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A NOTE ON SMOOTH MULTIPLE FIBERS IN
PENCILS OF ALGEBRAIC CURVES

KAZUHIRO KONNO

Abstract. Multiple fibers of the simplest kind in a pencil of algebraic curves are

studied, in order to clarify the influence on the gonality and the base locus of the

canonical linear system.

1. Introduction

We shall work over the complex number field C. Let S be a non-singular projective

surface and f : S → B a surjective morphism with connected fibers to a non-

singular projective curve B. We assume that f is relatively minimal (i.e., there are

no smooth rational curves with self-intersection number −1 contained in fibers) and

a general fiber is a non-singular projective curve of genus g ≥ 2. Let F be a fiber

of f . Then there exist a positive integer m and a numerically 1-connected effective

divisor D such that F = mD, since the intersection form is negative semi-definite

on the support of F by Zariski’s lemma. When m > 1, F is called a multiple fiber

and m its multiplicity. In this case, [D]|D is a torsion line bundle of order m, where

[D] denotes the line bundle on S associated to D.

We often localize the situation by shrinking B to a small open disk. That is, we

let ∆ = {|t| < ϵ} ⊂ C be a sufficiently small open disk and consider a relatively

minimal fibration f : S → ∆ of curves of genus g, usually assuming that f is smooth

over ∆ \ {0} and, hence, the central fiber F = f−10 is the only possible singular

fiber. Suppose that F is a multiple fiber of multiplicitym and write F = mD. There

is a canonical way for reducing f to a fibration without multiple fibers. Let ∆̃ be

another open disk with parameter s and ϕ : ∆̃ → ∆ the m-sheeted cyclic covering

defined by s 7→ t = sm. We denote by S̃ the normalization of the fiber product

S×∆ ∆̃. Then it is a non-singular surface and the induced fibration f̃ : S̃ → ∆̃ does

not have multiple fibers. The central fiber F̃ of f̃ is a 1-connected curve obtained as
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the unramified m-sheeted covering of D associated to the m-torsion bundle [D]|D.
In this paper, we call F̃ the reduction of F .

The presence of a multiple fiber imposes some restrictions on numerical invariants.

Here we recall an apparent one: g − 1 = m(pa(D) − 1), where pa(D) denotes the

arithmetic genus of D. In particular, we have g ≡ 1 (mod m), e.g., g should be odd

when a double fiber occurs. For small values of g, we can list the possible pairs of

m(≥ 2) and pa(D) as follows:

g 3 4 5 6 7 8 9 10

m 2 3 2 4 5 2 3 6 7 2 4 8 3 9

pa(D) 2 2 3 2 2 4 3 2 2 5 3 2 4 2

We also remark that the multiplicity is influenced by a general fiber. If f is a

hyperelliptic fibration, for example, then m ≤ 2 (cf. Proposition 3.1).

In this paper, we are concerned with multiple fibers of the simplest kind that

the numerical cycle D is a non-singular curve. We call such singular fibers smooth

multiple fibers. From a remarkable theorem of Serrano [10], we know that the set

of multiplicities of multiple fibers in f are invariant under small deformations of

the fibration. Furthermore, a smooth multiple fiber is stable under deformations, in

other words, an atomic fiber (cf. [4]). This is one of the main reasons why we are

interested in such special fibers.

In this paper, among other things, we shall show the following:

Theorem 1.1. Let F = mD be a smooth multiple fiber in a pencil of curves of genus

g ≥ 3, and F̃ the reduction of F . Let p be a prime number satisfying g > (p− 1)2.

Then, F̃ is a p-gonal curve if and only if m = p and |KF | has a base point.

In the final section, we compute the local invariants of smooth multiple fibers in

a general pencil of curves of genus 3, 5.

2. Unramified covering and the gonality

Let C be a non-singular projective curve of genus g ≥ 3 which is obtained as an

unramified m-sheeted covering of another non-singular curve D of genus h ≥ 2. We

denote by π : C → D the covering map. Note that we have g − 1 = m(h − 1)

by the Hurwitz theorem. When π is a cyclic covering, we have the eigen-space

decomposition π∗OC ≃
⊕m−1

i=0 OD(−iL) under the action of the Galois group Zm,

where L is a line bundle on D that is a torsion element of order m in the Picard

group of D. We call L the torsion line bundle associated to π.

Lemma 2.1. In the above situation, assume that C is a hyperelliptic curve. Then D

is also hyperelliptic, and m = 2 or 4. If m = 2, then the 2-torsion bundle associated

to π is of the form [P −Q] with two Weierstrass points P , Q on D.
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Proof. Since π : C → D is a finite unramified covering, we have KC = π∗KD and

see that the canonical linear system |KD| of D induces a linear subsystem of |KC |.
In other words, the canonical image of C dominates that of D. Hence, D is also

hyperelliptic. Let ϕ̃ : C → P1 and ϕ : D → P1 be the canonical double coverings.

