥ = ∥(σ(aij))∥ = ∥A∥σ, (3.4)

where tA is the transpose of A and σ is the composition of the complex conjugation

and σ. By (3.2) and (3.4), we have the following:

Lemma 3.3. For any A ∈ Mn(Q), we have H(A) = H(tA) and H+(A) = H+(tA).

The following lemma is a key to prove Theorem 1.1.

Lemma 3.4. Let A ∈ Mn(Q). Then H+(A) = 1 if and only if each of entries of A

is 0 or a root of unity and A is scattered.

Proof. By (3.1) and (3.2), we know that the latter condition implies the former

condition. So we shall prove the converse. Suppose that H+(A) = 1. Then, by

Lemma 3.2 (2) and Lemma 2.1 (2), we find that each of column vectors of A has at

most one non-zero entry and it is a root of unity. On the other hand, by Lemma

3.3, we find that each of row vectors of A has at most one non-zero entry. □

4. Proof of Theorem 1.1

Proof of Theorem 1.1. (1) We know that the latter condition implies the former

condition. So we shall prove the converse. Let A ∈ Mn(Q) \ {O} with H(A) = 1.

By the inequality Hop(A) ≤ H(A), Lemma 3.2 (1) and Lemma 2.1 (1), we find that

each of column vectors of A has at most one non-zero entry. On the other hand, by

Lemma 3.3, we find that each of row vectors of A has at most one non-zero entry.

Therefore A is scattered. Now note that multiplying A by any permutation matrix

does not change the value of H(A). So we may assume that a11 ̸= 0. Furthermore,

by the product formula, we may also assume that a11 = 1. Thus we may assume

that A is a form of (
1 t0⃗

0⃗ A′

)
,
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where A′ ∈ Mn−1(Q). By Lemma 3.1, we have H+(A′) = H(A). Therefore, by

Lemma 3.4, each of entries of A′ is 0 or a root of unity and A′ is scattered. This

completes the proof of (1).

(2) First, we shall prove that the latter condition implies the former condition.

Suppose that A has at most one non-zero row vector:

A =

 O
a1 · · · an

O

 .

Then for any x⃗ = t(x1, . . . , xn) ∈ Qn \ {⃗0}, we have

H2(Ax⃗) = H2(a1x1 + · · ·+ anxn) = 1,

H2(x⃗) ≥ 1.

Therefore we have Hop(A) = 1. Suppose that there exist r ∈ Q and B ∈ Mn(Q)

such that B is scattered, each of entries of B is zero or a root of unity, and A = rB.

Then we have 1 ≤ Hop(A) ≤ H(A) = 1 by (1).

Next, we shall prove the converse. Let A = (aij) ∈ Mn(Q) with Hop(A) = 1. By

Lemma 3.2 (1) and Lemma 2.1 (1), we find that each of column vectors of A has at

most one non-zero entry. Suppose that A has more than one non-zero entries aij,

akl with j < l and i ̸= k. We set

c⃗ := t(0, . . . , 0,1
∧

j-th

, 0, . . . , 0,1
∧

l-th

, 0, . . . , 0).

Then we have

H2(Ac⃗) = H2

(
1

aij
Ac⃗

)
= H2(1, a),

H2(c⃗) =
√
2,

where a := akl/aij. By the inequality H2(Ac⃗)/H2(c⃗) ≤ Hop(A), we find that

H2(1, a) ≤
√
2. Let K := Q(a11, . . . , ann) and d := [K : Q]. Now, note that

max{1, t} ≥
√
t, (4.1)

√
1 + t2 ≥

√
2t (4.2)
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for all t ≥ 0, and both the inequalities become equalities if and only if t = 1. Hence

we have

√
2 ≥ H2(1, a)

≥

 ∏
v∈M0

K

|a|v

1/2d2d
∏

v∈M∞
K

|a|v

1/2d

(by (4.1), (4.2)) (4.3)

=
√
2 (by the product formula).

Therefore, the inequality (4.3) must be an equality. So we have |a|v = 1 for all

v ∈ MK . Thus, by Kronecker’s theorem, we find that a is a root of unity. Therefore

if A is scattered, then there exist r ∈ Q and B ∈ Mn(Q) such that B is scattered,

each of entries of B is zero or a root of unity, and A = rB. Now, suppose that A is

not scattered and that A has more than one non-zero row vectors. Then there exist

non-zero entries aij, akl and akm of A with i ̸= k and j ̸= l ̸= m ̸= j. For simplicity,

we assume that j < l < m. By the argument described above, u1 := akl/aij and

u2 := akm/aij must be roots of unity. Taking positive integers p and q such that

up
1 = uq

2 = 1, we set

d⃗ := t(0, . . . , 0,1
∧

j-th

, 0, . . . , 0, up−1
1
∧

l-th

, 0, . . . , 0, uq−1
2
∧

m-th

, 0, . . . , 0).

Then we have

H2(Ad⃗) = H2

(
1

aij
Ad⃗

)
= H2(1, 2) =

√
5,

H2(d⃗) =
√
3.

Hence Hop(A) ≥ H2(Ad⃗)/H2(d⃗) =
√

5/3 > 1, which contradicts the assumption

Hop(A) = 1. □

Acknowledgements. I deeply thank my master’s advisor Yuichiro Takeda for his

continued support.

I am really grateful to Valerio Talamanca for sending me a personal lecture note.

It was very helpful when I wrote this paper.

Yuya Miyata told me some TEXcommands which I used in the source code of this

paper. I should thank him.

Finally, I am sincerely grateful to the anonymous referee for reading the draft

carefully and giving me so many valuable comments. These did improve my ill-

organized draft.

— 25 —



References

[1] E. Bombieri and W. Gubler, Heights in Diophantine Geometry, New Mathe-

matical Monographs, 4. Cambridge University Press, Cambridge, 2006.

[2] J. Chahal, Topics in Number Theory, The University Series in Mathematics,

Plenum Press, New York, 1988.

[3] V. Talamanca, Height preserving linear transformations on linear spaces, Ph.D.

thesis, Brandeis University, 1995.

[4] V. Talamanca, A Gelfand-Beurling type formula for heights on endomorphism

rings, J. Number Theory 83 (2000), no. 1, 91–105.

(M. Okazaki) Graduate School of Mathematics, Kyushu University, Motooka 744, Nishi-ku, Fukuoka

819-0395, Japan.

Email address: m-okazaki@math.kyushu-u.ac.jp

Received 2019.3.4

Revised 2019.6.1

— 26 —


