ONE DIMENSIONAL PERTURBATION OF INVARIANT SUBSPACES IN THE HARDY SPACE OVER THE BIDISK II

KEI JI IZUCHI, KOU HEI IZUCHI, AND YUKO IZUCHI

Abstract

This paper is a continuation of the previous paper [9]. Let M_{1} be an invariant subspace of H^{2} over the bidisk. Then there exists a nonzero f_{0} in M_{1} such that $M_{2}:=M_{1} \ominus \mathbb{C} \cdot f_{0}$ is also an invariant subspace. A relationship is given the ranks of the cross commutators $\left[R_{z}^{*}, R_{w}\right]$ on M_{1} and M_{2}. We also give a relationship of the ranks of the cross commutators $\left[S_{w}, S_{z}^{*}\right]$ on $H^{2} \ominus M_{1}$ and $H^{2} \ominus M_{2}$.

1. Introduction

Let $H^{2}=H^{2}\left(\mathbb{D}^{2}\right)$ be the Hardy space over the bidisk \mathbb{D}^{2} with two variables z and w. Let T_{z} and T_{w} be the multiplication operators on H^{2} by z and w, respectively. A nonzero closed subspace M of H^{2} is said to be invariant if $T_{z} M \subset M$ and $T_{w} M \subset M$. We write $R_{z}^{M}=\left.T_{z}\right|_{M}$ and $R_{w}^{M}=\left.T_{w}\right|_{M}$. Let $N=H^{2} \ominus M$. Then $T_{z}^{*} N \subset N$ and $T_{w}^{*} N \subset N$, where T_{z}^{*}, T_{w}^{*} are adjoint operators of T_{z}, T_{w}, so N is called a backward shift invariant subspace of H^{2}. We denote by S_{z}^{N}, S_{w}^{N} the compression operators of T_{z}, T_{w} on N, that is, $S_{z}^{N}=\left.P_{N} T_{z}\right|_{N}$ and $S_{w}^{N}=\left.P_{N} T_{w}\right|_{N}$, where P_{N} is the orthogonal projection from H^{2} onto N. We note that $R_{z}^{M *}=\left.P_{M} T_{z}^{*}\right|_{M}$ and $S_{z}^{N *}=\left.T_{z}^{*}\right|_{N}$.

In [12], Mandrekar showed that $\left[R_{w}^{M *}, R_{z}^{M}\right]:=R_{w}^{M *} R_{z}^{M}-R_{z}^{M} R_{w}^{M *}=0$ if and only if $M=\varphi H^{2}$ for an inner function φ (see also [1, 2, 4, 8, 13]). In [10], Nakazi, Seto and the first author proved that $\left[S_{w}^{N}, S_{z}^{N *}\right]=0$ if and only if $M=\varphi(z) H^{2}+\psi(w) H^{2}$, where $\varphi(z), \psi(w)$ are either one variable inner functions or 0 (see also $[3,5,6,7,11]$). So it is considered that the cross commutators $\left[R_{w}^{M *}, R_{z}^{M}\right]$ on M and $\left[S_{w}^{N}, S_{z}^{N *}\right]$ on N are important operators to study the structure of invariant subspaces H^{2}. We denote by $\operatorname{rank} T$ the rank of the operator T, that is, $\operatorname{rank} T$ is the dimension of the range of T.

[^0]Let M_{1} be an invariant subspace of H^{2}. Then there is $f_{0} \in M_{1}$ with $\left\|f_{0}\right\|=1$ such that $M_{2}:=M_{1} \ominus \mathbb{C} \cdot f_{0}$ is an invariant subspace. To study the structure of invariant subspaces of H^{2}, one of the basic questions is what kind of changes of properties occur under the one dimensional perturbation. Let $N_{j}=H^{2} \ominus M_{j}$ for $j=1,2$. In the previous paper [9], we described the spaces

$$
M_{2} \ominus\left(z M_{2}+w M_{2}\right) \quad \text { and } \quad\left\{h \in N_{2}: z h \in M_{2}, w h \in M_{2}\right\}
$$

using the words of f_{0},

$$
M_{1} \ominus\left(z M_{1}+w M_{1}\right) \quad \text { and } \quad\left\{h \in N_{1}: z h \in M_{1}, w h \in M_{1}\right\},
$$

respectively and studied some related topics, and see the references given in [9] for the study of invariant subspaces of H^{2}. In this paper, we shall concentrate on the study of the relationship of the ranks of the cross commutators on M_{1}, M_{2} and on N_{1}, N_{2}, respectively.

In Section 2, we shall show that

$$
\operatorname{rank}\left[R_{w}^{M_{1} *}, R_{z}^{M_{1}}\right]-1 \leq \operatorname{rank}\left[R_{w}^{M_{2} *}, R_{z}^{M_{2}}\right] \leq \operatorname{rank}\left[R_{w}^{M_{1} *}, R_{z}^{M_{1}}\right]+1 .
$$

Since M_{2} is one dimensional perturbation of M_{1}, this is an expectable fact.
In Section 3, we shall show that

$$
\operatorname{rank}\left[S_{w}^{N_{1}}, S_{z}^{N_{1} *}\right]-1 \leq \operatorname{rank}\left[S_{w}^{N_{2}}, S_{z}^{N_{2}{ }^{*}}\right] \leq \operatorname{rank}\left[S_{w}^{N_{1}}, S_{z}^{N_{1} *}\right]+3
$$

The authors think that this is a remarkable fact.
We shall give examples of M_{1} and $f_{0} \in M_{1}$ which satisfy the cases in the above inequalities.

