SIMULTANEOUS EXTENSIONS OF DIAZ-METCALF AND BUZANO INEQUALITIES

MASATOSHI FUJII, AKEMI MATSUMOTO, AND MASARU TOMINAGA

Dedicated to Professor Kichi-Suke Saito in commemoration of his retirement

Abstract. We give a simultaneous extension of Diaz-Metcalf and Buzano inequalities: Let z_{1}, \ldots, z_{m} be nonzero vectors in a Hilbert space \mathscr{H}. Suppose that $x_{1}, \ldots, x_{n} \in \mathscr{H}$ satisfy that for each $j=1, \ldots, m$ there exists a constant r_{j} such that $0 \leq r_{j} \leq \frac{\operatorname{Re}\left\langle x_{i}, z_{j}\right\rangle}{\left\|x_{i}\right\|}$ for $i=1, \ldots, n$. If $y_{1}, y_{2} \in \mathscr{H}$ satisfy $\left\langle y_{k}, z_{j}\right\rangle=0$ for $k=1,2$ and $j=1, \ldots, m$, then

$$
\left|\left\langle\sum x_{i}, y_{1}\right\rangle\left\langle\sum x_{i}, y_{2}\right\rangle\right|+\left(\sum \frac{r_{j}^{2}}{c_{j}}\right)\left(\sum\left\|x_{i}\right\|\right)^{2} \mathcal{B}\left(y_{1}, y_{2}\right) \leq \mathcal{B}\left(y_{1}, y_{2}\right)\left\|\sum x_{i}\right\|^{2}
$$ where $\mathcal{B}\left(y_{1}, y_{2}\right):=\frac{1}{2}\left(\left\|y_{1}\right\|\left\|y_{2}\right\|+\left|\left\langle y_{1}, y_{2}\right\rangle\right|\right)$ and $c_{j}=\sum_{h}\left|\left\langle z_{h}, z_{j}\right\rangle\right|$ for $j=1, \ldots, m$.

As an application, we discuss a refinement of an extended Heinz-Kato-Furuta inequality. Moreover, we show some variant inequalities of it by Furuta inequality and chaotic order.

1. Introduction

About 50 years ago, Wilf [20] proposed a reverse arithmetic-geometric mean inequality for complex numbers: For complex numbers t_{1}, \ldots, t_{n}, suppose that

$$
\begin{equation*}
\left|\arg t_{i}\right| \leq \phi \leq \frac{\pi}{2} \quad \text { for } i=1, \ldots, n \tag{1.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|t_{1} \cdot t_{2} \cdots t_{n}\right|^{\frac{1}{n}} \leq(\sec \phi) \frac{1}{n}\left|t_{1}+t_{2}+\cdots+t_{n}\right| . \tag{1.2}
\end{equation*}
$$

As a matter of fact, the assumption (1.1) implies

$$
\begin{equation*}
\cos \phi \cdot\left(\left|t_{1}\right|+\left|t_{2}\right|+\cdots+\left|t_{n}\right|\right) \leq\left|t_{1}+t_{2}+\cdots+t_{n}\right| \tag{1.3}
\end{equation*}
$$

by which the conclusion (1.2) is obtained via the arithmetic-geometric mean inequality.

[^0]Afterward, Diaz and Metcalf [2] advanced it to the case of vectors in a Hilbert space \mathscr{H} with an inner product $\langle x, z\rangle$ as follows:

Diaz-Metcalf inequality. Let z be a unit vector in \mathscr{H}. Suppose that $x_{1}, \ldots, x_{n} \in$ \mathscr{H} satisfy that there exists a constant r such that

$$
0 \leq r \leq \frac{\operatorname{Re}\left\langle x_{i}, z\right\rangle}{\left\|x_{i}\right\|} \quad \text { for } i=1, \ldots, n
$$

Then

$$
r \sum_{i}\left\|x_{i}\right\| \leq\left\|\sum_{i} x_{i}\right\|
$$

In [9, Theorem 9], it was generalized by connecting the Selberg inequality, cf. [12]:

Theorem A. Let z_{1}, \ldots, z_{m} be vectors in \mathscr{H}. Suppose that $x_{1}, \ldots, x_{n} \in \mathscr{H}$ satisfy that for each $j=1, \ldots, m$ there exists a constant r_{j} such that

$$
0 \leq r_{j} \leq \frac{\operatorname{Re}\left\langle x_{i}, z_{j}\right\rangle}{\left\|x_{i}\right\|} \quad \text { for } i=1, \ldots, n
$$

If $y \in \mathscr{H}$ satisfies $\left\langle y, z_{j}\right\rangle=0$ for $j=1, \ldots, m$, then

$$
\left|\left\langle x_{1}+\cdots+x_{n}, y\right\rangle\right|^{2}+\left(\sum_{j} \frac{r_{j}^{2}}{c_{j}}\right)\left(\sum_{i}\left\|x_{i}\right\|\right)^{2}\|y\|^{2} \leq\left\|\sum_{i} x_{i}\right\|^{2}\|y\|^{2}
$$

where $c_{j}=\sum_{h}\left|\left\langle z_{h}, z_{j}\right\rangle\right|$ for $j=1, \ldots, m$.

