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THE VON NEUMANN-JORDAN CONSTANT OF
7/2-ROTATION INVARIANT NORMS ON R?

YUKINO TOMIZAWA

ABSTRACT. In this paper, we study the von Neumann-Jordan constant of m/2-
rotation invariant norms on R2. We give some estimations of the constant and
have a relationship between the constant and a ratio of two certain functions.
These results are an extension of existing results of a unitary version of the von
Neumann-Jordan constant.

1. Introduction and preliminaries

This paper is concerned with the von Neumann Jordan constant of Banach spaces.
For a Banach space X, let Bx and Sx be the unit ball and unit sphere, respectively.
In connection with the famous work [4] of Jordan and von Neumann concerning
inner products, the von Neumann Jordan constant Cy;(X) of X was introduced by
Clarkson in [3] as follows:

=+ yl* + [l — yI?
2(Jl=[1* + [ly[*)

The constant C;(X) can be viewed as a measure of the distortion of Bx from the

viewpoint of the parallelogram law. An estimation 1 < Cy;(X) < 2 holds for any

X. It is known that Cn;(X) = 1 if and only if X is a Hilbert space ([4]), and
Cny(X) < 2 if and only if X is uniformly nonsquare ([7]). So far many papers

Cny(X) :=Sup{ 1,y € X, (-76,?1)#(0,0)}-

were devoted to studying von Neumann-Jordan constant of Banach spaces; see, e.g.,
1,3, 6,8, 10].

A norm ||-]] on R? is said to be absolute if ||(a, b)|| = ||(|al, |b])|| for each (a,b) € R?,
and normalized if ||(1,0)|| = |/(0,1)]| = 1. Typical examples of such norms are the
(,-norms || - ||, given by

[ e (1<p< )
e, Dl = { max{[al, Jb]}  (p = ).
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Let AN, be a collection of all absolute normalized norms on R?. Let ¥y be a family
of all convex functions ¢ on [0,1] satisfying max{l — ¢,t} < ¢(¢) < 1 for each

€ [0,1]. As was shown in [2] and [6], AN, is in a one-to-one correspondence with
U, under an equation ¢ (t) = |[(1 —¢,t)|| for each ¢t € [0, 1]. An absolute normalized
norm corresponding to ¢ € Wy is denoted by || - ||y; and it satisfies the following

equation:
6]
(al+ 1 (0.0) # (0,0)
o, Bl = EEaT )
0 ((a,0) = (0,0)).
Moreover, a convex function o corresponding to the Euclidean norm || - || is given
by

Golt) = (L —1)2 +£2) "2,
It should be noted that ¥q(t) = ¥5(1 — t) for each t € [0,1]. Furthermore, a norm
| - || on R? is said to be 7/2-rotation invariant if the m/2-rotation matrix

R(x/2) = ( (1) _(1) )

is an isometry on (R?, || -]|), or equivalently, ||(a,b)|| = ||(=b, a)]| for each (a,b) € R.

The purpose of this paper is to study the von Neumann-Jordan constant of 7/2-
rotation invariant norms on R2. Let 1 be an element of W, defined by ¥(t) = 1(1—t)
for each ¥ € U5, and ﬁi J the space R? endowed with the norm

d
ol (Ja| + [b])2 Tal+ ol (ab > 0)
[(a; D)l ~ b
(lal + [b]) Tal+ 1] (ab <0).

In [5, Theorem 3.2], it was shown that any m/2-rotation invariant normed space is
isometrically isomorphic to some Day-James space of the form €2 . The norm |-, 5
is also 7/2-rotation invariant for each ¢ € ¥y ([5, Proposition 3 4]) Moreover, the
von Neumann-Jordan constant is invariant under isometric isomorphisms. Hence
for our purpose, it is enough to consider Day-James spaces of the form €2 v and
throughout this paper, /2-rotation invariant normed spaces are assumed to be £ -
for some ¢ € W,. Henceforth, fix an element ¢ in Wy with ¢ # 1y, put the norm
|-l =1 -1l,; for short, and the space fi 7 will be simply denoted by Y,. Under
this hypothesis, we obtain some estimations of the von Neumann-Jordan constant.
In the second section, we present keys to the proofs of the von Neumann-Jordan
constant in Day-James spaces having relation to m/2-rotation invariant norms. In
the third section, using the keys to the proofs, we get a relationship between the
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constant and the ratio of two certain functions. These results are an extension of
existing results of the unitary version of the von Neumann-Jordan constant ([9]).