2. Invariant subspaces

For an invariant subspace M of H^{2}, it is not difficult to see that

$$
\begin{equation*}
\left[R_{w}^{M *}, R_{z}^{M}\right] M=P_{w M} z(M \ominus w M) \tag{2.1}
\end{equation*}
$$

We note that

$$
\begin{equation*}
\operatorname{rank}\left[R_{w}^{M *}, R_{z}^{M}\right]=\operatorname{rank}\left[R_{z}^{M *}, R_{w}^{M}\right] . \tag{2.2}
\end{equation*}
$$

Let M_{1} be an invariant subspace of H^{2} and $f_{0} \in M_{1}$ with $\left\|f_{0}\right\|=1$ such that $M_{2}:=M_{1} \ominus \mathbb{C} \cdot f_{0}$ is an invariant subspace. The following is given in Lemmas 3.2 and 4.2 in [9].

Lemma 2.1. If $f_{0} \in M_{1} \ominus w M_{1}$, then

$$
M_{2} \ominus w M_{2}=\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{0}\right) \oplus \mathbb{C} \cdot w f_{0} .
$$

Suppose that $f_{0} \notin M_{1} \ominus w M_{1}$. Since $M_{1}=M_{2} \oplus \mathbb{C} \cdot f_{0}$ and $R_{w}^{M_{1} *} f_{0} \in \mathbb{C} \cdot f_{0}$, there is a nonzero $\beta \in \mathbb{D}$ such that $f_{0}=P_{M_{1} \ominus w M_{1}} f_{0}+\beta w f_{0}$. The following is given in Lemmas 5.1 and 5.2 in [9].

Lemma 2.2. Suppose that $f_{0} \notin M_{1} \ominus w M_{1}$ and $f_{0} \notin M_{1} \ominus z M_{1}$. Then we have the following.
(i) Either $P_{M_{1} \ominus w M_{1}} f_{0} \notin M_{1} \ominus\left(z M_{1}+w M_{1}\right)$ or $P_{M_{1} \ominus z M_{1}} f_{0} \notin M_{1} \ominus\left(z M_{1}+w M_{1}\right)$.
(ii) If $P_{M_{1} \ominus w M_{1}} f_{0} \notin M_{1} \ominus\left(z M_{1}+w M_{1}\right)$, then

$$
M_{2} \ominus w M_{2}=\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot P_{M_{1} \ominus w M_{1}} f_{0}\right) \oplus \mathbb{C} \cdot g_{0},
$$

where

$$
g_{0}=f_{0}-\frac{1}{1-|\beta|^{2}} P_{M_{1} \ominus w M_{1}} f_{0}
$$

Theorem 2.1.

$$
\operatorname{rank}\left[R_{w}^{M_{1}{ }^{*}}, R_{z}^{M_{1}}\right]-1 \leq \operatorname{rank}\left[R_{w}^{M_{2 *}}, R_{z}^{M_{2}}\right] \leq \operatorname{rank}\left[R_{w}^{M_{1}{ }^{*}}, R_{z}^{M_{1}}\right]+1 .
$$

Proof. Step 1. Suppose that $f_{0} \in M_{1} \ominus w M_{1}$. By Lemma 2.1, we have

$$
\begin{equation*}
M_{2} \ominus w M_{2}=\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{0}\right) \oplus \mathbb{C} \cdot w f_{0} . \tag{2.3}
\end{equation*}
$$

Then

$$
\begin{equation*}
w M_{2}=w M_{1} \ominus \mathbb{C} \cdot w f_{0} . \tag{2.4}
\end{equation*}
$$

We have

$$
\begin{aligned}
& \operatorname{rank}\left[R_{w}^{M_{2}{ }^{*}}, R_{z}^{M_{2}}\right]=\operatorname{dim} P_{w M_{2}} z\left(M_{2} \ominus w M_{2}\right) \quad \text { by }(2.1) \\
& \leq \operatorname{dim} P_{w M_{1}} z\left(M_{2} \ominus w M_{2}\right) \quad \text { because of } M_{2} \subset M_{1} \\
& \leq \operatorname{dim} P_{w M_{1}} z\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{0}\right)+1 \quad \text { by }(2.3) \\
& \leq \operatorname{dim} P_{w M_{1}} z\left(M_{1} \ominus w M_{1}\right)+1 \\
& =\operatorname{rank}\left[R_{w}^{M_{1} *}, R_{z}^{M_{1}}\right]+1 \quad \text { by }(2.1) .
\end{aligned}
$$

Let

$$
A=\left\{h \in\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{0}: z h \perp w f_{0}\right\} .
$$

By (2.4), $P_{w M_{1}} z h=P_{w M_{2}} z h$ for every $h \in A$. Then we have

$$
\begin{aligned}
& \operatorname{rank}\left[R_{w}^{M_{2} *}, R_{z}^{M_{2}}\right]=\operatorname{dim} P_{w M_{2}} z\left(M_{2} \ominus w M_{2}\right) \\
& =\operatorname{dim} P_{w M_{2}} z\left(\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{0}\right) \oplus \mathbb{C} \cdot w f_{0}\right) \quad \text { by Lemma } 2.1 \\
& =\operatorname{dim}\left(P_{w M_{2}} z\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{0}\right)+\mathbb{C} \cdot P_{w M_{2}} z w f_{0}\right) \\
& \geq \operatorname{dim}\left(P_{w M_{2}} z A+\mathbb{C} \cdot P_{w M_{2}} z w f_{0}\right) .
\end{aligned}
$$