On the other hand, we recall the Buzano inequality. For convenience, we denote by

$$
\mathcal{B}\left(y_{1}, y_{2}\right):=\frac{1}{2}\left(\left\|y_{1}\right\|\left\|y_{2}\right\|+\left|\left\langle y_{1}, y_{2}\right\rangle\right|\right)
$$

for $y_{1}, y_{2} \in \mathscr{H}$. The inequality

$$
\left|\left\langle x, y_{1}\right\rangle\left\langle x, y_{2}\right\rangle\right| \leq \frac{1}{2}\left(\left\|y_{1}\right\|\left\|y_{2}\right\|+\left|\left\langle y_{1}, y_{2}\right\rangle\right|\right)\|x\|^{2}
$$

holds for all $x, y_{1}, y_{2} \in \mathscr{H}$, which includes the Schwarz inequality as in the case $y_{1}=y_{2}$.

In our paper [8], we proposed a simultaneous extension of Selberg and Buzano inequalities:

Theorem B. If $y_{1}, y_{2} \in \mathscr{H}$ satisfy $\left\langle y_{k}, z_{j}\right\rangle=0$ for $k=1,2$ and given nonzero vectors $\left\{z_{j} ; j=1,2, \ldots, m\right\} \subset \mathscr{H}$, then

$$
\begin{equation*}
\left|\left\langle x, y_{1}\right\rangle\left\langle x, y_{2}\right\rangle\right|+\mathcal{B}\left(y_{1}, y_{2}\right) \sum_{j} \frac{\left|\left\langle x, z_{j}\right\rangle\right|^{2}}{\sum_{h}\left|\left\langle z_{h}, z_{j}\right\rangle\right|} \leq \mathcal{B}\left(y_{1}, y_{2}\right)\|x\|^{2} \tag{1.4}
\end{equation*}
$$

holds for all $x \in \mathscr{H}$.

In this note, we propose a simultaneous extension of Theorems A and B related to Diaz-Metcalf and Buzano inequalities. As an application, we discuss a refinement of an extended Heinz-Kato-Furuta inequality. Moreover, we show some variant inequalities of it by Furuta inequality and chaotic order.

2. Simultaneous extension of Diaz-Metcalf and Buzano inequalities

We propose a simultaneous extension of Diaz-Metcalf and Buzano inequalities.

Theorem 2.1. Let z_{1}, \ldots, z_{m} be nonzero vectors in \mathscr{H}. Suppose that $x_{1}, \ldots, x_{n} \in$ \mathscr{H} satisfy that for each $j=1, \ldots, m$ there exists a constant r_{j} such that

$$
0 \leq r_{j} \leq \frac{\operatorname{Re}\left\langle x_{i}, z_{j}\right\rangle}{\left\|x_{i}\right\|} \quad \text { for } i=1, \ldots, n
$$

If $y_{1}, y_{2} \in \mathscr{H}$ satisfy $\left\langle y_{k}, z_{j}\right\rangle=0$ for $k=1,2$ and $j=1, \ldots, m$, then

$$
\begin{align*}
& \left|\left\langle\sum_{i} x_{i}, y_{1}\right\rangle\left\langle\sum_{i} x_{i}, y_{2}\right\rangle\right|+\left(\sum_{j} \frac{r_{j}^{2}}{c_{j}}\right)\left(\sum_{i}\left\|x_{i}\right\|\right)^{2} \mathcal{B}\left(y_{1}, y_{2}\right) \\
& \leq \mathcal{B}\left(y_{1}, y_{2}\right)\left\|\sum_{i} x_{i}\right\|^{2} \tag{2.1}
\end{align*}
$$

where $c_{j}=\sum_{h}\left|\left\langle z_{h}, z_{j}\right\rangle\right|$ for $j=1, \ldots, m$.
Proof. We have

$$
\begin{aligned}
& \mathcal{B}\left(y_{1}, y_{2}\right)\left\{\left\|\sum_{i} x_{i}\right\|^{2}-\sum_{j} \frac{r_{j}^{2}}{c_{j}}\left(\sum_{i}\left\|x_{i}\right\|\right)^{2}\right\} \\
& \geq \mathcal{B}\left(y_{1}, y_{2}\right)\left(\left\|\sum_{i} x_{i}\right\|^{2}-\sum_{j} \frac{\left(\operatorname{Re}\left\langle\sum_{i} x_{i}, z_{j}\right\rangle\right)^{2}}{c_{j}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \geq \mathcal{B}\left(y_{1}, y_{2}\right)\left(\left\|\sum_{i} x_{i}\right\|^{2}-\sum_{j} \frac{\left|\left\langle\sum_{i} x_{i}, z_{j}\right\rangle\right|^{2}}{c_{j}}\right) \\
& \geq\left|\left\langle\sum_{i} x_{i}, y_{1}\right\rangle\left\langle\sum_{i} x_{i}, y_{2}\right\rangle\right| \quad(\text { by Theorem B) })
\end{aligned}
$$

as desired.