2. Auxiliary results on Y,

In this section, we present keys to the proofs of our results in the next section.

Theorem 2.1. Let a,b > 0 and ¢ € (0,1]. Then the following two statements are
equivalent:

(I) There exists a pair x,y € Sy, with x + cy # 0 satisfying ||z|2 = ||yl = 1/a
and |lz + eyl = bllz + eyl

() There existr,s,t € [0, 1] such that 1¥(s) = aha(s), P(t) = as(t), and P(r) =
bibo(r), where r, st satisfy one of the following conditions:

(a) r = si(t) + ct(s)
S0+ eils) |
s c(1—1) _sY(t) + et — 1)3(s)
OV 0m T e ™ T T U e D)
s c(1—1) (1= 5)Y(t) + cty(s)
O 5® = 0w ™ T T2l Febls)

Proof. Suppose that (I) holds. Let z,y be elements of Sy, having the properties set
out in (I). Since R(7/2) is an isometric isomorphism on Yy, by the definition of the
norm of Y, we have only to consider two kinds of pairs z,y: one pair which z and
y use the same norm while another which x and y both use different norms. Thus,
we may assume that x is in the first quadrant. The argument separates into two
parts according to the position of y.

Case 1: Suppose that both =,y are in the first quadrant. Thus

r=——=(1—-s,8) and y= (1 —t,1) (2.1)

1
(1)
for some s,t € [0,1]. By (I) and the definition of || - ||2, we obtain 1/a = ||z||s =

a(s)/9(s) and 1/a = |lylla = 2(t) /4 (t). Thus we have ¢/(s) = athy(s) and ¢(t) =
as(t). Next we obtain

T+ c —(1_S+c1_t 5 4ot )
YT\ T i) T W)
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It is clear that x + cy # 0 for all s,¢ € [0,1] and ¢ € (0,1]. We have

S

vl tevls) o ([Los 1o ) )

sEee = (wm* IO RO )7’””
et el = bl eyl = pPE T ()
— o+ eyl = bl + eyl = 00D ),

where r is given by the equation set out in (a). Hence 9 (r) = bihy(r).
Case 2: Suppose that y is in the fourth quadrant. Thus

1
y= W(t’ —(1—1)) (2.2)

for some ¢ € [0, 1] (and 2 has the same form as (2.1) in Case 1). As in the preceding

paragraph, it follows that ¥(t) = ays(t) since 1/a = |jy|l2 = ¥2(1 — t)/¢(t) =
o(t) /1 (t). We obtain

T+c —(1_S+c t > —cl_t)
RNIORRTORTO RO
We note that x + cy # 0. Now, we put

s _Cl—t'<1—s+c t L _Cl—tD !
d(s) @) [ \ols)  w(t)  [9(s) ()
WO el =0 (s -0}
| torei = GerSa) 0 2.3
—si(t) + (1 — t)l/}(s) . (3 < e(l— t)) o (11> .
A —25)0(t) +ev(s) 2 \o(s) — o )
In the case of ¢ = 1, it must be (s,t) # (1,0), but it can be (s,t) = (0,1). Thus the

magnitude correlation of s and ¢ is divided into two cases in (2.3).
In the case of (2.3)(i),  + cy is in the first quadrant. We have

»(t) + (2t — 1)(s) 1—3s t s —cl —t .
B A (w>+wJ+w@ ww)“”
(8 + (2t — 1)i(s)

=z + eyl = bllz +cyla = b a(r1).