For every $h \in A$, we have

$$
\begin{aligned}
& \left\langle P_{w M_{2}} z h, P_{w M_{2}} z w f_{0}\right\rangle=\left\langle P_{w M_{2}} z h, z w f_{0}\right\rangle=\left\langle P_{w M_{1}} z h, z w f_{0}\right\rangle \\
& =\left\langle z h, P_{w M_{1}} z w f_{0}\right\rangle=\left\langle z h, z w f_{0}\right\rangle=\left\langle h, w f_{0}\right\rangle=0 .
\end{aligned}
$$

Since $P_{w M_{2}} z w f_{0}=w P_{M_{2}} z f_{0} \neq 0$, we have

$$
\operatorname{rank}\left[R_{w}^{M_{2} *}, R_{z}^{M_{2}}\right] \geq \operatorname{dim} P_{w M_{2}} z A+1=\operatorname{dim} P_{w M_{1}} z A+1
$$

By the definition of A, there is $h_{1} \in\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{0}$ (may be zero) such that

$$
A=\left(M_{1} \ominus w M_{1}\right) \ominus\left(\mathbb{C} \cdot f_{0} \oplus \mathbb{C} \cdot h_{1}\right) .
$$

Hence

$$
\begin{aligned}
\operatorname{rank}\left[R_{w}^{M_{2} *}, R_{z}^{M_{2}}\right] & \geq \operatorname{dim} P_{w M_{1}} z A+1 \\
& \geq \operatorname{dim} P_{w M_{1}} z\left(M_{1} \ominus w M_{1}\right)-2+1 \\
& =\operatorname{rank}\left[R_{w}^{M_{1} *}, R_{z}^{M_{1}}\right]-1 .
\end{aligned}
$$

Step 2. Suppose that $f_{0} \notin M_{1} \ominus w M_{1}$. If $f_{0} \in M_{1} \ominus z M_{1}$, then by Step 1 (exchanging variables z and w) we have

$$
\operatorname{rank}\left[R_{z}^{M_{1} *}, R_{w}^{M_{1}}\right]-1 \leq \operatorname{rank}\left[R_{z}^{M_{2} *}, R_{w}^{M_{2}}\right] \leq \operatorname{rank}\left[R_{z}^{M_{1} *}, R_{w}^{M_{1}}\right]+1 .
$$

Hence by (2.2), we get the assertion. So, we may assume that $f_{0} \notin M_{1} \ominus z M_{1}$. By Lemma 2.2 (i), either $\eta_{0}:=P_{M_{1} \ominus w M_{1}} f_{0} \notin M_{1} \ominus\left(z M_{1}+w M_{1}\right)$ or $P_{M_{1} \ominus z M_{1}} f_{0} \notin$ $M_{1} \ominus\left(z M_{1}+w M_{1}\right)$. So, further we may assume that $\eta_{0} \notin M_{1} \ominus\left(z M_{1}+w M_{1}\right)$. For the latter case, we may prove it similarly. By Lemma 2.2 (ii), we have

$$
\begin{equation*}
M_{2} \ominus w M_{2}=\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot \eta_{0}\right) \oplus \mathbb{C} \cdot g_{0} \tag{2.5}
\end{equation*}
$$

where

$$
g_{0}=f_{0}-\frac{1}{1-|\beta|^{2}} \eta_{0}
$$

In the same way as the first paragraph of Step 1, we have

$$
\operatorname{rank}\left[R_{w}^{M_{2}{ }^{*}}, R_{z}^{M_{2}}\right] \leq \operatorname{rank}\left[R_{w}^{M_{1} *}, R_{z}^{M_{1}}\right]+1
$$

We have

$$
w M_{2}=w\left(M_{1} \ominus \mathbb{C} \cdot f_{0}\right)=w M_{1} \ominus \mathbb{C} \cdot w f_{0} .
$$

Since $f_{0}=\eta_{0}+\beta w f_{0}$,

$$
\begin{equation*}
w M_{2}=w M_{1} \ominus \mathbb{C} \cdot\left(f_{0}-\eta_{0}\right) \tag{2.6}
\end{equation*}
$$

We have

$$
\begin{aligned}
& \operatorname{rank}\left[R_{w}^{M_{2} *}, R_{z}^{M_{2}}\right]=\operatorname{dim} P_{w M_{2}} z\left(M_{2} \ominus w M_{2}\right) \\
& =\operatorname{dim}\left(P_{w M_{2}} z\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot \eta_{0}\right)+\mathbb{C} \cdot P_{w M_{2}} z g_{0}\right) \quad \text { by }(2.5) \\
& \geq \operatorname{dim} P_{w M_{2}} z\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot \eta_{0}\right) \\
& \geq \operatorname{dim} P_{w M_{1}} z\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot \eta_{0}\right)-1 \quad \text { by }(2.6) \\
& \geq \operatorname{dim} P_{w M_{1}} z\left(M_{1} \ominus w M_{1}\right)-2 \\
& =\operatorname{rank}\left[R_{w}^{M_{1} *}, R_{z}^{M_{1}}\right]-2 .
\end{aligned}
$$

By this fact, if $\operatorname{rank}\left[R_{w}^{M_{1 *} *}, R_{z}^{M_{1}}\right]=\infty$, then we get the assertion. So, we may assume that

$$
k:=\operatorname{rank}\left[R_{w}^{M_{1} *}, R_{z}^{M_{1}}\right]<\infty
$$

To show that

$$
\operatorname{rank}\left[R_{w}^{M_{2} *}, R_{z}^{M_{2}}\right] \geq \operatorname{rank}\left[R_{w}^{M_{1} *}, R_{z}^{M_{1}}\right]-1
$$

assume that

$$
\begin{equation*}
\operatorname{rank}\left[R_{w}^{M_{2^{*}}}, R_{z}^{M_{2}}\right]=\operatorname{rank}\left[R_{w}^{M_{1}{ }^{*}}, R_{z}^{M_{1}}\right]-2 . \tag{2.7}
\end{equation*}
$$

