# A REFINEMENT OF THE GRAND FURUTA INEQUALITY 

MASATOSHI FUJII AND RITSUO NAKAMOTO


#### Abstract

A refinement of the Löwner-Heinz inequality has been discussed by Moslehian-Najafi. In the preceding paper, we improved it and extended to the Furuta inequality. In this note, we give a further extension for the grand Furuta inequality. We also discuss it for operator means. A refinement of the arithmeticgeometric mean inequality is obtained.


## 1. Introduction

For an operator $A$ acting on a Hilbert space $H, A$ is said to be positive, denoted by $A \geq 0$ if $(A x, x) \geq 0$ for all $x \in H$. In particular, $A$ is said to be strictly positive, denoted by $A>0$ if $A$ is positive and invertible, i.e., $A \geq m$ for some $m>0$. Based on the strict positivity, we define the strict order $A>B$ for selfadjoint operators $A$ and $B$ if $A-B>0$. Recently the Löwner-Heinz inequality was refined under the strict order by Moslehian-Najafi [9]:

Theorem A. If $A-B \geq m>0$ for $A>B \geq 0$, then

$$
A^{r}-B^{r} \geq\|A\|^{r}-(\|A\|-m)^{r} \quad \text { for } r \in[0,1] .
$$

Very recently we discussed a generalization of Theorem A for operator monotone functions, and consequently gave it an improvement in [3], cf. [7].

If $A-B \geq m>0$ for $A>B \geq 0$ and $f$ is non-constant operator monotone on $[0, \infty)$, then

$$
f(A)-f(B) \geq f(\|B\|+m)-f(\|B\|)>0
$$

As a consequence, we obtained the following improvement of Theorem A:
Theorem B. If $A-B \geq m>0$ for $A, B \geq 0$ and $r \in[0,1]$, then

$$
A^{r}-B^{r} \geq(\|B\|+m)^{r}-\|B\|^{r}>0 \quad \text { for } r \in[0,1]
$$

[^0]On the other hand, the Löwner-Heinz inequality has a beautiful extension, socalled the Furuta inequality. So another direction of generalizations is to discuss it for the Furuta inequality, [4]. We obtained that the Furuta inequality preserves the strict operator order $A>B>0$.

In this note, we prove it for the grand Furuta inequality which is a further extension of the Furuta inequality.

## 2. The Furuta inequality

First of all, we cite the Furuta inequality (FI) established in [5], see also [2], [6], [8] and [10] for the best possibility of it.

The Furuta inequality. If $A \geq B \geq 0$, then for each $r \geq 0$,

$$
A^{\frac{p+r}{q}} \geq\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}}
$$

holds for $p \geq 0, q \geq 1$ with

$$
(1+r) q \geq p+r .
$$

We here remark that the case $r=0$ in (FI) is just the Löwner-Heinz inequality. As a matter of fact, we showed an extension of Theorem B in the form of Furuta inequality in our preceding work [4]. For convenience, we introduced a constant $k(b, m, p, q, r)$ for $b, m, p, q, r \geq 0$ by

$$
k(b, m, p, q, r)=(b+m)^{\frac{p+r}{q}-r}-b^{\frac{p+r}{q}-r},
$$

and denoted by $m_{B}=\left\|B^{-1}\right\|^{-1}$. We showed the following results:

Lemma 1. Let $A$ and $B$ be invertible positive operators with $A-B \geq m>0$. Then for $0<r \leq 1$,

$$
A^{\frac{p+r}{q}}-\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq k(\|B\|, m, p, q, r) m_{A}^{r}
$$

holds for $p \geq 0, q \geq 1$ with $(1+r) q \geq p+r \geq q r$.
Proof. For the reader's convenience, we cite a proof. We note that $q \geq 1$ and $(1+r) q \geq p+r \geq q r$ assure the exponent $\frac{p+r}{q}-r$ in the constant $k$ belongs to $[0,1]$.