P(s)y(t)
Hence (1) = bio(r), where r is given by the equation set out in (b). In the case of
(2.3)(ii), « + cy is in the fourth quadrant. We put

—sy(t) + e = )e(s) _ (L= s)v(t) +ctv(s) _
(I=25)0(t) +cto(s)  (L=25)9(t) +eo(s) %
Since 1(t) = ¥(1 — t) for all ¢ € [0,1], we have

1—7”2:1—

(1 —=25)9(t) + cp(s) . 1—s t s _Cl—t T
b )= (wm o "9 wm)W”
(1~ 29)0(1) + cw(s)

= llz+eyl = bllz +cyla =0 a ().

P(s)i(t)
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Hence 9 (r) = biy(r), where r is given by the equation set out in (c¢). This completes
the proof of (I) = (II).

For the converse, let 7, s, t be elements of [0, 1] satisfying one of the three conditions
set out in (). If r,s,t satisfy (a), then the elements z = (s)"!(1 — s,s) and
y = ¥(t)"'(1 — t,t) have the desired properties. Similarly, in the cases of (b) and
(c), it is enough to consider z = ¥ (s) ™' (1 — s,s) and y = ¢(t)"* (¢, —(1 — ¢)). The
proof is complete. ]

Theorem 2.2. Let a,b > 0 and ¢ € (0,1]. Then the following two statements are
equivalent:

(I) There exists a pair x,y € Sy, with v — cy # 0 satisfying ||z|s = ||yl = 1/a
and ||z — cyl| = bllz — cy|2.

() There existr,s,t € [0, 1] such that ¥(s) = ays(s), P(t) = as(t), and Y(r) =
bio (1), where 1, s,t satisfy one of the following conditions:

W S = s ™= e
(a2) r = (1(1__22 E;i E;t 1)@)&5()3) satisfying one of the following conditions:
0l %R
T BT R T S RO
OS5 T e DT
OS5GN me

Proof. Suppose that (I) holds. Let x,y be elements of Sy, having the properties set
out in (I). Suppose that z is in the first quadrant.

Case 1: Suppose that both z,y are in the first quadrant. Thus we have (2.1) for
some s,t € [0,1]. By (I), we obtain 1/a = ||z||2 = ¥a(s)/¥(s) and 1/a = |ly|ls =
o(t)/1(t). Thus we have 1(s) = aby(s) and ¥ (t) = apo(t). Next we obtain

1—s 1—t s t
S (ws) ~U®) ) _Cw<t>> |
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We note that z — cy # 0. Now, we put

o [ (et M o e

s(t) — ctp(s) - 1—s < c(l—1t) and 5 ct Q)
e(t) —cp(s) v(s) — ¥(t) e(s) — 9(t)
B —s9(t) + ctrp(s) 1y 1—s S c(1—-1) and 5 < ct (i)
(1= 25)(t) + (2t — L)1p(s) v(s) (b P(s)  P(t)
s(t) — ctp(s) . 1—s e(l—t and 5 = ct - (iif)
(2s — Do) +e(l—200(s) ° \d(s) ¢ w(s) © () )

(2.4)

We note that if ¢ = 1, then we cannot get r;. Moreover, we must have s # t in the
case of ¢ = 1, but we can choose s =t in the case of ¢ < 1.

In the case of (2.4)(i),  — cy is in the first quadrant. For 7y, an argument similar
to that in Case 1 of Theorem 2.1, we have 1(r) = bipo(r), where r is given by the
equation set out in (al). In the cases of (2.4)(ii) and (iii),  — cy is in the fourth
and second quadrant, respectively. We note that ro = r3. We have

il msiavl)  (L-9u et -,
(1 =2s)(t) + c(2t — )p(s) (1 —2s)(t) + (2t — 1)(s) 2
For ), an argument similar to that in Case 2 of Theorem 2.1 shows that ¢ (r) =
bibo(r), where r is given by the equation set out in (a2).
Case 2: Suppose that y is in the fourth quadrant. Then we have (2.2) for some
€ [0,1] (and = has the same form as in Case 1). As in the preceding paragraph,
it follows that ¥(t) = as(t) since 1/a = |Jy|la = ¥o(1 — t)/P(t) = a(t)/P(t). We