We shall lead a contradiction. By the above inequalities, we have

$$
\begin{align*}
& P_{w M_{2}} z g_{0} \in P_{w M_{2}} z\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot \eta_{0}\right), \tag{2.8}\\
& \operatorname{dim} P_{w M_{2}} z\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot \eta_{0}\right)= \tag{2.9}\\
& \quad \operatorname{dim} P_{w M_{1}} z\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot \eta_{0}\right)-1
\end{align*}
$$

and

$$
\begin{align*}
& \operatorname{dim} P_{w M_{1}} z\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot \eta_{0}\right)= \tag{2.10}\\
& \quad \operatorname{dim} P_{w M_{1}} z\left(M_{1} \ominus w M_{1}\right)-1 .
\end{align*}
$$

By (2.10), there are $f_{1}, f_{2}, \cdots, f_{k-1}$ in $\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot \eta_{0}$ such that

$$
\left\{P_{w M_{1}} z f_{1}, P_{w M_{1}} z f_{2}, \cdots, P_{w M_{1}} z f_{k-1}\right\}
$$

is a basis of $P_{w M_{1}} z\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot \eta_{0}\right)$.
First, suppose that $P_{w M_{1}} z f_{j} \perp f_{0}-\eta_{0}$ for every $1 \leq j \leq k-1$. Then by (2.6), we have $P_{w M_{1}} z f_{j}=P_{w M_{2}} z f_{j}$ for every $1 \leq j \leq k-1$. Hence

$$
\begin{aligned}
& \operatorname{rank}\left[R_{w}^{M_{2} *}, R_{z}^{M_{2}}\right] \geq \operatorname{dim} P_{w M_{2}} z\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot \eta_{0}\right) \\
& \geq \operatorname{dim} P_{w M_{2}} z \sum_{j=1}^{k-1} \mathbb{C} \cdot f_{j}=\operatorname{dim} P_{w M_{1}} z \sum_{j=1}^{k-1} \mathbb{C} \cdot f_{j} \\
& =k-1=\operatorname{rank}\left[R_{w}^{M_{1} *}, R_{z}^{M_{1}}\right]-1 .
\end{aligned}
$$

This contradicts (2.7).

Next, suppose that $P_{w M_{1}} z f_{j} \not \perp f_{0}-\eta_{0}$ for some $1 \leq j \leq k-1$. We may assume that $P_{w M_{1}} z f_{1} \not \perp f_{0}-\eta_{0}$ and $P_{w M_{1}} z f_{j} \perp f_{0}-\eta_{0}$ for every $2 \leq j \leq k-1$. Then $P_{w M_{1}} z f_{j}=P_{w M_{2}} z f_{j}$ for every $2 \leq j \leq k-1$. We divide the proof into two cases.

Case 1. Suppose that

$$
P_{w M_{2}} z f_{1} \notin \sum_{j=2}^{k-1} \mathbb{C} \cdot P_{w M_{2}} z f_{j}=\sum_{j=2}^{k-1} \mathbb{C} \cdot P_{w M_{1}} z f_{j}
$$

Then

$$
\begin{aligned}
& \operatorname{rank}\left[R_{w}^{M_{2} *}, R_{z}^{M_{2}}\right] \geq \operatorname{dim} P_{w M_{2}} z\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot \eta_{0}\right) \\
& \geq \operatorname{dim} \sum_{j=1}^{k-1} \mathbb{C} \cdot P_{w M_{2}} z f_{j} \\
& =\operatorname{dim}\left(\mathbb{C} \cdot P_{w M_{2}} z f_{1}+\sum_{j=2}^{k-1} \mathbb{C} \cdot P_{w M_{2}} z f_{j}\right) \\
& =\operatorname{dim} \sum_{j=2}^{k-1} \mathbb{C} \cdot P_{w M_{2}} z f_{j}+1=\operatorname{dim} \sum_{j=2}^{k-1} \mathbb{C} \cdot P_{w M_{1}} z f_{j}+1 \\
& =k-2+1=k-1 .
\end{aligned}
$$

This contradicts (2.7).
Case 2. Suppose that

$$
P_{w M_{2}} z f_{1} \in \sum_{j=2}^{k-1} \mathbb{C} \cdot P_{w M_{2}} z f_{j}=\sum_{j=2}^{k-1} \mathbb{C} \cdot P_{w M_{1}} z f_{j}
$$

Then

$$
P_{w M_{2}} z f_{1}=\sum_{j=2}^{k-1} c_{j} P_{w M_{2}} z f_{j}
$$

for some $c_{j} \in \mathbb{C}, 2 \leq j \leq k-1$. Replacing f_{1} by $f_{1}-\sum_{j=2}^{k-1} c_{j} f_{j}$, we may assume that $P_{w M_{2}} z f_{1}=0$. Since $P_{w M_{1}} z f_{1} \neq 0$, by (2.6) we have

$$
\begin{equation*}
\mathbb{C} \cdot P_{w M_{1}} z f_{1}=\mathbb{C} \cdot\left(f_{0}-\eta_{0}\right) . \tag{2.11}
\end{equation*}
$$