Next, we propose a generalization of (2.1) as follows:
Corollary 2.2. Let $T=U|T|$ be the polar decomposition of an operator T on \mathscr{H}. Let z_{1}, \ldots, z_{m} be nonzero vectors in \mathscr{H} and $\alpha, \beta \geq 0$ with $\alpha+\beta \geq 1 \geq \alpha$. Suppose that $x_{1}, \ldots, x_{n} \in \mathscr{H}$ satisfy that for each $j=1, \ldots, m$ there exists a constant r_{j} such that

$$
0 \leq r_{j} \leq \frac{\operatorname{Re}\left\langle T x_{i}, z_{j}\right\rangle}{\left\||T|^{\alpha} x_{i}\right\|} \quad\left(\text { resp. } 0 \leq r_{j} \leq \frac{\left.\left.\operatorname{Re}\langle | T\right|^{2 \alpha} x_{i}, z_{j}\right\rangle}{\left\||T|^{\alpha} x_{i}\right\|}\right) \quad \text { for } i=1, \ldots, n
$$

If $y_{1}, y_{2} \in \mathscr{H}$ satisfy $\langle | T^{*}\left|{ }^{\beta+1-\alpha} y_{k}, z_{j}\right\rangle=0\left(\right.$ resp. $\left.\left.\langle T| T\right|^{\alpha+\beta-1} z_{j}, y_{k}\right\rangle=0$) for $k=1,2$ and $j=1, \ldots, m$, then

$$
\begin{align*}
& \left.\left.\left|\left\langle\sum_{i} T\right| T\right|^{\alpha+\beta-1} x_{i}, y_{1}\right\rangle\left.\left\langle\sum_{i} T\right| T\right|^{\alpha+\beta-1} x_{i}, y_{2}\right\rangle \mid \\
& +\mathcal{B}\left(\left|T^{*}\right|^{\beta} y_{1},\left|T^{*}\right|^{\beta} y_{2}\right)\left(\sum_{j} \frac{r_{j}^{2}}{c_{j}}\right)\left(\sum_{i}\left\||T|^{\alpha} x_{i}\right\|\right)^{2} \tag{2.2}\\
& \quad \leq \mathcal{B}\left(\left|T^{*}\right|^{\beta} y_{1},\left|T^{*}\right|^{\beta} y_{2}\right)\left\|\sum_{i}|T|^{\alpha} x_{i}\right\|^{2}
\end{align*}
$$

where $\left.c_{j}=\sum_{h}\left|\langle | T^{*}\right|^{2(1-\alpha)} z_{h}, z_{j}\right\rangle \mid\left(\right.$ resp. $\left.\left.c_{j}=\sum_{h}|\langle | T|^{2 \alpha} z_{h}, z_{j}\right\rangle \mid\right)$ for $j=1, \ldots, m$. Proof. We apply Theorem 2.1 by replacing x_{i}, z_{j}, y_{k} to $|T|^{\alpha} x_{i},|T|^{1-\alpha} U^{*} z_{j}, U^{*}\left|T^{*}\right|{ }^{\beta} y_{k}$ (resp. $U|T|^{\alpha} x_{i}, U|T|^{\alpha} z_{j},\left|T^{*}\right|{ }^{\beta} y_{k}$).

3. Extensions of Heinz-Kato-Furuta inequality

In [15], Furuta extended the Heinz-Kato inequality:
The Heiz-Kato-Furuta inequality. Let A and B be positive operators on \mathscr{H}. If T satisfies $T^{*} T \leq A^{2}$ and $T T^{*} \leq B^{2}$, then

$$
\left.|\langle T| T|^{\alpha+\beta-1} x, y\right\rangle \mid \leq\left\|A^{\alpha} x\right\|\left\|B^{\beta} y\right\|
$$

holds for all $x, y \in \mathscr{H}$ and $\alpha, \beta \in[0,1]$ with $\alpha+\beta \geq 1$. In addition, if A and B are invertible, then $\alpha+\beta \geq 1$ is unnecessary.

Afterwards, several authors have generalized it, e.g. [9], [10], [11].
In this section, we apply Corollary 2.2 to extend the Heinz-Kato-Furuta inequality. To do this, we use the following lemma in our paper [8] \boxtimes

Lemma C. If $T T^{*} \leq B^{2}$ for some $B \geq 0$, then for $\beta \in[0,1]$

$$
\mathcal{B}\left(\left|T^{*}\right|^{\beta} y_{1},\left|T^{*}\right|^{\beta} y_{2}\right) \leq\left\|B^{\beta} y_{1}\right\|\left\|B^{\beta} y_{2}\right\|
$$

holds for all $y_{1}, y_{2} \in \mathscr{H}$.