obtain

e _<1—3_c t s +Cl—t)
ERNIORRORTO ROV
We note that x — cy # 0. Now, we put

( s +Cl—t)(1—s_ct '+ s +Cl—t)_l
ds) o) ) \[9(s) @] vls)  9()
SO +el=00(s) _ (1es_ay
) o = o Sww) 0 (25)
B sP(t) + (1 —t)Y(s) — (15>Ct) - (i) .
V) + el =20(s) > \ws) ~ o))
In the case of ¢ = 1, it must be (s,t) # (0, 1), but it can be (s,t) = (1,0). Thus the
magnitude correlation of s and ¢ is divided into two cases of (2.5)(i) and (ii).
In the case of (2.5)(i), z — cy is in the second quadrant. We note that

L1 sp(t) +c(L = 1)(s) _ (s = D(t) +etip(s) y
4 (25 — 1)(t) + cp(s) (25 — D)o(t) + cvls) 1

— 130 —



For /), an argument similar to that in Case 2 of Theorem 2.1 shows that ¢ (r) =
bibo(r), where 7 is given by the equation set out in (b). In the case of (2.5)(ii), z —cy
is in the first quadrant. For r5, an argument similar to that in Case 1 of Theorem
2.1 shows that ¥ (r) = biys(r), where r is given by the equation set out in (c). This
completes the proof of (I) = (II).

For the converse, let r, s, t be elements of [0, 1] satisfying one of the three conditions
set out in (I). If 7, s, ¢ satisfy (al) or (a2), then the elements x = ¥(s)7'(1 — s, s)
and y = ¥ (t)7'(1 — t,t) have the desired properties. Similarly, in the cases of (b)
and (c), it is enough to consider z = 1(s)"}(1 — s,s) and y = ¥ (¢) 71 (¢, —(1 — t)).
The proof is complete. 0

In this context, we have the following lemmas.

Lemma 2.3. Let b > 0, ¢(s) = bia(s) and ¥(t) = bipa(t) for s,t € [0,1]. Then

sP(t) +tp(s) (1= s)p(d) + (£ = 1)y(s)
(t) +1(s) (1 =25)0(t) + (2t — 1)ih(s)

Proof. We have

{s9(t) + 1 (s) H(1 = 28)9(t) + (2t = D)o(s)} — {(8) + () H(L = 5)9(8) + (£ = 1)o(s)}
={t(2t = 1) = (¢t = D}(s)* + {s(1 — 25) — (1 — 5) }o()*

={t+ (t = )" }(s)* = {s* + (s = )" }(1)*

= (1) (s)* — 1a(s) " (t)*

- (e () v

Lemma 2.4. Let b > 0, 1(s) = bipa(s) and (t) = bipe(t) for s,t € [0,1]. Then

sY(t) + (¢t = Dls) _ (s = Dy(t) + t(s)
V() + 2t —1v(s) (25 — D(t) +(s)

Proof. We have

{sv(t) + (¢ = D)p(s)H{(2s = D(t) + v (s)} = {o(t) + (26 = D)o(s) H{ (s — 1) (t) +tp(s)}
={s(2s = 1) = (s = D)}(t)* + {(t = 1) = t(2t = 1) }(s)”

={s"+ (s = D))" = { + (t — 1)"}(s)”

= Y2(8)*9(t)* — o (t)*¥(s)?

- (2 (2 =,
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Lemma 2.5. Let b > 0, ¢(s) = bia(s) and P(t) = bipa(t) for s,t € [0,1]. Then

by
(1= s)e) +td(s) _ s(t) + (1 = t)e(s)
(1= 2s)0(t) +¢(s) ¢( )+ (1 —=2t)y(s)

Proof. By the proof of Lemma 2.4, we have

(1= 9)(0) + ()} {w(0) + (1= 200(5)) — ({1 = 26)(0) + D Hsw(0) + (1~ 0 (s))
= {2 (s = D00 — {1 + (£ = 1P}os) =0

O

Lemma 2.6 ([9], Lemma 2.2). Ifz,y € Yy are such that x £y # 0 and ||z|]2 = ||y/|2,
then
lz+ylla NIz =yl

lz+yl e =yl

By Lemmas 2.3, 2.4, 2.5, and 2.6, Theorems 2.1 and 2.2 are reduced to the
following theorem in the case of ¢ = 1.