In this case, we note that (2.7) holds by (2.8), (2.9) and (2.10).
For every $h \in M_{1} \ominus w M_{1}$, since $f_{0}-\eta_{0} \in w M_{1}$ we have

$$
\begin{aligned}
0 & =\left\langle f_{0}-\eta_{0}, h\right\rangle=\left\langle z\left(f_{0}-\eta_{0}\right), z h\right\rangle \\
& =\left\langle P_{w M_{1}} z\left(f_{0}-\eta_{0}\right), z h\right\rangle=\left\langle P_{w M_{1}} z\left(f_{0}-\eta_{0}\right), P_{w M_{1}} z h\right\rangle .
\end{aligned}
$$

Then

$$
P_{w M_{1}} z\left(f_{0}-\eta_{0}\right) \perp P_{w M_{1}} z\left(M_{1} \ominus w M_{1}\right) .
$$

By (2.11), $f_{0}-\eta_{0} \in P_{w M_{1}} z\left(M_{1} \ominus w M_{1}\right)$. Then $P_{w M_{1}} z\left(f_{0}-\eta_{0}\right) \perp f_{0}-\eta_{0}$, so by (2.6) we have

$$
P_{w M_{1}} z\left(f_{0}-\eta_{0}\right)=P_{w M_{2}} z\left(f_{0}-\eta_{0}\right) .
$$

Hence

$$
P_{w M_{2}} z\left(f_{0}-\eta_{0}\right) \perp P_{w M_{1}} z\left(M_{1} \ominus w M_{1}\right),
$$

so that we get

$$
\begin{equation*}
P_{w M_{2}} z\left(f_{0}-\eta_{0}\right) \perp P_{w M_{2}} z\left(M_{1} \ominus w M_{1}\right) . \tag{2.12}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
0 & =\left\langle P_{w M_{2}} z\left(f_{0}-\eta_{0}\right), P_{w M_{2}} z g_{0}\right\rangle \quad \text { by }(2.8) \\
& =\left\langle P_{w M_{2}} z\left(f_{0}-\eta_{0}\right), P_{w M_{2}} z\left(f_{0}-\frac{1}{1-|\beta|^{2}} \eta_{0}\right)\right\rangle \\
& =\left\langle P_{w M_{2}} z\left(f_{0}-\eta_{0}\right), P_{w M_{2}} z\left(f_{0}-\eta_{0}-\frac{|\beta|^{2}}{1-|\beta|^{2}} \eta_{0}\right)\right\rangle \\
& =\left\|P_{w M_{2}} z\left(f_{0}-\eta_{0}\right)\right\|^{2} \quad \text { by }(2.12) .
\end{aligned}
$$

This shows that $z\left(f_{0}-\eta_{0}\right) \perp w M_{2}$. Since $f_{0}-\eta_{0} \in w M_{1}$, we have $z\left(f_{0}-\eta_{0}\right) \in$ $w M_{1}$ and by (2.6) we have $z\left(f_{0}-\eta_{0}\right)=c\left(f_{0}-\eta_{0}\right)$ for some $c \in \mathbb{C}$. Thus we get $f_{0}=\eta_{0}$. Since $\eta_{0} \in M_{1} \ominus w M_{1}, f_{0} \in M_{1} \ominus w M_{1}$, and this contradicts the starting assumption.

Example 2.1. Let

$$
M_{1}=z^{3} H^{2}+z^{2} w H^{2}+w^{2} H^{2}
$$

Then

$$
\begin{aligned}
& \operatorname{rank}\left[R_{w}^{M_{1} *}, R_{z}^{M_{1}}\right]=\operatorname{dim} P_{w M_{1}} z\left(M_{1} \ominus w M_{1}\right) \\
& =\operatorname{dim} P_{w M_{1}} z\left(z^{3} H^{2}+\mathbb{C} \cdot z^{2} w+\mathbb{C} \cdot z w^{2}+\mathbb{C} \cdot w^{2}\right) \\
& =\operatorname{dim}\left(\mathbb{C} \cdot z^{3} w+\mathbb{C} \cdot z^{2} w^{2}\right)=2 .
\end{aligned}
$$

We shall take a nonzero f_{0} in M_{1} such that $M_{2}=M_{1} \ominus \mathbb{C} \cdot f_{0}$ is an invariant subspace and $\operatorname{rank}\left[R_{w}^{M_{2}{ }^{*}}, R_{z}^{M_{2}}\right]=1,2,3$, respectively.
(i) Let $f_{0}=z^{2} w \in M_{1}$. Then $M_{2}=z^{3} H^{2}+w^{2} H^{2}$ and

$$
\operatorname{rank}\left[R_{w}^{M_{2} *}, R_{z}^{M_{2}}\right]=\operatorname{dim} \mathbb{C} \cdot P_{w M_{2}} z^{3} w^{2}=1
$$

(ii) Let $f_{0}=z^{3} \in M_{1}$. Then $M_{2}=z^{4} H^{2}+z^{2} w H^{2}+w^{2} H^{2}$ and

$$
\operatorname{rank}\left[R_{w}^{M_{2}{ }^{*}}, R_{z}^{M_{2}}\right]=\operatorname{dim}\left(\mathbb{C} \cdot z^{3} w+\mathbb{C} \cdot z^{2} w^{2}\right)=2 .
$$

(iii) Let $f_{0}=w^{2} \in M_{1}$. Then

$$
M_{2}=z^{3} H^{2}+z^{2} w H^{2}+z w^{2} H^{2}+w^{3} H^{2}
$$

and

$$
\operatorname{rank}\left[R_{w}^{M_{2}{ }^{*}}, R_{z}^{M_{2}}\right]=\operatorname{dim}\left(\mathbb{C} \cdot z^{3} w+\mathbb{C} \cdot z^{2} w^{2}+\mathbb{C} \cdot z w^{3}\right)=3
$$

3. Backward shift invariant subspaces

Let M be an invariant subspace of H^{2} and $N=H^{2} \ominus M$.
Lemma 3.1. We have the following.
(i) $\left[S_{w}^{N}, S_{z}^{N *}\right]=\left.P_{N} T_{z}^{*} P_{M} T_{w}\right|_{N}$.
(ii) $\operatorname{rank}\left[S_{w}^{N}, S_{z}^{N *}\right]=\operatorname{dim} P_{N} T_{z}^{*} P_{M} w N$.

