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THE EQUIVALENCE OF GYROCOMMUTATIVE
GYROGROUPS AND K-LOOPS

TOSHIKAZU ABE

ABSTRACT. It is known that gyrocommutative gyrogroups and K-loops are equiv-
alent. This is a self-contained paper that presents the equivalence.

1. Introduction

Both gyrocommutative gyrogroups and K-loops are non-commutative nor non-associative
generalization of commutative groups. In [4], Sabinin, Sabinina and Sbitneva show
that every gyrocommutative gyrogroup is just a left Bol loop with Bruck identity. It
is well known that a left Bol loop is a K-loop if and only if it has the Bruck property.
The paper [4] requires some knowledge of left Bol loops.

There is a possibility that these algebraic systems are defined by a way different
depending on literatures. In this paper, the definition of gyrogroup is in accordance
with [9] and of K-loop is in accordance with [3]. In section 2, we describe the defini-
tions and some properties of gyrogroups and K-loops for the proof. The descriptions
of gyrogroups are in accordance with [9] and of K-loops are in accordance with [3].
In section 3, we prove that K-loops and gyrocommutative gyrogroups are equivalent.
The main part of the proof is in accordance with [4].

This paper is self-contained and a patchwork of [3], [9], [4]. The equivalence of
these algebraic systems is a fundamental and important fact for who will study
gyrogroup or K-loop theory. This paper would be instructive for them.

A referee of the paper kindly recommended the following historical comments.

“For the theory of K-loops readers may consult with Kiechle’s book [3]. Not
unexpectedly, according to Kiechle [3, pp. 169-170], the term “K-loop” with K named
after Karzel was coined by Ungar in 1989 [8] to describe the algebraic structure that
later became known as a gyrocommutative gyrogroup. For different purposes, the
term “ K-loop” was already in use earlier by Soikis, in 1970 [6] and later, but
independently, by Basarab, in 1992 [1]. Unlike the term “ K-loop” that Ungar
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coined, the “K” in each of the terms “K-loop” coined by Soikis and by Basarab
does not refer to “ Karzel ” . The early history of K-loops with “ K ” named after
Karzel is unfolded in [5, p. 142].”

2. Definitions and some notations

A magma (5, 0) is a set with binary operation o : S x S — S; (a,b) = aob. An
automorphism ¢ of a magma (5,0) is a bijective self-map of S, ¢ : S — S, which
preserves its magma operation, ¢(a o b) = p(a) o p(b) for any a,b € S. A magma
(S, 0) is called a groupoid if it contains an identity element e, that is aoce = eoa =a
for any @ € S. Such an element is necessarily unique. Let a be an element of a
groupoid (S,0). An element b € S is called a left (right) inverse of a if boa = e
(aob =e). If bis the uniquely determined left and right inverse of a, then b is called
the inverse of a. Note that if b is the inverse of a, then « is the inverse of b.
Let (S,0) be a magma, then for each a € S, the map

MN:S—> S, x—aox
is called the left translation, and the map

0,85 =S, y—yoa
is called the right translation.

Definition 2.1 (K-loop). A groupoid (L, +) is a K-loop if it satisfies the following
axioms.
(K1) For any a,b € L, the equation a + x = b has the unique solution = € L.
(K2) For any a,b € L, the equation y 4+ a = b has the unique solution y € L.
(K3) a+ (b+(a+¢))=(a+ (b+a))+cfor any a,b,c € L.
(K4) Any element a of L has the inverse —a and

—(a+0b) = (=a) + (=b)
for any a,b € L.

Proposition 2.1. Let (L,+) be a groupoid.

e The condition (K1) is equivalent to the following condition (K1)’

(K1)’ Any left translation N\, is bijective.

e The condition (K2) is equivalent to the following condition (K2)’.

(K2)* Any right translation o, is bijective.

e The condition (K3) is equivalent to the both conditions (K3)" and (K3)”.
(K3)” AaAsAa = Aat(b4a) for any a,b € L.

(K3)” AaQuse = 0ehaa for any a,b € L.