Now the following inequality follows from Corollary 2.2 and Lemma C:

Corollary 3.1. Let $T=U|T|$ be the polar decomposition of an operator T on \mathscr{H}. Let z_{1}, \ldots, z_{m} be nonzero vectors in \mathscr{H} and $\alpha, \beta \in[0,1]$ with $\alpha+\beta \geq 1$. Suppose that $x_{1}, \ldots, x_{n} \in \mathscr{H}$ satisfy that for each $j=1, \ldots, m$ there exists a constant r_{j} such that

$$
0 \leq r_{j} \leq \frac{\operatorname{Re}\left\langle T x_{i}, z_{j}\right\rangle}{\left\||T|^{\alpha} x_{i}\right\|} \quad\left(\text { resp. } 0 \leq r_{j} \leq \frac{\left.\left.\operatorname{Re}\langle | T\right|^{2 \alpha} x_{i}, z_{j}\right\rangle}{\left\||T|^{\alpha} x_{i}\right\|}\right) \quad \text { for } i=1, \ldots, n .
$$

If $T^{*} T \leq A^{2}$ and $T T^{*} \leq B^{2}$ for some $A, B \geq 0$, and $y_{1}, y_{2} \in \mathscr{H}$ satisfy

$$
\left.\langle | T^{*}\left|{ }^{\beta+1-\alpha} y_{k}, z_{j}\right\rangle=0 \quad\left(\text { resp. }\left.\langle T| T\right|^{\alpha+\beta-1} z_{j}, y_{k}\right\rangle=0\right)
$$

for $k=1,2$ and $j=1, \ldots, m$, then

$$
\begin{align*}
& \left.\left.\left|\left\langle\sum_{i} T\right| T\right|^{\alpha+\beta-1} x_{i}, y_{1}\right\rangle\left.\left\langle\sum_{i} T\right| T\right|^{\alpha+\beta-1} x_{i}, y_{2}\right\rangle \mid \\
& +\mathcal{B}\left(\left|T^{*}\right|{ }^{\beta} y_{1},\left|T^{*}\right|^{\beta} y_{2}\right)\left(\sum_{j} \frac{r_{j}^{2}}{c_{j}}\right)\left(\sum_{i}\left\||T|^{\alpha} x_{i}\right\|\right)^{2} \tag{3.1}\\
& \quad \leq\left\|B^{\beta} y_{1}\right\|\left\|B^{\beta} y_{2}\right\|\left\|\sum_{i} A^{\alpha} x_{i}\right\| \|^{2}
\end{align*}
$$

where $\left.c_{j}=\sum_{h}\left|\langle | T^{*}\right|^{2(1-\alpha)} z_{h}, z_{j}\right\rangle \mid\left(\right.$ resp. $\left.\left.c_{j}=\sum_{h}|\langle | T|^{2 \alpha} z_{h}, z_{j}\right\rangle \mid\right)$ for $j=1, \ldots, m$.

Next we cite the Furuta inequality [13] for convenience:

The Furuta inequality.

If $A \geq B \geq 0$, then for each $r \geq 0$,
(i) $\quad\left(B^{r} A^{p} B^{r}\right)^{\frac{1}{q}} \geq\left(B^{r} B^{p} B^{r}\right)^{\frac{1}{q}}$ and
(ii) $\quad\left(A^{r} A^{p} A^{r}\right)^{\frac{1}{q}} \geq\left(A^{r} B^{p} A^{r}\right)^{\frac{1}{q}}$
hold for $p \geq 0$ and $q \geq 1$ with

$$
(1+2 r) q \geq p+2 r .
$$

We refer [17] and [3] for mean theoretic proofs of it, and [14] for a one-page proof. The best possibility of the domain drawn in the Figure is proved by Tanahashi [18]. The Heinz -Kato-Furuta inequality has been extended by the use of the Furuta inequality in [16].

Now, we have the following extension of Corollary 2.2 by the Furuta inequality:
Theorem 3.2. Let A be a positive operator on \mathscr{H} and $T=U|T|$ be the polar decomposition of an operator T on \mathscr{H} such that $T^{*} T \leq A^{2}$. Let z_{1}, \ldots, z_{m} be nonzero vectors in \mathscr{H} and $\alpha, \beta \geq 0$ with $(1+r) \alpha+(1+s) \beta \geq 1 \geq(1+r) \alpha$ for each $r, s \geq 0$. Suppose that $x_{1}, \ldots, x_{n} \in \mathscr{H}$ satisfy that for each $j=1, \ldots, m$ there exists a constants r_{j} such that

$$
0 \leq r_{j} \leq \frac{\operatorname{Re}\left\langle T x_{i}, z_{j}\right\rangle}{\left\||T|^{(1+r) \alpha} x_{i}\right\|} \quad\left(\text { resp. } 0 \leq r_{j} \leq \frac{\left.\left.\operatorname{Re}\langle | T\right|^{2(1+r) \alpha} x_{i}, z_{j}\right\rangle}{\left\||T|^{(1+r) \alpha} x_{i}\right\|}\right) \quad \text { for } i=1, \ldots, n
$$