Proof. (i) We have

$$
\begin{aligned}
{\left[S_{w}^{N}, S_{z}^{N *}\right] } & =S_{w}^{N} S_{z}^{N *}-S_{z}^{N *} S_{w}^{N} \\
& =\left.P_{N} T_{w} P_{N} T_{z}^{*}\right|_{N}-\left.P_{N} T_{z}^{*} P_{N} T_{w}\right|_{N} \\
& =\left.P_{N} T_{z}^{*} T_{w}\right|_{N}-\left.P_{N} T_{z}^{*} P_{N} T_{w}\right|_{N} \\
& =\left.P_{N} T_{z}^{*}\left(I-P_{N}\right) T_{w}\right|_{N}=\left.P_{N} T_{z}^{*} P_{M} T_{w}\right|_{N} .
\end{aligned}
$$

(ii) follows from (i).

Let M_{1} be an invariant subspace of H^{2} and $f_{0} \in M_{1}$ with $\left\|f_{0}\right\|=1$ such that $M_{2}:=M_{1} \ominus \mathbb{C} \cdot f_{0}$ is an invariant subspace. Let $N_{j}=H^{2} \ominus M_{j}$ for $j=1,2$. We have $M_{1}=M_{2} \oplus \mathbb{C} \cdot f_{0}$ and $N_{2}=N_{1} \oplus \mathbb{C} \cdot f_{0}$.

Theorem 3.1.

$$
\operatorname{rank}\left[S_{w}^{N_{1}}, S_{z}^{N_{1} *}\right]-1 \leq \operatorname{rank}\left[S_{w}^{N_{2}}, S_{z}^{N_{2} *}\right] \leq \operatorname{rank}\left[S_{w}^{N_{1}}, S_{z}^{N_{1} *}\right]+3
$$

Proof. We have

$$
\begin{aligned}
& \operatorname{rank}\left[S_{w}^{N_{2}}, S_{z}^{N_{2} *}\right]=\operatorname{dim} P_{N_{2}} T_{z}^{*} P_{M_{2}} w N_{2} \quad \text { by Lemma } 3.1 \text { (ii) } \\
& \geq \operatorname{dim} P_{N_{1}} T_{z}^{*} P_{M_{2}} w N_{1} \quad \text { because } N_{1} \subset N_{2} \\
& \geq \operatorname{dim} P_{N_{1}} T_{z}^{*} P_{M_{1}} w N_{1}-1 \quad \text { because } M_{1}=M_{2} \oplus \mathbb{C} \cdot f_{0} . \\
& =\operatorname{rank}\left[S_{w}^{N_{1}}, S_{z}^{N_{1} *}\right]-1 .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \operatorname{rank}\left[S_{w}^{N_{2}}, S_{z}^{N_{2} *}\right]=\operatorname{dim} P_{N_{2}} T_{z}^{*} P_{M_{2}} w N_{2} \\
& \leq \operatorname{dim} P_{N_{1}} T_{z}^{*} P_{M_{2}} w N_{2}+1 \\
& \leq \operatorname{because} N_{2}=N_{1} \oplus \mathbb{C} \cdot f_{0} \\
& \leq \operatorname{dim} P_{N_{1}} T_{z}^{*} P_{M_{2}} w N_{1}+2
\end{aligned} \quad \text { because } N_{2}=N_{1} \oplus \mathbb{C} \cdot f_{0} . ~ 子 \begin{array}{ll}
\\
\leq \operatorname{dim} P_{N_{1}} T_{z}^{*} P_{M_{1}} w N_{1}+3 & \text { because } M_{1}=M_{2} \oplus \mathbb{C} \cdot f_{0} . \\
=\operatorname{rank}\left[S_{w}^{N_{1}}, S_{z}^{N_{1} *}\right]+3 . &
\end{array}
$$

Example 3.1. Let

$$
M_{1}=z^{4} H^{2}+z^{3} w^{2} H^{2}+z^{2} w^{4} H^{2}+w^{5} H^{2}
$$

and $N_{1}=H^{2} \ominus M_{1}$. Then

$$
\begin{aligned}
& \operatorname{rank}\left[S_{w}^{N_{1}}, S_{z}^{N_{1} *}\right]=\operatorname{dim} P_{N_{1}} T_{z}^{*} P_{M_{1}} w N_{1} \\
& =\operatorname{dim}\left(\mathbb{C} \cdot z^{2} w^{2}+\mathbb{C} \cdot z w^{4}\right)=2 .
\end{aligned}
$$

