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COMPUTATIONAL METHODS FOR
SET-RELATION-BASED SCALARIZING FUNCTIONS

HUI YU, KOICHIRO IKE, YUTO OGATA, YUTAKA SAITO,

AND TAMAKI TANAKA

Abstract. In this research, we propose computational methods to evaluate scalar-

izing functions, which are defined via set-relations. In recent years, many theoret-

ical results of the scalarizing functions for sets have been published. The aim of

this paper is to show that each value of the scalarizing functions can be computed

and to introduce computational algorithms of them for convex polytopes in a finite

dimensional space.

1. Introduction

Generally speaking, multiobjective programming and vector optimization are stud-

ied based on “multicriteria” evaluation like some partial orderings or preorders.

Gerstewitz’s (Tammer’s) sublinear scalarizing function for vectors [4, 5] is one of

important mathematical tools in those areas to get optimal solutions for multicri-

teria decision problems without convexity assumptions. This kind of scalarizing

functions is the smallest strictly monotonic (increasing) function with respect to the

ordering structure; see [6, 12]. Based on this property, Georgiev and Tanaka [2, 3]

applied it to obtain Fan’s type inequalities for multifunctions with vector-valued

images. Also, Nishizawa and Tanaka [13] studied certain characterizations of set-

valued mappings by using the inherited properties of the scalarizing function on

cone-convexity and cone-semicontinuity.

On the other hand, Sonda, Tanaka, and Yamada [15] proposed a certain com-

putational scheme to calculate practically four types of scalarizing functions for a

given set. Their approach is based on the idea of Gerstewitz’s sublinear scalarizing

function.
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Recently, theoretical results on set-relation-based scalarizing functions have been

researched; see [14] and references cited therein. Especially, sublinear scalarizing

functions for sets are proposed in [11] based on the binary relations introduced by

Kuroiwa, Tanaka, and Ha in [9]. In this study, we give a computational scheme to

calculate these scalarizing functions from the viewpoint of set-oriented and vector-

oriented versions.

The organization of this paper is as follows. In Section 2, we recall the definitions

of set-relations and scalarizing functions for sets. In Section 3, we give reformation

of these functions. In Section 4, we propose computational algorithms in a finite-

dimensional Euclidean space for certain polytope cases with a convex polyhedral

cone.

2. Preliminaries

Throughout this paper, let X be a real topological vector space and X∗ the contin-

uous linear functional space of X. The topological interior and the convex hull of

a set A ⊂ X are denoted by intA and coA, respectively. Let C be a non-empty

convex solid (intC ̸= ∅) cone in X. The ordering ≤C induced by C is as follows:

x ≤C y if y − x ∈ C for x, y ∈ X.

Obviously, the ordering ≤C has reflexive and transitive properties since C is a convex

cone.

Firstly, let us introduce binary relations between two non-empty sets as follows.

Definition 2.1 (set-relations, [9]). For any non-empty sets A, B ⊂ X, we write

(i) A ≤(1)
C B by ∀a ∈ A, ∀b ∈ B, a ≤C b, equivalently A ⊂

∩
b∈B(b− C);

(ii) A ≤(2)
C B by ∃a ∈ A s.t. ∀b ∈ B, a ≤C b, equivalently A∩

(∩
b∈B(b− C)

)
̸= ∅;

(iii) A ≤(3)
C B by ∀b ∈ B, ∃a ∈ A s.t. a ≤C b, equivalently B ⊂ A+ C;

(iv) A ≤(4)
C B by ∃b ∈ B s.t. ∀a ∈ A, a ≤C b, equivalently

(∩
a∈A(a+ C)

)
∩B ̸= ∅;

(v) A ≤(5)
C B by ∀a ∈ A, ∃b ∈ B s.t. a ≤C b, equivalently A ⊂ B − C;

(vi) A ≤(6)
C B by ∃a ∈ A, ∃b ∈ B s.t. a ≤C b, equivalently A ∩ (B − C) ̸= ∅.

Proposition 2.1. For any non-empty sets A,B ⊂ X, the following statements hold:

A ≤(1)
C B iff B ≤(1)

−C A; A ≤(2)
C B iff B ≤(4)

−C A;

A ≤(3)
C B iff B ≤(5)

−C A; A ≤(4)
C B iff B ≤(2)

−C A;

A ≤(5)
C B iff B ≤(3)

−C A; A ≤(6)
C B iff B ≤(6)

−C A.