Since $0 \leq r \leq 1$, it follows from Theorem B that

$$
\begin{aligned}
A^{\frac{p+r}{q}}-\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}} & =A^{\frac{p+r}{q}}-A^{\frac{r}{2}} B^{\frac{p}{2}}\left(B^{\frac{p}{2}} A^{r} B^{\frac{p}{2}}\right)^{\frac{1}{q}-1} B^{\frac{p}{2}} A^{\frac{r}{2}} \\
& =A^{\frac{p+r}{q}}-A^{\frac{r}{2}} B^{\frac{p}{2}}\left(B^{\frac{-p}{2}} A^{-r} B^{\frac{-p}{2}}\right)^{1-\frac{1}{q}} B^{\frac{p}{2}} A^{\frac{r}{2}} \\
& \geq A^{\frac{p+r}{q}}-A^{\frac{r}{2}} B^{\frac{p}{2}}\left(B^{-\frac{p}{2}} B^{-r} B^{-\frac{p}{2}}\right)^{1-\frac{1}{q}} B^{\frac{p}{2}} A^{\frac{r}{2}} \\
& =A^{\frac{p+r}{q}}-A^{\frac{r}{2}} B^{p-(p+r)\left(1-\frac{1}{q}\right)} A^{\frac{r}{2}} \\
& =A^{\frac{r}{2}}\left(A^{\frac{p+r}{q}-r}-B^{\frac{p+r}{q}-r}\right) A^{\frac{r}{2}} \\
& \geq k(\|B\|, m, p, q, r) A^{r} \\
& \geq k(\|B\|, m, p, q, r) m_{A}^{r} .
\end{aligned}
$$

In the Furuta inequality, the optimal case where $p \geq 1$ and $(1+r) q=p+r$ is the most important, for which a beautiful mean theoretic expression is presented by Kamei [8] as follows:

A satellite of (FI) If $A \geq B \geq 0$, then

$$
A^{-r} \#_{\frac{1+r}{p+r}} B^{p} \leq B(\leq A)
$$

holds for $p \geq 1$ and $r \geq 0$, where $A \#_{s} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{s} A^{\frac{1}{2}}$ for $A>0$.
By the use of it, we have the following estimation for the optimal case of the Furuta inequality.

Theorem 2. Let $A$ and $B$ be invertible positive operators with $A-B \geq m>0$. Then

$$
A^{1+r}-\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{1+r}{p+r}} \geq m m_{A}^{r}
$$

holds for $p \geq 1$ and $r \geq 0$.
Proof. Taking $r=1$ in Lemma 1, we have

$$
A^{2}-\left(A^{\frac{1}{2}} B^{p} A^{\frac{1}{2}}\right)^{\frac{2}{p+1}} \geq m m_{A}:=m_{1}
$$

where $m_{B}=\left\|B^{-1}\right\|^{-1}$. Put $A_{1}=A^{2}, B_{1}=\left(A^{\frac{1}{2}} B^{p} A^{\frac{1}{2}}\right)^{\frac{2}{p+1}}, C=A^{\frac{1}{2}} B^{p} A^{\frac{1}{2}}$ and $p_{1}=\frac{p+1}{2}$. Then the satellite assures that

$$
A_{1}^{-s} \#_{\frac{1+s}{p_{1}+s}} B_{1}^{p_{1}} \leq B_{1},
$$

that is,

$$
A^{-2 s} \#_{\frac{2(1+s)}{p+1+2 s}} C \leq B_{1} \text {, i.e., }\left(A^{s} C A^{s}\right)^{\frac{2(1+s)}{p+1+2 s}} \leq A^{s} B_{1} A^{s}
$$

for $s \geq 0$ and $p \geq 1$. Hence it follows that for $r=2 s+1$ with $s \geq 0$,

$$
\begin{aligned}
& A^{1+r}-\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{1+r}{p+r}}=A^{2(1+s)}-\left(A^{s} C A^{s}\right)^{\frac{2(1+s)}{p+1+2 s}} \\
& \geq A^{s}\left(A^{2}-B_{1}\right) A^{s} \geq m_{1} A^{2 s} \geq m m_{A}^{2 s+1}=m m_{A}^{r}
\end{aligned}
$$

Hence the conclusion is obtained.
An estimation of the Furuta inequality for a general case is given as an application of Theorem 2 and Theorem A.