We shall take a nonzero f_{0} in M_{1} such that $M_{2}=M_{1} \ominus \mathbb{C} \cdot f_{0}$ is an invariant subspace and $\operatorname{rank}\left[S_{w}^{N_{2}}, S_{z}^{N_{2} *}\right]=1,2,3,4,5$, respectively, where $N_{2}=H^{2} \ominus M_{2}$. Note that $\operatorname{rank}\left[R_{w}^{M_{1}{ }^{*}}, R_{z}^{M_{1}}\right]=3$.
(i) Let $f_{0}=z^{2} w^{4} \in M_{1}$. Then

$$
M_{2}=z^{4} H^{2}+z^{3} w^{2} H^{2}+w^{5} H^{2}
$$

and

$$
\operatorname{rank}\left[S_{w}^{N_{2}}, S_{z}^{N_{2} *}\right]=\operatorname{dim} \mathbb{C} \cdot z^{2} w^{2}=1
$$

Note that $\operatorname{rank}\left[R_{w}^{M_{2}{ }^{*}}, R_{z}^{M_{2}}\right]=2$.
(ii) Let $f_{0}=z^{3} w^{2} \in M_{1}$. Then

$$
M_{2}=z^{4} H^{2}+z^{3} w^{3} H^{2}+z^{2} w^{4} H^{2}+w^{5} H^{2}
$$

and

$$
\operatorname{rank}\left[S_{w}^{N_{2}}, S_{z}^{N_{2} *}\right]=\operatorname{dim}\left(\mathbb{C} \cdot z^{2} w^{3}+\mathbb{C} \cdot z w^{4}\right)=2
$$

Note that $\operatorname{rank}\left[R_{w}^{M_{2 *}}, R_{z}^{M_{2}}\right]=3$.
(iii) Let $f_{0}=z^{4} \in M_{1}$. Then

$$
M_{2}=z^{5} H^{2}+z^{4} w H^{2}+z^{3} w^{2} H^{2}+z^{2} w^{4} H^{2}+w^{5} H^{2}
$$

and

$$
\operatorname{rank}\left[S_{w}^{N_{2}}, S_{z}^{N_{2} *}\right]=\operatorname{dim}\left(\mathbb{C} \cdot z^{3} w+\mathbb{C} \cdot z^{2} w^{2}+\mathbb{C} \cdot z w^{4}\right)=3
$$

Note that $\operatorname{rank}\left[R_{w}^{M_{2}{ }^{*}}, R_{z}^{M_{2}}\right]=4$.
(iv) Let $f_{0}=z^{3} w^{2}-w^{5} \in M_{1}$. Then

$$
\begin{aligned}
& M_{2}=z^{4} H^{2}+z^{3} w^{3} H^{2}+z^{2} w^{4} H^{2}+z w^{5} H^{2}+w^{6} H^{2} \\
&+\mathbb{C} \cdot\left(z^{3} w^{2}+w^{5}\right) .
\end{aligned}
$$

We have

$$
\begin{aligned}
& \operatorname{rank}[\left.S_{w}^{N_{2}}, S_{z}^{N_{2} *}\right]=\operatorname{dim} P_{N_{2}} T_{z}^{*} P_{M_{2}} w N_{2} \\
&=\operatorname{dim} P_{N_{2}} T_{z}^{*} P_{M_{2}} w\left(\mathbb{C} \cdot z^{3} w+\mathbb{C} \cdot\left(z^{3} w^{2}-w^{5}\right)+\mathbb{C} \cdot z^{2} w^{3}\right. \\
&\left.+\mathbb{C} \cdot z w^{4}+\mathbb{C} \cdot w^{4}\right) \\
&= \operatorname{dim} P_{N_{2}} T_{z}^{*}\left(\mathbb{C} \cdot\left(z^{3} w^{2}+w^{5}\right)+\mathbb{C} \cdot\left(z^{3} w^{3}-w^{6}\right)\right. \\
&\left.+\mathbb{C} \cdot z^{2} w^{4}+\mathbb{C} \cdot z w^{5}\right) \\
&= \operatorname{dim} P_{N_{2}}\left(\mathbb{C} \cdot z^{2} w^{2}+\mathbb{C} \cdot z^{2} w^{3}+\mathbb{C} \cdot z w^{4}+\mathbb{C} \cdot w^{5}\right) \\
&= \operatorname{dim}\left(\mathbb{C} \cdot z^{2} w^{2}+\mathbb{C} \cdot z^{2} w^{3}+\mathbb{C} \cdot z w^{4}+\mathbb{C} \cdot\left(z^{3} w^{2}-w^{5}\right)\right) \\
&=4 .
\end{aligned}
$$

Note that $\operatorname{rank}\left[R_{w}^{M_{2}{ }^{*}}, R_{z}^{M_{2}}\right]=4$.
(v) Let $f_{0}=z^{4}-w^{5} \in M_{1}$. Then

$$
\begin{aligned}
M_{2}=z^{5} H^{2}+z^{4} w H^{2} & +z^{3} w^{2} H^{2}+z^{2} w^{4} H^{2} \\
& +z w^{5} H^{2}+w^{6} H^{2}+\mathbb{C} \cdot\left(z^{4}+w^{5}\right) .
\end{aligned}
$$