If $y_{1}, y_{2} \in \mathscr{H}$ satisfy $\left.\left.\langle | T^{*}\right|^{(1+s) \beta+1-(1+r) \alpha} y_{k}, z_{j}\right\rangle=0\left(\right.$ resp. $\left.\left.\langle T| T\right|^{(1+r) \alpha+(1+s) \beta-1} z_{j}, y_{k}\right\rangle=$ 0) for $k=1,2$ and $j=1, \ldots, m$, then

$$
\begin{align*}
& \left.\left.\left|\left\langle\sum_{i} T\right| T\right|^{(1+r) \alpha+(1+s) \beta-1} x_{i}, y_{1}\right\rangle\left.\left\langle\sum_{i} T\right| T\right|^{(1+r) \alpha+(1+s) \beta-1} x_{i}, y_{2}\right\rangle \mid \\
& +\mathcal{B}\left(\left|T^{*}\right|^{(1+s) \beta} y_{1},\left|T^{*}\right|^{(1+s) \beta} y_{2}\right)\left(\sum_{j} \frac{r_{j}^{2}}{c_{j}}\right)\left(\sum_{i} \||T|^{(1+r) \alpha} x_{i}| |\right)^{2} \tag{3.2}\\
& \quad \leq \mathcal{B}\left(\left|T^{*}\right|^{(1+s) \beta} y_{1},\left|T^{*}\right|^{(1+s) \beta} y_{2}\right)\left\langle\left(|T|^{r} A^{2 p}|T|^{r}\right)^{\frac{(1+r) \alpha}{p+r}} \sum_{i} x_{i}, \sum_{i} x_{i}\right\rangle
\end{align*}
$$

where $p \geq 1$ and $\left.c_{j}=\sum_{h}\left|\langle | T^{*}\right|^{2(1-(1+r) \alpha)} z_{h}, z_{j}\right\rangle \mid\left(\right.$ resp. $\left.\left.c_{j}=\sum_{h}|\langle | T|^{2(1+r) \alpha} z_{h}, z_{j}\right\rangle \mid\right)$ for $j=1, \ldots, m$.

Proof. By replacing α and β to $\alpha_{1}=(1+r) \alpha$ and $\beta_{1}=(1+s) \beta$, respectively in Corollary 2.2, we have

$$
\begin{aligned}
& \left.\left.\left|\left\langle\sum_{i} T\right| T\right|^{\alpha_{1}+\beta_{1}-1} x_{i}, y_{1}\right\rangle\left.\left\langle\sum_{i} T\right| T\right|^{\alpha_{1}+\beta_{1}-1} x_{i}, y_{2}\right\rangle \mid \\
& +\mathcal{B}\left(\left|T^{*}\right|^{\beta_{1}} y_{1},\left|T^{*}\right|{ }^{\beta_{1}} y_{2}\right)\left(\sum_{j} \frac{r_{j}^{2}}{c_{j}}\right)\left(\sum_{i}\left\||T|^{\alpha_{1}} x_{i}\right\|\right)^{2} \\
& \left.\quad \leq\left.\mathcal{B}\left(\left|T^{*}\right|^{\beta_{1}} y_{1},\left|T^{*}\right|^{\beta_{1}} y_{2}\right)\langle | T\right|^{2 \alpha_{1}} \sum_{i} x_{i}, \sum_{i} x_{i}\right\rangle
\end{aligned}
$$

where $\left.c_{j}=\sum_{h}\left|\langle | T^{*}\right|^{2\left(1-\alpha_{1}\right)} z_{h}, z_{j}\right\rangle \mid$ (resp. $\left.\left.c_{j}=\sum_{h}|\langle | T|^{2 \alpha_{1}} z_{h}, z_{j}\right\rangle \mid\right)$ for $j=1, \ldots, m$. Next we replace A, B, r and q to $A^{2},|T|^{2}, \frac{r}{2}$ and $\frac{p+r}{(1+r) \alpha}$, respectively in the Furuta inequality. Then we have

$$
|T|^{2 \alpha_{1}}=|T|^{2(1+r) \alpha} \leq\left(|T|^{r} A^{2 p}|T|^{r}\right)^{\frac{(1+r) \alpha}{p+r}} .
$$

Combining them, we obtain the inequality (3.2).

We remark that the condition $(1+r) \alpha+(1+s) \beta \geq 1$ in above is unnecessary if T is either positive or invertible.

From the operator monotonicity of the logarithmic function, we introduced the chaotic order among positive invertible operators by $A \gg B$ if $\log A \geq \log B$ in [4], and obtained a characterization of the chaotic order in terms of Furuta's type operator inequality [5], [6] and [7]. We show a variant of Corollary 2.2 by chaotic order. For this, we use the following characterization of the chaotic order which is an extension of Ando's theorem [4], [5], [6], [7] and [19] for a polished proof.

Theorem D. For positive invertible operators A and $B, A \gg B$ if and only if

$$
\left(B^{r} A^{p} B^{r}\right)^{\frac{1}{q}} \geq\left(B^{r} B^{p} B^{r}\right)^{\frac{1}{q}}
$$

holds for $q \geq 1, p, r \geq 0$ with $2 r q \geq p+2 r$.