Theorem 3. Let $A$ and $B$ be invertible positive operators with $A-B \geq m>0$. Then

$$
A^{\frac{p+r}{q}}-\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\|A\|^{\frac{p+r}{q}}-\left\|A^{1+r}-m m_{A}^{r}\right\|^{\frac{p+r}{(1+r) q}}
$$

holds for $p, r \geq 0, q \geq 1$ with $(1+r) q \geq p+r$.
Proof. Put $A_{1}=A^{1+r}, B_{1}=\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{1+r}{p+r}}$ and $m_{1}=m m_{A}^{r}$. Then Theorem 2 says that $A_{1}-B_{1} \geq m_{1}$. So we apply Theorem A to $A_{1}>B_{1}$ and $r_{1}=\frac{p+r}{(1+r) q} \in(0,1]$. Namely we have

$$
A_{1}^{r_{1}}-B_{1}^{r_{1}} \geq\left\|A_{1}\right\|^{r_{1}}-\left\|A_{1}-m_{1}\right\|^{r_{1}} .
$$

## 3. Grand Furuta inequality

First of all, we mention the Ando-Hiai inequality, [1]:
(AH) If $A \#_{\alpha} B \leq I$ for $A, B \geq 0$, then $A^{r} \#{ }_{\alpha} B^{r} \leq I$ for $r \geq 1$.
To compare with (AH) and (FI), we arrange (AH) as a Furuta type operator inequality. Now the assumption of (AH) $A \#_{\alpha} B \leq I$ is equivalent to the inequality

$$
B_{1}=\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\alpha} \leq A^{-1}=A_{1} .
$$

Similarly, the conclusion $A^{r} \#_{\alpha} B^{r} \leq I$ is equivalent to

$$
A^{-r} \geq\left[A^{-\frac{r}{2}} B^{r} A^{-\frac{r}{2}}\right]^{\alpha}=\left[A^{-\frac{r}{2}}\left(A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}}\right)^{r} A^{-\frac{r}{2}}\right]^{\alpha} .
$$

Replacing $p=\alpha^{-1},(\mathrm{AH})$ is reformulated that

$$
A_{1} \geq B_{1}>0 \Longrightarrow A_{1}^{r} \geq\left(A_{1}^{\frac{r}{2}}\left(A_{1}^{-\frac{1}{2}} B_{1}^{p} A_{1}^{-\frac{1}{2}}\right)^{r} A_{1}^{\frac{r}{2}}\right)^{\frac{1}{p}}
$$

for $r \geq 1$ and $p \geq 1$.
Moreover, to make a simultaneous extension of both (FI) and (AH), Furuta added another variable $t \in[0,1]$ as in the case of an extension of (LH) to (FI).

Grand Furuta inequality (GFI) If $A \geq B>0$ and $t \in[0,1]$, then

$$
\left[A^{\frac{r}{2}}\left(A^{-\frac{t}{2}} B^{p} A^{-\frac{t}{2}}\right)^{s} A^{\frac{r}{2}}\right]^{\frac{1-t+r}{p-t) s+r}} \leq A^{1-t+r}
$$

holds for $r \geq t$ and $p, s \geq 1$.
As a matter of fact, (GFI) interpolates (FI) with (AH), i.e.,

$$
\begin{aligned}
& (\mathrm{GFI}) \text { for } t=1, r=s \Longleftrightarrow(\mathrm{AH}) \\
& (\mathrm{GFI}) \text { for } t=0,(s=1) \Longleftrightarrow(\mathrm{FI})
\end{aligned}
$$

In this section, we discuss the strict positivity for the grand Furuta inequality. For convenience, for $s \notin[0,1]$, we denote by $A$ Łs $B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{s} A^{\frac{1}{2}}$ for $A>0$.

Theorem 4. If $A-B \geq m$ for some $m>0$ and $t \in[0,1]$, then

$$
A^{1-t+r}-\left[A^{\frac{r}{2}}\left(A^{-\frac{t}{2}} B^{p} A^{-\frac{t}{2}}\right)^{s} A^{\frac{r}{2}}\right]^{\frac{1-t+r}{(p-t) s+r}} \geq m m_{A}^{r-t}
$$

for $p, s \geq 1$ and $r \geq t$.
Proof. It is known that $B_{1}=\left(A^{t} \natural_{s} B^{p}\right)^{\frac{1}{p_{1}}} \leq B$, where $p_{1}=(p-t) s+t$. Actually, if $1 \leq s \leq 2$, then

$$
A^{t} \mathfrak{\varphi}_{s} B^{p} \leq B^{p_{1}} \quad \text { and so } B_{1} \leq B .
$$