We have

$$
\begin{aligned}
& \operatorname{rank}\left[S_{w}^{N_{2}}, S_{z}^{N_{2} *}\right]=\operatorname{dim} P_{N_{2}} T_{z}^{*} P_{M_{2}} w N_{2} \\
& =\operatorname{dim} P_{N_{2}} T_{z}^{*} P_{M_{2}} w\left(\mathbb{C} \cdot\left(z^{4}-w^{5}\right)+\mathbb{C} \cdot z^{3} w+\mathbb{C} \cdot z^{2} w^{3}\right. \\
& \left.\quad+\mathbb{C} \cdot z w^{4}+\mathbb{C} \cdot w^{4}\right) \\
& =\operatorname{dim} P_{N_{2}} T_{z}^{*}\left(\mathbb{C} \cdot\left(z^{4} w-w^{6}\right)+\mathbb{C} \cdot z^{3} w^{2}+\mathbb{C} \cdot z^{2} w^{4}\right. \\
& \\
& \left.\quad+\mathbb{C} \cdot z w^{5}+\mathbb{C} \cdot\left(z^{4}+w^{5}\right)\right) \\
& =\operatorname{dim} P_{N_{2}}\left(\mathbb{C} \cdot z^{3} w+\mathbb{C} \cdot z^{2} w^{2}+\mathbb{C} \cdot z w^{4}+\mathbb{C} \cdot w^{5}+\mathbb{C} \cdot z^{3}\right) \\
& =\operatorname{dim}\left(\mathbb{C} \cdot z^{3} w+\mathbb{C} \cdot z^{2} w^{2}+\mathbb{C} \cdot z w^{4}+\mathbb{C} \cdot\left(z^{4}-w^{5}\right)+\mathbb{C} \cdot z^{3}\right) \\
& =5 .
\end{aligned}
$$

Note that $\operatorname{rank}\left[R_{w}^{M_{2}{ }^{*}}, R_{z}^{M_{2}}\right]=4$.
Remark 3.1. We shall give $\operatorname{rank}\left[S_{w}^{N_{j}}, S_{z}^{N_{j}{ }^{*}}\right], j=1,2$, for Example 2.1. We have $\operatorname{rank}\left[S_{w}^{N_{1}}, S_{z}^{N_{1}{ }^{*}}\right]=1$.
(i) $\operatorname{rank}\left[S_{w}^{N_{2}}, S_{z}^{N_{2}{ }^{*}}\right]=0$.
(ii) $\operatorname{rank}\left[S_{w}^{N_{2}}, S_{z}^{N_{2}{ }^{*}}\right]=1$.
(iii) $\operatorname{rank}\left[S_{w}^{N_{2}}, S_{z}^{N_{2} *}\right]=2$.

References

[1] P. Ghatage and V. Mandrekar, On Beurling type invariant subspaces of $L^{2}\left(T^{2}\right)$ and their equivalence, J. Operator Theory 20 (1988), 83-89.
[2] K. J. Izuchi and K. H. Izuchi, Rank-one commutators on invariant subspaces of the Hardy space on the bidisk, J. Math. Anal. Appl. 316 (2006), 1-8.
[3] K. J. Izuchi and K. H. Izuchi, Cross commutators on backward shift invariant subspaces over the bidisk, Acta Sci. Math. (Szeged) 72 (2006), 251-270.
[4] K. J. Izuchi and K. H. Izuchi, Rank-one commutators on invariant subspaces of the Hardy space on the bidisk II, J. Operator Theory 60 (2008), 239-251.
[5] K. J. Izuchi and K. H. Izuchi, Rank-one cross commutators on backward shift invariant subspaces on the bidisk, Acta Math. Sin. (Engl. Ser.) 25 (2009), 693714.
[6] K. J. Izuchi and K. H. Izuchi, Ranks of cross commutators on backward shift invariant subspaces over the bidisk, Rocky Mountain J. Math. 40 (2010), 929942.
[7] K. J. Izuchi and K. H. Izuchi, Cross commutators on backward shift invariant subspaces over the bidisk II, J. Korean Math. Soc. 49 (2012), 139-151.
[8] K. J. Izuchi and K. H. Izuchi, Commutativity in two-variable Jordan blocks on the Hardy space, Acta Sci. Math. (Szeged) 78 (2012), 129-136.
[9] K. J. Izuchi, K. H. Izuchi, and Y. Izuchi, One dimensional perturbation of invariant subspaces in the Hardy space over the bidisk I, Nihonkai Math. J. 28 (2017), 1-29.
[10] K. J. Izuchi, T. Nakazi, and M. Seto, Backward shift invariant subspaces in the bidisc II, J. Operator Theory 51 (2004), 361-376.
[11] K. J. Izuchi, T. Nakazi, and M. Seto, Backward shift invariant subspaces in the bidisc III, Acta Sci. Math. (Szeged) 70 (2004), 727-749.
[12] V. Mandrekar, The validity of Beurling theorems in polydiscs, Proc. Amer. Math. Soc. 103 (1988), 145-148.
[13] T. Nakazi, Invariant subspaces in the bidisc and commutators, J. Austral. Math. Soc. (Ser. A) 56 (1994), 232-242.
(Kei Ji Izuchi) Department of Mathematics, Niigata University, Niigata 950-2181, Japan
(Kou Hei Izuchi) Department of Mathematics, Faculty of Education, Yamaguchi University, Yamaguchi 753-8511, Japan
(Yuko Izuchi) Asahidori 2-2-23, Yamaguchi 753-0051, Japan
E-mail address: izuchi@m.sc.niigata-u.ac.jp (K. J. Izuchi), izuchi@yamaguchi-u.ac.jp
(K. H. Izuchi), yfd10198@nifty.com (Y. Izuchi)

Received December 24, 2015
Revised May 11, 2016

[^0]: 2010 Mathematics Subject Classification. Primary 47A15, 32A35; Secondary 47B35.
 Key words and phrases. Hardy space over the bidisk, invariant subspace, one dimensional perturbation, rank of operator, cross commutator.

 The first author is supported by JSPS KAKENHI Grant Number 15K04895.