Theorem 2.7 (][9], Theorem 2.3). Let a,b > 0. Then the following two statements
are equivalent:
(I) There exists a pair v,y € Sy, with x +y # 0 satisfying ||z|2 = |ly[l2 = 1/a,
[ +yll = bllz +yll2 (and ||lz =yl = bllz — yll2)-
(II) There existr,s,t € [0, 1] such that ¥(s) = aa(s), P(t) = as(t), and P(r) =
bio (1), where 1, s,t satisfy one of the following conditions:

_ sy(t) +t(s)
@) s A8 and 7= ) w() (t 1) (s)
(¢) (s:6) #(0,1), s+t <1, and <1_2@ <> (s)

Proof. By Lemma 2.6, if ||z + y|| = b||z + y||2, then ||z — y|| = b||z — y||2. We note
that the function ¢ — ¢/1(t) is strictly increasing. Now we consider Theorems 2.1
and 2.2 in the case of ¢ = 1.

Case (a): It is clear that Theorem 2.2(I)(al) cannot exist. Since 1(s) = ay(s)
and ©(t) = ahs(t), we have

Jﬁ—ﬁﬁziﬁ&@—wiﬂ

and

tﬁ(_; - % é <1102_(§ 11/)2—_(1;) - % <¢21(1_—SS) - 1/121(1_—t t)) ‘
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These imply that if s < ¢, then stb(s) ™" < t(t) " and (1—s)(s) ™" > (1—t)y(t) "

Similarly, if s > t, then si(s)™" > t(t)"" and (1 — s)o(s)™" < (1 — t)(t)~"

Thus conditions (1) and (2) in Theorem 2.2(I)(a2) if and only if s # t. Hence, by

Lemma 2.3, Theorems 2.1(I)(a) and 2.2(I)(a2) are reduced to Theorem 2.7(Il)(a).
Cases (b) and (c): We have

s 1-t 1 s 1-t¢ q 1-s t 1 1-s t
wls) v <w2( ) w2<1—t>> MU e a <w2(1—s> - wz(t))'
These imply that if s +¢ > 1, then s¢(s)™" > (1 — t)(t) " and (1 — s)ih(s) " <
ty(t)~". Thus, by Lemma 2.4, Theorems 2.1(I)(b) and 2.2(II)(b) are reduced to
Theorem 2.7(I)(b). Moreover, if s+t < 1, then sih(s)”" < (1 — t)1(t)"" and
(1 —s)Y(s)"" > tp(t)"". Thus, by Lemma 2.5, Theorems 2.1(II)(c) and 2.2(I)(c)
are reduced to Theorem 2.7(I)(c). O

3. Geometric constants of Y,

In this section, we consider the von Neumann-Jordan constant Cy;(Yy). In relation
to the norm || - [|,, 7, it is known that the following lemmas. In what follows we write

o < if p(t) < P(t) for all t € [0,1].

Lemma 3.1 ([6], Lemma 3). Let ¢, € ¥y and let » < p. Then

p(t)
< < —=
Il <1l < guas 2300

Lemma 3.2 (][9], Lemma 2.1). Let o, € Uy. Then

B p(t)
Il < i 281 -l
We note that || -[|2 = || |ly, = || ||, ;- This, together with the preceding lemma,

shows that M| - |l < || - || < M| - ||2, where

- ¥(t) . a(t)
M, = max ll) and My = max o)

Now we consider von Neumann-Jordan constant Cy;(Y,) when ¢ < 5. As an

application of Theorems 2.1 and 2.2, we have the following results.