Proof. By Definition 2.1, the statements are clear. □

The six binary relations ≤(1)
C , . . . ,≤(6)

C are certain generalizations of an ordering

for vectors induced by a convex cone in a vector space. Especially, ≤(3)
C and ≤(5)

C are
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preorders for sets. If B is a singleton set in Definition 2.1, set-relations ≤(2)
C , ≤(3)

C ,

≤(6)
C are coincident with each other, and the others ≤(1)

C , ≤(4)
C , ≤(5)

C coincide. Based

on these binary relations, we introduce the following scalarizing functions for sets.

Definition 2.2 (scalarizing functions, [11]). Let A and V be non-empty subsets of

X and a direction k ∈ intC. For each j = 1, . . . , 6, we define the scalarizing function

I
(j)
k,V : 2X\{∅} → R ∪ {±∞} by

I
(j)
k,V (A) := inf

{
t ∈ R

∣∣∣A ≤(j)
C (V + tk)

}
.

These scalarizing functions measure how far a set needs to be moved toward a

specific direction to fulfill each set-relation. They are a kind of generalization of

the scalarizing functions for sets introduced in [8] and inspired by the sublinear

scalarizing function originally introduced in [4, 5].

3. Reformation of set-relation-based scalarizing functions

In this section, we reform the scalarizing functions in Definition 2.2 to vector-oriented

expressions by using the ordering ≤C for vectors.

Proposition 3.1. The scalarizing functions for sets can be reformed as follows:

(i) I
(1)
k,V (A) = sup

a∈A
sup
v∈V

inf{t ∈ R | a ≤C v + tk};

(ii) I
(2)
k,V (A) = inf

a∈A
sup
v∈V

inf{t ∈ R | a ≤C v + tk};

(iii) I
(3)
k,V (A) = sup

v∈V
inf
a∈A

inf{t ∈ R | a ≤C v + tk};

(iv) I
(4)
k,V (A) = inf

v∈V
sup
a∈A

inf{t ∈ R | a ≤C v + tk};

(v) I
(5)
k,V (A) = sup

a∈A
inf
v∈V

inf{t ∈ R | a ≤C v + tk};

(vi) I
(6)
k,V (A) = inf

a∈A
inf
v∈V

inf{t ∈ R | a ≤C v + tk}.

Proof. It follows from Definition 2.1 that the scalarizing function on the left-hand

side of each statement above is represented by an elementwise formula with ≤C .

(i) At first we shall prove that

inf{t | ∀a ∈ A, ∀v ∈ V, a ≤C v + tk} = sup
a∈A

sup
v∈V

inf{t | a ≤C v + tk}. (1)

By selecting elements a′ ∈ A and v′ ∈ V , it is easy to see

{t | ∀a ∈ A, ∀v ∈ V, a ≤C v + tk} ⊂ {t | a′ ≤C v′ + tk}.

Taking the infimum for both sides of this formula, we have

inf{t | ∀a ∈ A, ∀v ∈ V, a ≤C v + tk} ≥ inf{t | a′ ≤C v′ + tk}.
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Since a′ and v′ are arbitrary,

inf{t | ∀a ∈ A, ∀v ∈ V, a ≤C v + tk} ≥ sup
a∈A

sup
v∈V

inf{t | a ≤C v + tk}.

Now, we assume that there exists s̄ ∈ R such that

inf{t | ∀a ∈ A, ∀v ∈ V, a ≤C v + tk} > s̄ > sup
a∈A

sup
v∈V

inf{t | a ≤C v + tk}. (2)

Since supa∈A supv∈V inf{t | a ≤C v + tk} < s̄, for all a ∈ A and v ∈ V there exists

sa,v < s̄ such that a ≤C v + sa,vk. It follows that v − a ∈ C − sa,vk ⊂ C − s̄k. This

implies that a ≤C v + s̄k. Therefore, inf {t | ∀a ∈ A, ∀v ∈ V, a ≤C v + tk} ≤ s̄,

which contradicts (2). Thus, (1) holds.

(ii) In a similar way to the proof of (i), we get

inf {t | ∃a ∈ A s.t. ∀v ∈ V, a ≤C v + tk} = inf
a∈A

inf {t | ∀v ∈ V, a ≤C v + tk} . (3)

From (1), we have

inf {t | ∀v ∈ V, a ≤C v + tk} = sup
v∈V

inf {t | a ≤C v + tk} (4)

for each a ∈ A.

Hence, by (3) and (4), we obtain

inf{t | ∃a ∈ A s.t. ∀v ∈ V, a ≤C v + tk} = inf
a∈A

sup
v∈V

inf{t | a ≤C v + tk}.