We now show the chaotic version of Corollary 2.2 by applying Theorem D:

Theorem 3.3. Let A be a positive operator on \mathscr{H} and $T=U|T|$ be the polar decomposition of an operator T on \mathscr{H} such that $T^{*} T \ll A^{2}$. Let z_{1}, \ldots, z_{m} be nonzero vectors in \mathscr{H} and $\alpha, \beta \in[0,1]$ with $r \alpha+s \beta \geq 1 \geq$ r for each $r, s \geq$ 0 . Suppose that $x_{1}, \ldots, x_{n} \in \mathscr{H}$ satisfy that for each $j=1, \ldots, m$ there exists a
constant r_{j} such that

$$
0 \leq r_{j} \leq \frac{\operatorname{Re}\left\langle T x_{i}, z_{j}\right\rangle}{\left\||T|^{r \alpha} x_{i}\right\|} \quad\left(\text { resp. } 0 \leq r_{j} \leq \frac{\left.\left.\operatorname{Re}\langle | T\right|^{2 r \alpha} x_{i}, z_{j}\right\rangle}{\left\||T|^{\mid r \alpha} x_{i}\right\|}\right) \quad \text { for } i=1, \ldots, n .
$$

If $y_{1}, y_{2} \in \mathscr{H}$ satisfy $\langle | T^{*}\left|{ }^{s \beta+1-r \alpha} y_{k}, z_{j}\right\rangle=0\left(\right.$ resp. $\left.\left.\left.\langle T| T\right|^{r \alpha+s \beta-1} z_{j}, y_{k}\right\rangle=0\right)$ for $k=1,2$ and $j=1, \ldots, m$, then

$$
\begin{align*}
& \left.\left.\left|\left\langle\sum_{i} T\right| T\right|^{r \alpha+s \beta-1} x_{i}, y_{1}\right\rangle\left.\left\langle\sum_{i} T\right| T\right|^{r \alpha+s \beta-1} x_{i}, y_{2}\right\rangle \mid \\
& +\mathcal{B}\left(\left|T^{*}\right|{ }^{s \beta} y_{1},\left|T^{*}\right|{ }^{s \beta} y_{2}\right)\left(\sum_{j} \frac{r_{j}^{2}}{c_{j}}\right)\left(\sum_{i} \||T|^{r \alpha} x_{i}| |\right)^{2} \tag{3.3}\\
& \quad \leq \mathcal{B}\left(\left|T^{*}\right|^{s \beta} y_{1},\left.\left|T^{*}\right|\right|^{s \beta} y_{2}\right)\left\langle\left(|T|^{r} A^{2 p}|T|^{r}\right)^{\frac{r \alpha}{p+r}} \sum_{i} x_{i}, \sum_{i} x_{i}\right\rangle
\end{align*}
$$

where $p \geq 0$ and $\left.c_{j}=\sum_{h}\left|\langle | T^{*}\right|^{2(1-r \alpha)} z_{h}, z_{j}\right\rangle \mid\left(\right.$ resp. $\left.\left.c_{j}=\sum_{h}|\langle | T|^{2 r \alpha} z_{h}, z_{j}\right\rangle \mid\right)$ for $j=1, \ldots, m$.

Proof. By replacing α and β to $r \alpha$ and $s \beta$, respectively in Corollary 2.2, we have

$$
\begin{aligned}
& \left.\left.\left|\left\langle\sum_{i} T\right| T\right|^{r \alpha+s \beta-1} x_{i}, y_{1}\right\rangle\left.\left\langle\sum_{i} T\right| T\right|^{r \alpha+s \beta-1} x_{i}, y_{2}\right\rangle \mid \\
& +\mathcal{B}\left(\left|T^{*}\right|^{s \beta} y_{1},\left|T^{*}\right| s^{s \beta} y_{2}\right)\left(\sum_{j} \frac{r_{j}^{2}}{c_{j}}\right)\left(\sum_{i}\left\||T|^{r \alpha} x_{i}\right\|\right)^{2} \\
& \left.\quad \leq\left.\mathcal{B}\left(\left.\left|T^{*}\right|\right|^{s \beta} y_{1},\left|T^{*}\right|^{s \beta} y_{2}\right)\langle | T\right|^{2 r \alpha} \sum_{i} x_{i}, \sum_{i} x_{i}\right\rangle
\end{aligned}
$$

where $\left.c_{j}=\sum_{h}\left|\langle | T^{*}\right|^{2(1-r \alpha)} z_{h}, z_{j}\right\rangle \mid$ (resp. $\left.\left.c_{j}=\sum_{h}|\langle | T|^{2 r \alpha} z_{h}, z_{j}\right\rangle \mid\right)$ for $j=1, \ldots, m$.
Moreover we replace A, B, r and q to $A^{2},|T|^{2}, \frac{r}{2}$ and $\frac{p+r}{r \alpha}$, respectively in Theorem D. Then we have

$$
|T|^{2 r \alpha} \leq\left(|T|^{r} A^{2 p}|T|^{r}\right)^{\frac{r \alpha}{p+r}}
$$

Combining inequalities above, we obtain the desired inequality (3.3).