Proposition 2.2. Let (L,+) be a K-loop. Then \;' = \_, for any a € L. That is
—a+ (a+x)=x for any a,z € L.

Proof. Since Proposition 2.1, (L,+) satisfies the condition (K3). Therefore we
have AgA_4Ae = Aay(—ata) = Aa- Thus A A_, is the identity map on L and hence
A=A, O

Definition 2.2 (autotopism). Let (L,+) be a groupoid and «, 3,7 be bijections of
L. A triple (o, 8,7) is called an autotopism if

a(z) + By) = (= +y)
for any x,y € L. Top L denotes the set of all autotopisms of L.

Proposition 2.3. Let (L,+) be a groupoid with the identity e.
o [f
(a1, B1,m) o (a2, B2, 72) = (1ca, B1 B2, V172)
for any (aq, f1,7m), (a2, B2, 72) € Top L, then (Top L, o) is a group with the
identity (idy,idy,idy) and the inverse
(, 8,7 = (a7 87597
of (a, B,7) € Top L.
e If (a,3,7) € Top L and a = =, then
(0667/7) = (/\a(e)ﬁaﬁ7 /\a(e)ﬁ)-

Proof. 1t is clear that (Top L, o) is a group. Let («,3,7) € Top L and o = . By
the definition of an autotopism, we have

ale) + Bly) = (e +y) =)
for any y € L. Hence
a(y) =7(Y) = Aa@B(y)

for any y € L. U
Definition 2.3 ((gyrocommutative) gyrogroup). A magma (G,®) is a gyrogroup
if it satisfies the following axioms.

(G1) There is a left identity 0 € G, that is 0 @ a = a for any a € G.

(G2) There is a left identity 0* € G such that every a € G has an element ©a € G

satisfying ©a & a = 0*.
(G3) For any a,b,c € G, there is a unique element gyr[a, bjc € G such that
a® (bdc)=(adb) D gyr|a,b]c.

(G4) For any a,b € G, the map gyr|a,b], ¢ — gyr|a, ble, is an automorphism of
(G, ®).



(G5) gyr[a @ b,b] = gyr|a, b] for any a,b € G.
A gyrogroup (G, ®) is gyrocommutative if the following (G6) is also satisfied.
(G6) a® b= gyr|a,b](b® a) for any a,b € G.

Proposition 2.4. Let (G, ®) be a gyrogroup. For any elements a,b,c € G, we have:

(gl) adb=adcsb=c.
(g2) gyr[0,a] = idg for any left identity 0.

(83) gyr[©a,a] = ide.

(g4) 0% is the identity of (G, D).

(g5) A left identity is necessarily unique.

(g6) ©a is a right inverse of a.

(g7) ©a is the (unique left and right) inverse of a.
(1) oo =

(s
g

9) ©a® (adb)=b (the left cancellation law).
( 0) >‘ b= )‘ea
(gll) gyr[a,bjc=6(a®db) ®{a® (b D)}, that is,

gyrfa,b] = )\(’al@b)/\a)\b.

(g12) gyr[a,b](©c) = © gyr|a, blc.

Proof. (gl): Since gyr[©a, a] is a bijection, we have

abb=adc

Cad(adb)=cad (adc)

(60 @ a) ® gyr[oa, b = (Sa ® a) & gyr[Sa, e
gyr[©a, alb = gyr[Sa, alc

b=c.

(A R

(g2): For any = € G, we have
adr=(0da)dr=0a(adgyr|0,alr) =aa gyr|0,alx.

By (gl), we have = gyr|0, a]z and hence gyr[0, a] = idg.
(g3): Since the condition (G5), we have

gyr[@@> a] = gyr[@a @ a, a] = gyr[()? a] = ZdG



(g4): For any z € G, by (g3), we have
er®(x®0") = (ordr)®gyr[x,x]0*
= 0" @ gyr[ow, z]0*
= 0" 0"
— 0
= crdux.
Hence, by (gl), z @ 0* = x for any € G. Thus,
r®0"=0"dx=0"

(g5): For any left identity 0, we have 0 = 0 + 0* = 0*.
(g6): By (g3) and 0 is the identity, we have

a® (ad® (9a)) = (Sa®a)d gyr[ca,al(ca)
= 0® (Sa)
= Oa
= 6a60.