(iii) In a similar way to the proof of (i), we get

inf{t |∀v ∈ V, ∃a ∈ A s.t. a ≤C v + tk} = sup
v∈V

inf{t |∃a ∈ A s.t. a ≤C v + tk}. (5)

From (3), we have

inf{t | ∃a ∈ A s.t. a ≤C v + tk} = inf
a∈A

inf{t | a ≤C v + tk} (6)

for each v ∈ V .

Thus, by (5) and (6), we complete the proof.

(iv) By Proposition 2.1,

inf
{
t
∣∣∣A ≤(4)

C (V + tk)
}
= inf

{
t
∣∣∣V ≤(2)

−C (A+ t(−k))
}
. (7)

From the result (ii), we have

inf
{
t
∣∣∣V ≤(2)

−C (A+ t(−k))
}
= inf

v∈V
sup
a∈A

inf{t | v ≤−C a+ t(−k)}. (8)

By (7) and (8),

inf
{
t
∣∣∣A ≤(4)

C (V + tk)
}
= inf

v∈V
sup
a∈A

inf{t | v ≤−C a+ t(−k)}

= inf
v∈V

sup
a∈A

inf{t | a ≤C v + tk},
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which completes the proof.

(v) By Proposition 2.1,

inf
{
t
∣∣∣A ≤(5)

C (V + tk)
}
= inf

{
t
∣∣∣V ≤(3)

−C (A+ t(−k))
}
. (9)

From the result (iii), we have

inf
{
t
∣∣∣V ≤(3)

−C (A+ t(−k))
}
= sup

a∈A
inf
v∈V

inf{t | v ≤−C a+ t(−k)}. (10)

By (9) and (10),

inf
{
t
∣∣∣A ≤(5)

C (V + tk)
}
= sup

a∈A
inf
v∈V

inf{t | v ≤−C a+ t(−k)}

= sup
a∈A

inf
v∈V

inf{t | a ≤C v + tk},

which completes the proof.

(vi) In a similar way to the proof of (i), the equality

inf{t | ∃a ∈ A, ∃v ∈ V s.t. a ≤C v + tk} = inf
a∈A

inf
v∈V

inf{t | a ≤C v + tk}

is clear.

□

4. Calculation algorithms of the scalarizing functions

In this section, we consider algorithms for computing the scalarizing functions under

certain assumptions. To this end, we consider a Euclidean space Rn with the usual

inner product ⟨a, b⟩ :=
∑n

i=1 aibi for a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn. Also,

in this section, we assume that C ⊂ Rn is a solid convex polyhedral cone defined as

C :=
∩m

i=1 {x ∈ Rn | ⟨pi, x⟩ ≥ 0}, where p1, . . . , pm ∈ Rn\{θn}, and that A, V ⊂ Rn

are convex polytopes defined as A = co {a1, . . . , aα} and V = co {v1, . . . , vβ}, where
a1, . . . , aα, v1, . . . , vβ ∈ Rn.

Firstly, we consider a sort of reformation of a scalarizing function for vectors using

the convex polyhedral cone.

Proposition 4.1 (see Proposition 1.44 and Corollary 1.45 of [1]). Assume that

k ∈ intC. We have

inf {t ∈ R |x ≤C tk} = max
i=1,...,m

⟨
pi

⟨pi, k⟩
, x

⟩
for x ∈ Rn.

Proof. Since k ∈ intC, ⟨pi, k⟩ > 0 for each i = 1, . . . ,m. It follows from the

definition of C that for all x ∈ Rn and t ∈ R,

x ≤C tk ⇐⇒ ⟨pi, tk − x⟩ ≥ 0, ∀i = 1, . . . ,m
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⇐⇒ t ≥
⟨

pi
⟨pi, k⟩

, x

⟩
, ∀i = 1, . . . ,m

⇐⇒ t ≥ max
i=1,...,m

⟨
pi

⟨pi, k⟩
, x

⟩
.

Thus,

inf {t ∈ R |x ≤C tk} = max
i=1,...,m

⟨
pi

⟨pi, k⟩
, x

⟩
.

□

By replacing x in Proposition 4.1 with a− v for a ∈ A and v ∈ V , we can give a

computational scheme to calculate the six scalarizing functions in Proposition 3.1.

Theorem 4.1. Assume that k ∈ intC. For each q ∈ N, let I(q) := {1, . . . , q} and

M q :=

{
(λ1, . . . , λq) ∈ Rn

∣∣∣∣∣
q∑

r=1

λr = 1, λr ≥ 0 for r ∈ I(q)

}
.