Theorem 3.3. Suppose that 1 # Vs and Y < 1hy. Then

< s D0 (- ),

Moreover, Cn;(Yy) = M3 if and only if there exist 1, s1,t1,79, 52,19 € [0,1] such
that ¥o(s;) /1(s;) = wa(t;) /1(t;) = My and (r;) = o(r;) fori = 1,2, wherery, sy, t;
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satisfy one of the following conditions (A1), (B1), and (C1), and ry, sq,ts satisfy one
of the following conditions (A2), (A3), (B2), and (C2) for some ¢ € (0,1]:

_ sip(ta) + cap(s1)
) = e Y ebls)
51 ol —t) _si(t) + ety — D)ib(s1)
BU 360~ o) ™™ T ) feeh — Dits)
s1_c(l—ty) (L= s)(t) + ctiip(sy)
CUTE0 = 0w ™ T T 2ot + vl
(A2) 1—s9 > c(I—1t2) 59 > cty and = 891 (ta) — ctarh(s2)

Y(s2) = (te) T P(s2) T d(ta)’
(A3) 1, (1 = s2)p(t2) + c(ta — 1)1h(s2)

= satisfying one of the following conditions:

(1 — 282)1/)(152) + C(2t2 — 1)@(82)

¢(t2) - 01/1(52)

1-— S92 C(l — tz) S92 cto
(1) ;b(52) > (@1[’(@2 | and @ < @
— S9 C — 19 S9 Cl9
@ ) < T ™ ) )
1— So CtQ . (82 — ].)w(tz) + CtQT/J(SQ)
P2 06 S0 " T e = Dlta) + cb(s)
(©2) 1—s9 cty and 1y = 891 (ta) + c(1 —t2)1h(s2)

> .
U(s2) — U(ta) U(t2) + c(1 = 2t2)1(s2)
Proof. For each z,z € Yy, with (x, z) # (0,0), we have
lz+ 21 + llz = 2I* < llz + 2[5 + [l= — 213
= 2(/lz 13 + ll212)
< 2M5 ([|=* + 1I=11%) (3.1)

by Lemmas 3.1 and 3.2. This implies that Cy;(Yy) < M3.
Next we consider restatements of Cy;(Yy) = M. We note that

= + eyl + Il — eyl®
2([l[* + lleyl?)

CNJ(Yw):sup{ :$,y65yw,0<c§1}.

The set Sy, X Sy, with the product topology is compact and the function

|l + eyll® + [l — cy|?
2([l[* + lleyl?)

Syw X Syw = (x,y) —

— 134 —



is continuous for all ¢ € (0, 1]. Thus Cy;(Y,) = M2 if and only if there exists a pair
(z,y) € Sy, x Sy, with x & cy # 0 satisfying

|z + cyl]® + ||z — cyl|?
2(||]12 + [ley|?)

— A2
= My;

for this, we note that if z +cy = 0 or x — cy = 0 then M, = 1, which contradicts
Y # 1hy. Moreover, by (3.1) with z = cy for ¢ € (0,1], Cn;(Yy) = M3 if and only if
there exists a pair (z,y) € Sy, x Sy, with x£cy # 0 satistying ||z +cy|| = ||z +cyll2,
[z = eyl = [lo = eylla, [[xll2 = Msjz]| = Ma, and [ly[ls = Maly|| = M. By adding
Theorems 2.1 and 2.2 with a = M;* and b = 1, we have that Cy,(Yy) = M2 if and
only if there exist 7y, s1,%1,79, o, t2 € [0,1] such that 1(s;) = My "s(s;), V(t;) =
My apy(t;), and 9 (r;) = aba(r;) for i = 1,2, where r = r1, s = s;, t = t; satisfy one
of the conditions (a), (b), and (c) in Theorem 2.1, and r = ry, s = s9, t = t satisfy
one of the conditions (al), (a2), (b), and (c) in Theorem 2.2. This completes the
proof. O

Moreover, the case of ¢ > 1)y is as follows.