Next we interpolate between Theorems 3.2 and 3.3 by the use of Furuta's type operator inequality which interpolates the Furuta inequality and Theorem D.

Theorem 3.4. Let A be a positive operator on \mathscr{H} and $T=U|T|$ be the polar decomposition of an operator T on \mathscr{H} such that $|T|^{2 \delta} \leq A^{2 \delta}$ for some $\delta \in(0,1]$. Let z_{1}, \ldots, z_{m} be nonzero vectors in \mathscr{H} and $\alpha, \beta \in[0,1]$ with $(\delta+r) \alpha+(\delta+s) \beta \geq$
$1 \geq(\delta+r) \alpha$ for each $r, s \geq 0$. Suppose that $x_{1}, \ldots, x_{n} \in \mathscr{H}$ satisfy that for each $j=1, \ldots, m$ there exists a constant r_{j} such that
$0 \leq r_{j} \leq \frac{\operatorname{Re}\left\langle T x_{i}, z_{j}\right\rangle}{\left\||T|^{(\delta+r) \alpha} x_{i}\right\|} \quad\left(\right.$ resp. $\left.0 \leq r_{j} \leq \frac{\left.\left.\operatorname{Re}\langle | T\right|^{2(\delta+r) \alpha} x_{i}, z_{j}\right\rangle}{\left\||T|^{(\delta+r) \alpha} x_{i}\right\|}\right) \quad$ for $i=1, \ldots, n$.
If $y_{1}, y_{2} \in \mathscr{H}$ satisfy $\left.\left.\langle | T^{*}\right|^{(\delta+s) \beta+1-(\delta+r) \alpha} y_{k}, z_{j}\right\rangle=0\left(\right.$ resp. $\left.\left.\langle T| T\right|^{(\delta+r) \alpha+(\delta+s) \beta-1} z_{j}, y_{k}\right\rangle=$ 0) for $k=1,2$ and $j=1, \ldots, m$, then

$$
\begin{align*}
& \left.\left.\left|\left\langle\sum_{i} T\right| T\right|^{(\delta+r) \alpha+(\delta+s) \beta-1} x_{i}, y_{1}\right\rangle\left.\left\langle\sum_{i} T\right| T\right|^{(\delta+r) \alpha+(\delta+s) \beta-1} x_{i}, y_{2}\right\rangle \mid \\
& +\mathcal{B}\left(\left|T^{*}\right|^{(\delta+s) \beta} y_{1},\left|T^{*}\right|^{(\delta+s) \beta} y_{2}\right)\left(\sum_{j} \frac{r_{j}^{2}}{c_{j}}\right)\left(\sum_{i}\left\||T|^{(\delta+r) \alpha} x_{i}\right\|\right)^{2} \tag{3.4}\\
& \quad \leq \mathcal{B}\left(\left|T^{*}\right|^{(\delta+s) \beta} y_{1},\left|T^{*}\right|^{(\delta+s) \beta} y_{2}\right)\left\langle\left(|T|^{r} A^{2 p}|T|^{r}\right)^{\frac{(\delta+r) \alpha}{p+r}} \sum_{i} x_{i}, \sum_{i} x_{i}\right\rangle,
\end{align*}
$$

where $p \geq \delta$ and $\left.c_{j}=\sum_{h}\left|\langle | T^{*}\right|^{2(1-(\delta+r) \alpha)} z_{h}, z_{j}\right\rangle \mid\left(\right.$ resp. $\left.\left.c_{j}=\sum_{h}|\langle | T|^{2(\delta+r) \alpha} z_{h}, z_{j}\right\rangle \mid\right)$ for $j=1, \ldots, m$.

Proof. By Corollary 2.2, we have

$$
\begin{aligned}
& \left.\left.\left|\left\langle\sum_{i} T\right| T\right|^{(\delta+r) \alpha+(\delta+s) \beta-1} x_{i}, y_{1}\right\rangle\left.\left\langle\sum_{i} T\right| T\right|^{(\delta+r) \alpha+(\delta+s) \beta-1} x_{i}, y_{2}\right\rangle \mid \\
& +\mathcal{B}\left(\left|T^{*}\right|^{(\delta+s) \beta} y_{1},\left|T^{*}\right|^{(\delta+s) \beta} y_{2}\right)\left(\sum_{j} \frac{r_{j}^{2}}{c_{j}}\right)\left(\sum_{i} \||T|^{(\delta+r) \alpha} x_{i}| |\right)^{2} \\
& \left.\quad \leq\left.\mathcal{B}\left(\left|T^{*}\right|^{(\delta+s) \beta} y_{1},\left|T^{*}\right|^{(\delta+s) \beta} y_{2}\right)\langle | T\right|^{2(\delta+r) \alpha} \sum_{i} x_{i}, \sum_{i} x_{i}\right\rangle
\end{aligned}
$$

where $\left.c_{j}=\sum_{h}\left|\langle | T^{*}\right|^{2(1-(\delta+r) \alpha)} z_{h}, z_{j}\right\rangle \mid$ (resp. $\left.c_{j}=\sum_{h}|\langle | T|^{2(\delta+r) \alpha} z_{h}, z_{j}\right\rangle \mid$) for $j=$ $1, \ldots, m$. Moreover the following inequality is known in [6]:

$$
|T|^{2(\delta+r) \alpha} \leq\left(|T|^{r} A^{2 p}|T|^{r}\right)^{\frac{(\delta+r) \alpha}{p+r}}
$$

Combining above inequalities, we obtain the desired inequality (3.4).
Acknowledgement. We would like to thank the referee for useful comments and corrections.