Then, we get

(i) I
(1)
k,V (A) = max

s∈I(α)
max
j∈I(β)

max
i∈I(m)

⟨
pi

⟨pi, k⟩
, as − vj

⟩
;

(ii) I
(2)
k,V (A) = min

λ∈Mα
max
j∈I(β)

max
i∈I(m)

⟨
pi

⟨pi, k⟩
,

α∑
s=1

λsas − vj

⟩
;

(iii) I
(3)
k,V (A) = max

j∈I(β)
min
λ∈Mα

max
i∈I(m)

⟨
pi

⟨pi, k⟩
,

α∑
s=1

λsas − vj

⟩
;

(iv) I
(4)
k,V (A) = min

µ∈Mβ
max
s∈I(α)

max
i∈I(m)

⟨
pi

⟨pi, k⟩
, as −

β∑
j=1

µjvj

⟩
;

(v) I
(5)
k,V (A) = max

s∈I(α)
min
µ∈Mβ

max
i∈I(m)

⟨
pi

⟨pi, k⟩
, as −

β∑
j=1

µjvj

⟩
;

(vi) I
(6)
k,V (A) = min

λ∈Mα
min
µ∈Mβ

max
i∈I(m)

⟨
pi

⟨pi, k⟩
,

α∑
s=1

λsas −
β∑

j=1

µjvj

⟩
.

Proof. By Propositions 3.1 and 4.1, we get

I
(1)
k,V (A) = sup

a∈A
sup
v∈V

max
i∈I(m)

⟨
pi

⟨pi, k⟩
, a− v

⟩
; I

(2)
k,V (A) = inf

a∈A
sup
v∈V

max
i∈I(m)

⟨
pi

⟨pi, k⟩
, a− v

⟩
;

I
(3)
k,V (A) = sup

v∈V
inf
a∈A

max
i∈I(m)

⟨
pi

⟨pi, k⟩
, a− v

⟩
; I

(4)
k,V (A) = inf

v∈V
sup
a∈A

max
i∈I(m)

⟨
pi

⟨pi, k⟩
, a− v

⟩
;

I
(5)
k,V (A) = sup

a∈A
inf
v∈V

max
i∈I(m)

⟨
pi

⟨pi, k⟩
, a− v

⟩
; I

(6)
k,V (A) = inf

a∈A
inf
v∈V

max
i∈I(m)

⟨
pi

⟨pi, k⟩
, a− v

⟩
.
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For all a ∈ A and v ∈ V , there exist λ ∈ Mα and µ ∈ Mβ such that a =
∑α

s=1 λsas,

v =
∑β

j=1 µjvj.

Firstly, we prove statement (i).

I
(1)
k,V (A) = sup

a∈A
sup
v∈V

max
i∈I(m)

⟨
pi

⟨pi, k⟩
, a− v

⟩

= sup
a∈A

max
i∈I(m)

sup
µ∈Mβ

⟨
pi

⟨pi, k⟩
,

β∑
j=1

µj(a− vj)

⟩

= sup
a∈A

max
i∈I(m)

max
j∈I(β)

⟨
pi

⟨pi, k⟩
, a− vj

⟩
= max

i∈I(m)
max
j∈I(β)

sup
λ∈Mα

⟨
pi

⟨pi, k⟩
,

α∑
s=1

λs(as − vj)

⟩

= max
i∈I(m)

max
j∈I(β)

max
s∈I(α)

⟨
pi

⟨pi, k⟩
, as − vj

⟩
= max

s∈I(α)
max
j∈I(β)

max
i∈I(m)

⟨
pi

⟨pi, k⟩
, as − vj

⟩
.

Next, we prove statement (ii).

I
(2)
k,V (A) = inf

a∈A
sup
v∈V

max
i∈I(m)

⟨
pi

⟨pi, k⟩
, a− v

⟩

= inf
a∈A

max
i∈I(m)

sup
µ∈Mβ

⟨
pi

⟨pi, k⟩
,

β∑
j=1

µj(a− vj)

⟩

= inf
a∈A

max
i∈I(m)

max
j∈I(β)

⟨
pi

⟨pi, k⟩
, a− vj

⟩
= inf

λ∈Mα
max
i∈I(m)

max
j∈I(β)

⟨
pi

⟨pi, k⟩
,

α∑
s=1

λsas − vj

⟩

= min
λ∈Mα

max
j∈I(β)

max
i∈I(m)

⟨
pi

⟨pi, k⟩
,

α∑
s=1

λsas − vj

⟩
.

Actually, since the real-valued function

f(λ) := max
j∈I(β)

max
i∈I(m)

⟨
pi

⟨pi, k⟩
,

α∑
s=1

λsas − vj

⟩
is continuous on the compact set Mα, it must attain its minimum on Mα. Therefore,

the last equality above holds.
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Then, we can prove statements (iv) and (vi) similarly.