Theorem 3.4. Suppose that 1) # Vs and ) > 1py. Then

In particular, Cy;(Yy) = M7 if and only if there exist r1,s1,t1,72,S2,t2 € [0,1]
such that (s;) /1a(s;) = (L) /2(t;) = 1 and (r;) = Myo(r;) fori = 1,2, where
1,81, t1 satisfy one of the following conditions (A1), (B1), and (C1), and rq, Sa, s
satisfy one of the following conditions (A2), (A3), (B2), and (C2) for some ¢ € (0, 1]
in Theorem 3.3.

Proof. For each z,z € Yy, with (x,z) # (0,0), we have

Iz + 21 + [l = 2I* < MP(llz + 215 + [l — 2]3)
= 2M3 (|3 + 1I=13)
< 2Mi([l=l* + 1I=01%)

by Lemmas 3.1 and 3.2. This implies that Cy ;(Yy) < M7

Now, an argument similar to that in the proof of Theorem 3.3 shows that Cy ;(Yy) =
M? if and only if there exists a pair (z,y) € Sy, x Sy, with z4cy # 0 for ¢ € (0, 1]
satisfying |}z + eyl] = Mills + ey, 1z — eyll = Myllw — eyl ol = lall = 1,
and ||y|l2 = ||ly|| = 1. Hence Theorems 2.1 and 2.2 (applied for a = 1 and b = M)
complete the proof. O
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If ¢ =1, then Theorems 3.3 and 3.4 are reduced to the following theorems of the
modified von Neumann-Jordan constant Cy;(Y,) defined by

 omsup { Lo =

O]/VJ(Y¢

1 ZQT,yGSyw}(S CNJ(Yw)).

Theorem 3.5 (][9], Theorem 3.1). Suppose that 1 # 1y and ¥ < 1by. Then

Cna(Yy) < Cna(Yy) < max Zf;(( ))

In particular, Cy,;(Yy) = M3 if and only if there exist r,s,t € [0,1] such that
a(8)/1(s) = 1a(t)/Y(t) = My and (r) = 1o(r), where r, st satisfy one of the

following conditions:

(= M;3).

_sh(t) +t(s)
(a) s#t and = O () e
(b) (s,t) #(1,0), s+t>1, and r= O(t) + (2t — Dap(s)’
1 —5)Y(t) + t(s)

(c) (s,t) #(0,1), s+t <1, and r=

(
(1 —=28)(t) +9(s)

Proof. By the definition of C ,(Y},) and Theorem 3.3, we have C'\ ;(Yy) < Cny(Yy) <
M3. Moreover, an argument similar to that in the proof of Theorem 3.3 shows that
Ch,(Yy) = M3 if and only if there exists a pair (z,y) € Sy, x Sy, with x £y # 0
satisfying |« £ y|| = [lo £ ylls, [lzll = Mallz|| = Ma, and [lyll; = Mallyl| = Ms.
Hence Theorem 2.7 (applied for a = M,y ' and b = 1) completes the proof. U

Theorem 3.6 ([9], Theorem 3.4). Suppose that 1 # 1y and ¢ > 9. Then

C;VJ(Y;/,) < CN](Yw) < max <t>2 (: M12)

In particular, Cy;(Yy) = M} if and only if there exist r,s,t € [0,1] such that
W(s)/a(s) = Y(t)/1ha(t) = 1 and ¥(r) = Mis(r), where 1, s,t satisfy one of the

following three conditions (a)—(c) in Theorem 3.5.

Proof. By the definition of C ;(Y},) and Theorem 3.4, we have C'\;(Yy) < Cny(Yy) <
M?. Moreover, an argument similar to that in the proof of Theorem 3.4 shows that
Cy;(Yy) = M} if and only if there exists a pair (z,y) € Sy, X Sy, with z £y # 0
satisfying ||z + y[| = Millz £ yll2, [[#ll2 = [[zf] = 1, and |ly[l. = [ly]| = 1. Hence
Theorem 2.7 (applied for a = 1 and b = M;) completes the proof. O
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