By (g1), (a ® (©a)) = 0.

(g7): Suppose x and y are left inverses of a. Since (g6), = and y are also right
inverses of a, a @z =0=a @ y. By (gl), we have z = y.

(g8): It is clear since ©x is the inverse of x for any z € G.

(g9): By (g3), we have

©a® (a®b) = (Sa®a)dgyr[Sa,alb=b.

(g10): By (g8) and (g9), Acara = AaAca = idg.
(gll): By (G3) and (g9), we have

gyr(a,ble =S(a®b) @ {ad (b c)}.

Hence, by (gl0),

gyr[a, b] = A@(a@b)AaAb = )\;éb)\a)\b'

(g12): Since gyr[a, b] is an automorphism of (G, ®),
gyrfa, b](©c) ® gyr|a, b](c) = gyr[a, b]0 =0

Hence, gyr{a, b](©c) = © gyr|a, blc. O
Lemma 2.1. Let (G, ®) be a gyrogroup. Then

gyrla, © gyrla, b]b] gyrla, b] = ide.
for any a,b € G.



Proof. For any x € G, we have

a ® gyrla ® b, © gyrla, b|b] gyr|a, blx
= (a®(bob)) @ gyr[a® b, S gyr|a, b]b] gyr|a, b|x
= ((a®b) © gyr[a,b]b) ® gyr[a ® b, S gyr|a, b]b] gyr|a, b]x
= (a®b) ® (©gyrla,b]b ® gyr[a,blz)
= (a®b)®gyra,b](cb® x)
= a® (b (cbd))
= adux.
It implies that
gyrla ® b, © gyr(a, b]b] gyr(a, b] = idg
by (gl). Hence
idg = gyrla® b, ©gyr(a,b]b] gyra, b]
= gyr[(a ®©b) O gyr[a, b]b, S gyrla, b]b] gyr[a, b]
= gyrfa® (bob), S gyr(a,blb] gyr[a, b]
= gyrla, ©gyr|a, bjb] gyra, b]
by (Gb), (G3) and (gl2). O

Proposition 2.5. Let (G, ®) be a gyrogroup. Then for any a,b € G, we have:

(LL) The equation a ® x = b has a unique solution x = Sa @ b.
(RL) The equation y & a = b has a unique solution y = b gyr[b, ala.

Proof. (LL): Let z = ©a & b. By (g9), we have
a®r=a®(©adb)=0b.

Hence x is a solution of the equation a @ x = b. If 2’ € G satisfies the equation
a® 1z’ =b, then
adr=ada
and hence x = 2’ by (gl).
(RL): Let y be a solution of y @ a = b. Then
y = y®@sa)

= (y®a)ogyrly,da

= (y®a)Ogyrly®a,ala

= bogyrlb, ala.



Conversely, if y = b © gyr[b, a]a, then

b = b®(Sgyr[b,ala® gyr[b,ala)
= (bo gyr[b,ala) ® gyr[b, © gyr[b, a]] gyr[b, ala
= (bogyr[b,ala) ®a
= yda

by Lemma 2.1. U
Lemma 2.2. Let (G, ®) be a gyrogroup. Then
gyrla,b](ebe a) = S(a @ b)
for any a,b € G.
Proof. By (gl11) and (g9), we have

gyrla,b](bea) =S (a@b)® (a® (bd (BbSa)))
=0 (a®Db).

O

Proposition 2.6. Let (G,®) be a gyrogroup. Then (G,@®) is gyrocommutative if
and only if it possesses the automorphic inverse property,

(Gh) ©(a®b) =ca6b for any a,b € G.
Proof. 1t (G, @) is gyrocommutative, then

gyrla,bl(6(6bSa)) = Sgyrla,b](6bo a)
= adb
= gyr[a,b](b® a)

for any a,b € G, by (g12) and Lemma 2.2. It implies that (b & a) = &b & a.
Conversely, if (G, ®) possesses the automorphic inverse property, then

a®b = Sgyr[a,bl(SbSa)
= gyrfa,bj(e(8b© a))
= gyrla,bl(b® a)

for any a,b € G, by Lemma 2.2 and (g12). O



3. Equivalence of gyrocommutative gyrogroups and K-loops

Theorem 3.1. A magma is a gyrocommutative gyrogroup if and only if it is a K-
loop.