Next, we prove (iii). Using the convexity of A+ C,

inf {t ∈ R | (V + tk) ⊂ A+ C } = max
j∈I(β)

inf {t ∈ R | vj + tk ∈ A+ C } . (11)

Then, for all j ∈ I(β), the following equality holds:

inf {t ∈ R | vj + tk ∈ A+ C } = inf {t ∈ R |A ∩ (vj − C + tk) ̸= ∅} . (12)

Taking V := {vj} in (ii),

inf {t ∈ R |A ∩ (vj − C + tk) ̸= ∅} = min
λ∈Mα

max
i∈I(m)

⟨
pi

⟨pi, k⟩
,

α∑
s=1

λsas − vj

⟩
. (13)

By (11), (12) and (13), we have

I
(3)
k,V (A) = max

j∈I(β)
min
λ∈Mα

max
i∈I(m)

⟨
pi

⟨pi, k⟩
,

α∑
s=1

λsas − vj

⟩
.

At last, we can prove statement (v) similarly. □

From Theorem 4.1, we can easily calculate I
(1)
k,V (A) by finding the maximum of

at most α × β × m real numbers. In contrast, since I
(2)
k,V (A), . . . , I

(6)
k,V (A) include

the form of convex combination, it is necessary to solve certain linear programming

problems. In fact, the value of I
(2)
k,V (A) is obtained by solving the following linear

programming problem for (t, λ1, . . . , λα):

(LP(2)):

Minimize t ∈ R
subject to t ≥

⟨
pi

⟨pi,k⟩ ,
∑α

s=1 λsas − vj

⟩
, for all i ∈ I(m), j ∈ I(β),

α∑
s=1

λs = 1,

λs ≥ 0 (s = 1, . . . , α).

Besides, we reform the above problem as follows:

(LP(2)):

Minimize t ∈ R
subject to min

j∈I(β)
⟨p1, vj⟩ ≥ ⟨p1,

∑α
s=1 λsas − tk⟩ ,

...

min
j∈I(β)

⟨pm, vj⟩ ≥ ⟨pm,
∑α

s=1 λsas − tk⟩ ,
α∑

s=1

λs = 1,

λs ≥ 0 (s = 1, . . . , α).
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For the value of I
(3)
k,V (A), we need to solve the following linear programming prob-

lems LP(3-1), LP(3-2),. . . ,LP(3-β) for (t, λ1, . . . , λα) and take the maximum of β op-

timal values of these subproblems.

(LP(3-1)):

Minimize t ∈ R
subject to t ≥

⟨
pi

⟨pi,k⟩ ,
∑α

s=1 λsas − v1

⟩
, for all i ∈ I(m),

α∑
s=1

λs = 1,

λs ≥ 0 (s = 1, . . . , α).

...

(LP(3-β)):

Minimize t ∈ R
subject to t ≥

⟨
pi

⟨pi,k⟩ ,
∑α

s=1 λsas − vβ

⟩
, for all i ∈ I(m),

α∑
s=1

λs = 1,

λs ≥ 0 (s = 1, . . . , α).

Then, we reform the above problems as follows:

(LP(3-1)):

Minimize t ∈ R
subject to ⟨p1, v1⟩ ≥ ⟨p1,

∑α
s=1 λsas − tk⟩ ,

...

⟨pm, v1⟩ ≥ ⟨pm,
∑α

s=1 λsas − tk⟩ ,
α∑

s=1

λs = 1,

λs ≥ 0 (s = 1, . . . , α).

...

(LP(3-β)):

Minimize t ∈ R
subject to ⟨p1, vβ⟩ ≥ ⟨p1,

∑α
s=1 λsas − tk⟩ ,

...

⟨pm, vβ⟩ ≥ ⟨pm,
∑α

s=1 λsas − tk⟩ ,
α∑

s=1

λs = 1,

λs ≥ 0 (s = 1, . . . , α).

The values of I
(4)
k,V (A), I

(5)
k,V (A), I

(6)
k,V (A) are similarly obtained.
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5. Conclusions

We reform six types of scalarizing functions for sets in an ordered vector space to

vector-oriented expressions by using the vector ordering. Also, we propose computa-

tional algorithms of the functions in a finite-dimensional Euclidean space for certain

polytope cases with a convex polyhedral cone inducing the ordering. As a result,

we show that the problem to calculate each scalarizing function can be decomposed

into finite numbers of linear programming subproblems.

In addition to the six types of scalarizing functions (called “inf types”) , we remark

that other types (called “sup types”) given in [11] can be applied to our reformation

(by setting C := −C, k := −k). This implies that our result is a generalization of

the computational methods proposed in [15].
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