Next, if $B_{1}=\left(A^{t} \text { Ł } b_{s} B^{p}\right)^{\frac{1}{p_{1}}} \leq B$ holds for some $s \geq 1$, then, for $s_{1} \in[1,2]$ and $p_{2}=(p-t) s s_{1}+t$,

$$
B_{2}=\left(A^{t} \mathfrak{q}_{s s_{1}} B^{p}\right)^{\frac{1}{p_{2}}}=\left(A^{t} \mathfrak{q}_{s_{1}}\left(A^{t} \mathfrak{q}_{s} B^{p}\right)\right)^{\frac{1}{p_{2}}}=\left(A^{t} \mathfrak{q}_{s_{1}} B_{1}^{p_{1}}\right)^{\frac{1}{p_{2}}} \leq B_{1} \leq B
$$

by $s_{1} \in[1,2]$ and $\left(p_{1}-t\right) s_{1}+t=p_{2}$. Hence we make it sure.
So, applying Theorem 2 for $A-B_{1}(\geq A-B) \geq m>0$ and $p_{1}=(p-t) s+t$, $r_{1}=r-t$, we have

$$
A^{1-t+r}-\left[A^{\frac{r}{2}}\left(A^{-\frac{t}{2}} B^{p} A^{-\frac{t}{2}}\right)^{s} A^{\frac{r}{2}}\right]^{\frac{1-t+r}{p-t) s+r}}=A^{1-t+r}-\left[A^{\frac{r-t}{2}} B_{1}^{p_{1}} A^{\frac{r-t}{2}}\right]^{\frac{1-t+r}{p_{1}-t+r}} \geq m m_{A}^{r-t} .
$$

## 4. A refined arithmetic-geometric mean inequality

In the above, we discuss the strict positivity on the Furuta inequality and the grand Furuta inequality. In this section, we apply its idea to the arithmetic-geometric mean inequality and consequently obtian a refinement of the inequality. It says that if $A>B>0$, then $A \nabla_{t} B>A \#_{t} B$. In other words, the arithmetic-geometric mean inequality preserves the strict positivity.

Theorem 5. If $A-B \geq m>0$ for $A, B>0$, then for each $0 \leq t \leq 1$

$$
f_{t}\left(1-\frac{m}{\|A\|}\right) m_{A} \leq A \nabla_{t} B-A \#_{t} B \leq f_{t}\left(\frac{m_{B}}{\|A\|}\right)\|A\|
$$

where $m_{B}=\left\|B^{-1}\right\|^{-1}$ and $f_{t}(x)=1-t+t x-x^{t}$.

Proof. If $A-B \geq m>0$ for $A, B>0$, then $H=A^{-\frac{1}{2}} B A^{-\frac{1}{2}}$ has bounds such that

$$
\frac{m_{B}}{\|A\|} \leq H \leq 1-\frac{m}{\|A\|}<1
$$

Actually we have

$$
H \geq m_{B} A^{-1} \geq m_{B}\|A\|^{-1}
$$

and

$$
H \leq A^{-1}(A-m)=1-m A^{-1} \leq 1-m\|A\|^{-1}
$$

Now, for a fixed $t \in(0,1), f=f_{t}$ is decreasing and positive on $[0,1)$ because

$$
f^{\prime}(x)=t\left(1-x^{t-1}\right)<0 \quad \text { and } \quad f(1)=0
$$

Hence it follows that $0<f(H) \leq m_{H}$ and so

$$
f(H) \geq f(\|H\|) \geq f\left(1-\frac{m}{\|A\|}\right) ; f(H) \leq f\left(m_{H}\right) \leq f\left(\frac{m_{B}}{\|A\|}\right)
$$

Since $A \nabla_{t} B-A \#_{t} B=A^{\frac{1}{2}} f(H) A^{\frac{1}{2}}$, we have the conclusion.
Finally we discuss the strict positivity of the geometric-harmonic mean inequality. For this, we cite the following lemma:

Lemma 6. If $A-B \geq m$ for some $m>0$, then $B^{-1}-A^{-1} \geq \frac{m}{(\|B\|+m)\|B\|}:=m_{1}$.
As a matter of fact, it is proved as

$$
B^{-1}-A^{-1} \geq B^{-1}-(B+m)^{-1} \geq\|B\|^{-1}-\|B+m\|^{-1}=m_{1}
$$

Now, combining Lemma 6 with Theorem 5, we have

$$
B^{-1} \nabla_{1-t} A^{-1}-B^{-1} \#_{1-t} A^{-1} \geq f_{1-t}\left(1-\frac{m_{1}}{\left\|B^{-1}\right\|}\right) m_{B^{-1}}:=m_{2}
$$

If we put $B_{1}=\left(A \#_{t} B\right)^{-1}=B^{-1} \#_{1-t} A^{-1}$, then it follows from Lemma 6 again that

$$
\left(B^{-1} \#_{1-t} A^{-1}\right)^{-1}-\left(B^{-1} \nabla_{1-t} A^{-1}\right)^{-1} \geq \frac{m_{2}}{\left(\left\|B_{1}\right\|+m_{2}\right)\left\|B_{1}\right\|}
$$

That is, we have the strict positivity of the geometric-harmonic mean inequality as follows:

Corollary 7. Notation as in above. If $A-B \geq m$ for some $m>0$ and $t \in(0,1)$, then

$$
A \#_{t} B-A!_{t} B \geq \frac{m_{2}}{\left(\left\|B_{1}\right\|+m_{2}\right)\left\|B_{1}\right\|} \geq \frac{m_{2}}{\left(\left\|B^{-1}\right\|+m_{2}\right)\left\|B^{-1}\right\|} .
$$

Acknowledgement. The authors would like to express their thanks to the referee for critical reading and kind suggestion.

## References

[1] T. Ando and F. Hiai, Log majorization and complementary Golden-Thompson type inequalities, Linear Algebra Appl. 197/198 (1994), 113-131.
[2] M. Fujii, Furuta's inequality and its mean theoretic approach, J. Operator Theory 23 (1990), 67-72.
[3] M. Fujii, Y.O. Kim and R. Nakamoto, A characterization of convex functions and its application to operator monotone functions, Banach J. Math. Anal. 8 (2014), 118-123.
[4] M. Fujii, M. S. Moslehian, F. Najafi and R. Nakamoto, Estimates of operator convex and operator monotone functions on bounded intervals, Hokkaido Math. J., to appear.
[5] T. Furuta, $A \geq B \geq 0$ assures $\left(B^{r} A^{p} B^{r}\right)^{1 / q} \geq B^{(p+2 r) / q}$ for $r \geq 0, p \geq 0, q \geq 1$ with $(1+2 r) q \geq p+2 r$, Proc. Amer. Math. Soc. 101 (1987), 85-88.
[6] T. Furuta, Elementary proof of an order preserving inequality, Proc. Japan Acad. 65 (1989), 126.
[7] T. Furuta, Precise lower bound of $f(A)-f(B)$ for $A>B>0$ and non-constant operator monotone function $f$ on $[0, \infty)$, J. Math. Inequal. 9 (2015), 47-52.
[8] E. Kamei, A satellite to Furuta's inequality, Math. Japon. 33 (1988), 883-886.
[9] M.S. Moslehian and H. Najafi, An extension of the Löwner-Heinz inequality, Linear Algebra Appl. 437 (2012), 2359-2365.
[10] K. Tanahashi, Best possibility of the Furuta inequality, Proc. Amer. Math. Soc. 124 (1996), 141-146.
(Masatoshi Fujii) Department of Mathematics, Osaka Kyoiku University, Kashiwara, Osaka 5828582, Japan.
E-mail address: mfujii@cc.osaka-kyoiku.ac.jp
(Ritsuo Nakamoto) 3-4-13, Daihara-cho, Hitachi 316-0021, Japan.
E-mail address: r-naka@@net1.jway.ne.jp

Received January 18, 2016
Revised June 11, 2016


[^0]:    2010 Mathematics Subject Classification. Primary 47A63; Secondary 47B10, 47A30.
    Key words and phrases. Löwner-Heinz inequality, Furuta inequality, grand Furuta inequality.