References

[1] M. L. Buzano, Generalizzazione della diseguaglianza di Cauchy-Schwarz, Rend. Sem. Mat. Univ. e Politech. Torino 31 (1971/73), 405-409 (1974).
[2] J. B. Diaz and F. T. Metcalf, A complementary triangle inequality in Hilbert and Banach spaces, Proc. Amer. Math. Soc. 17 (1966), 88-97.
[3] M. Fujii, Furuta's inequality and its mean theoretic approach, J. Operator Theory 23 (1990), 67-72.
[4] M. Fujii, T. Furuta and E. Kamei, Furuta's inequality and its application to Ando's theorem, Linear Algebra Appl. 179 (1993), 161-169.
[5] M. Fujii, J.-F. Jiang and E. Kamei, Characterization of chaotic order and its application to Furuta inequality, Proc. Amer. Math. Soc. 125 (1997), 36553658.
[6] M. Fujii, J.-F. Jiang, E. Kamei and K. Tanahashi, A characterization of chaotic order and a problem, J. Inequal. Appl. 2 (1998), 149-156.
[7] M. Fujii and E. Kamei, Furuta's inequality and a generalization of Ando's theorem, Proc. Amer. Math. Soc. 115 (1992), 409-413.
[8] M. Fujii, A. Matsumoto and M. Tominaga, Simultaneous extensions of Selberg and Buzano inequalities, Nihonkai Math. J. 25 (2014), 45-63.
[9] M. Fujii and R. Nakamoto, Simultaneous extensions of Selberg inequality and Heinz-Kato-Furuta inequality, Nihonkai Math. J. 9 (1998), 219-225.
[10] M. Fujii and R. Nakamoto, Extensions of Heinz-Kato-Furuta inequality, Proc. Amer. Math. Soc. 128 (2000), 223-228.
[11] M. Fujii and R. Nakamoto, Extensions of Heinz-Kato-Furuta inequality, II, J. Inequal. Appl. 3 (1999), 293-302.
[12] M. Fujii and H. Yamada, Around the Bessel inequality, Math. Japon. 37 (1992), 979-983.
[13] T. Furuta, $A \geq B \geq 0$ assures $\left(B^{r} A^{p} B^{r}\right)^{1 / q} \geq B^{(p+2 r) / q}$ for $r \geq 0, p \geq 0, q \geq 1$ with $(1+2 r) q \geq p+2 r$, Proc. Amer. Math. Soc. 101 (1987), 85-88.
[14] T. Furuta, An elementary proof of an order preserving inequality, Proc. Japan Acad. 65 (1989), 126.
[15] T. Furuta, An extension of the Heinz-Kato theorem, Proc. Amer. Math. Soc. 120 (1994), 785-787.
[16] T. Furuta, Determinant type generalizations of the Heinz-Kato theorem via the Furuta inequality, Proc. Amer. Math. Soc. 120 (1994), 223-231.
[17] E. Kamei, A satellite to Furuta's inequality, Math. Japon. 33 (1988), 883-886.
[18] K. Tanahashi, Best possibility of the Furuta inequality, Proc. Amer. Math. Soc. 124 (1996), 141-146.
[19] M. Uchiyama, Some exponential operator inequalities, Math. Inequal. Appl. 2 (1999), 469-471.
[20] H. S. Wilf, Some applications of the inequality of arithmetic and geometric means to polynomial equations, Proc. Amer. Math. Soc. 14 (1963), 263-265.
(Masatoshi Fujii) Department of Mathematics, Osaka Kyoiku University, Kashiwara, Osaka 5828582, Japan.
E-mail address: mfujii@cc.osaka-kyoiku.ac.jp
(Akemi Matsumoto) Nose senior high School, Nose, Toyono, Osaka 543-0054, Japan.
E-mail address: m@nose.osaka-c.ed.jp
(Masaru Tominaga) Practical School Education, Osaka Kyoiku University, Minamikawahori, Tennoji, Osaka 543-0054, Japan.
E-mail address: tommy@cc.osaka-kyoiku.ac.jp

Received November 20, 2015
Revised May 23, 2016

[^0]: 2010 Mathematics Subject Classification. Primary 47A63.
 Key words and phrases. Diaz-Metcalf inequality, Selberg inequality, Buzano inequality, Furuta inequality, Heinz-Kato-Furuta inequality and chaotic order.