Proof. First, we show that a gyrocommutative gyrogroup is a K-loop. Let (G,®)
be a gyrocommutative gyrogroup.

(K1): By (LL) of Proposition 2.5.

(K2): By (RL) of Proposition 2.5.

(K3): Let a,b € G. Put w =a @b and ¢ = Sa then the map (a,b) — (w,q) is a
bijective self-map of G x G and

gyrla ©b,0] = gyrla,b] <= A Lpaptaspds = AgpAat
—1 —1 —1
— A(a®b)@b = Apap aaan
= Aaab)ob = AagbAcatash

e )\w@(q@w) = )\w>\q)\w.

By the condition (G5), (G, ®) satisfies the condition (K3)'. Hence (G, @) satisfies
the condition (K3) by Proposition 2.1.

(K4): By Proposition 2.4, any a € G has the inverse ©a. By Proposition 2.6, we

have
O(a®b) = (©a) © (Ob)
for any a,b € G.

Next, we show that a K-loop is a gyrocommutative gyrogroup. Let (L,+) be a
K-loop.

(G1): Since (L, +) is a groupoid, (L, +) has the identity e.

(G2): By the condition (K4), any a € L has the inverse —a.

(G3): Let a,b,c € L. By the condition (K1), the equation (a+b)+z = a+ (b+c¢)
has a unique solution z. Let d[a,b] = )‘;ib)‘a)‘b- Then we have A,pd[a,b] = A .
Hence (a + b) + dla,bl(c) = a+ (b+ ¢). Thus xz = d[a, b](c) is the unique solution of
(a+b)+zxz=a+(b+c).

(G4): Let a,z,y € L. Put v = —x and w = x + y then

Xa0a(2) A (W) = Aaa(—0) + 2. (v +w)
= {a+(—v+a)}+ A (v+w)
= a+{—v+(a+\'(v+w)}
= Aa(w)
= (T +y)

by the condition (K3). It implies that 7, = (M\04, \;*, Aa) € Top L for any a € L.

1

Therefore 7,14 0 7,1 o7, ' € Top L for any a,b € L by Proposition 2.3. Put a =



)‘(H-b)‘;l/\b_l' The first component of 7,507, ' o Tb_l is

Aa-i—b@a-&-b()‘aQa)_l()‘be)_l
= NatbOatb05 Ny 0y N
= AarbOasb(06Xa0a) A
= NasbOarv(Nalars) N, !
= Aatb0atbOpipa Ay
= Aarsd, N
= «

by (K3)”. The second component is A, ;A\, = 6[a,b]. The third component is
AarpA; A, 1 = a. Thus, we have (o, 6[a, b], a) € Top L. We have

afe) = (a+b)+ (—a+(-b+e))=(a+b)+(-a-b)=e

by the condition (K4). Hence (d[a, b], d[a, b],d[a,b]) € Top L by Proposition 2.3. It
implies that d[a, b] is an automorphism of (L, +).

(G5): Let a,b € L. Put x = —b and y = b + a then the map (a,b) — (z,y) is a
bijective self-map of G x G and

Aat(ba) = AaMbAa = Aaty)+y = Aaty) A—cA(aty)
—1 _y—1 —1
DYDYy )

(z+y) (z+y (z+y)

Nty At Ay = A ey

(z4y)+y (z+y
Sz +y,y] = oz, yl.

11t

Since (L, +) satisfies the condition (K3)’, we have 6[z+y, y] = 0z, y| for any z,y € L.

(G6): Since (L, +) satisfies the conditions (G1) to (G5), (L,+) is a gyrogroup.
Since (L, +) satisfies the condition (K4), Proposition 2.6 asserts that (L, +) satisfies
the condition (G6). O
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