Since they are induced by the canonical mappings of C and D, respectively, we have

a morphism ϖ : P1 → P1 such that ϕ ◦ π = ϖ ◦ ϕ̃. Let {P1, . . . , P2h+2} ⊂ P1 be

the set of all branch points of ϕ. We put Qi = ϕ−1(Pi) for i = 1, . . . , 2h + 2. Then

π−1(Qi) consists of m distinct points for each i, and we have in total

2m(h+ 1) = 2(g + 1) + 4(m− 1)

such points on C. It is clear that
∪2h+2

i=1 π−1(Qi) is the set of all ramification points

of ϕ ◦ π and the ramification index at each point is 2. Since ϕ ◦ π = ϖ ◦ ϕ̃, the

same is true for ϖ ◦ ϕ̃. From this, one sees immediately that ϖ ramifies exactly at

2(m− 1) points with ramification index 2, since ϕ̃ is a double covering branched at

2g+2 points. We may assume that ϖ branches at P1, . . . , Pℓ for some ℓ ≤ 2(m−1).

Let ki be the number of ramification points in ϖ−1(Pi), 1 ≤ i ≤ ℓ. Then ϖ−1(Pi)

consists of (m− 2ki) + ki = m− ki points. Since ϖ−1(Pi) cannot contain a branch

point of ϕ̃, comparing the cardinality of (ϕ ◦ π)−1(Pi) and (ϖ ◦ ϕ̃)−1(Pi), we get

m = 2(m− ki), i.e., ki = m/2. Recall that there are 2(m− 1) ramification points of

ϖ in total. Hence
∑ℓ

i=1 ki = ℓ(m/2) = 2(m − 1), that is, (4 − ℓ)m = 4. It follows

that (ℓ,m) = (3, 4), (2, 2).

If (ℓ,m) = (2, 2), then the 2-torsion bundle associated to π : C → D is [Q1 −Q2].

Indeed, we have π∗Q1 ∼ π∗Q2 by the construction and, 2Q1 ∼ 2Q2 but Q1 ̸∼ Q2,

since Q1 and Q2 are distinct Weierstrass points, where the symbol ∼ means the

linear equivalence of divisors. □

Remark 2.1. The rational function ϖ with (ℓ,m) = (3, 4) exists. Without loosing

generality, we can assume that ϖ ramifies at 0, 1, ∞ and ϖ(0) = 0, ϖ(1) = 1,

ϖ(∞) = ∞. Then

ϖ(z) =
z2(7z − 8)2

−14z2 + 16z − 1

is such an example. When (ℓ,m) = (2, 2), ϖ is assumed to be w = z2.

As usual, we denote by grd a linear system of dimension r and degree d, and W r
d (C)

the set of all the grd’s on C. The gonality of C, which we denote by gon(C), is by

definition the minimum of degrees of surjective morphisms from C to P1, that is,

gon(C) = min{k | W 1
k (C) ̸= ∅}. Recall that, when D and C are the numerical

cycle of a smooth multiple fiber and its reduction, respectively, the natural map

π : C → D is not merely a finite covering but also a cyclic covering.
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Lemma 2.2. Assume that π : C → D is an unramified m-sheeted cyclic covering,

and let k be a positive integer such that W 1
k (C) ̸= ∅. Then, either W 1

k (C) is an

infinite set or #W 1
k (C)× k is a multiple of m, where #T denotes the cardinality of

the set T .

Proof. We assume that W 1
k (C) is a finite set. The covering transformation group

Zm of π acts naturally on W 1
k (C) via pull-back. Let H be the stabilizer subgroup

at g1k ∈ W 1
k (C). Then we can find a member of g1k which is fixed by H, because the

action of a finite cyclic group on P1 necessarily has a fixed point. Being the degree

of the invariant divisor, k must be a multiple of the order of H. If Orb(g1k) denotes

the orbit of g1k under the Zm-action, then #Orb(g1k) coincides with the index of H

in Zm. From these, we see that k × #Orb(g1k) is a multiple of m. Therefore, so is

k ×#W 1
k (C). □

Proposition 2.1. Let π : C → D be an unramified m-sheeted cyclic covering. Put

gon(C) = k and assume that #W 1
k (C) is smaller than the least prime factor of m.

Then k is a multiple of m and the following hold:

(1) There exist surjective morphisms ϕ̃ : C → P1, ϕ : D → P1 of respective degree

k and a cyclic covering ϖ : P1 → P1 of degree m such that ϕ ◦ π = ϖ ◦ ϕ̃.

C
π //

ϕ̃
��

D

ϕ
��

P1
ϖ

// P1

(2) There are two sets of points {P1, . . . , Pk/m} and {Q1, . . . , Qk/m} on D such

that [
∑k/m

i=1 Pi −
∑k/m

j=1 Qj] is the m-torsion bundle associated to π.

Proof. By Lemma 2.2, our assumption on #W 1
k (C) is sufficient to imply that k is

a multiple of m. Let us consider the action of the covering transformation group

Zm on W 1
k (C). Then, every g1k ∈ W 1

k (C) is fixed by Zm, since #W 1
k (C) is smaller

than any non-trivial divisor of m. We choose one g1k and let ϕ̃ : C → P1 denote the

morphism corresponding to the g1k. There are exactly two fixed points, say 0 and

∞, of the induced action of Zm on the base curve P1. We let ϖ : P1 → P1/Zm ≃ P1

be the quotient map. We may assume that ϖ is given by w = zm for suitable affine

coordinates z and w. By the construction, we have a morphism ϕ : D → P1 such

that ϕ ◦ π = ϖ ◦ ϕ̃. Put ϕ̃∗0 = P̃1 + · · · + P̃k ∈ g1k and ϕ̃∗∞ = Q̃1 + · · · + Q̃k ∈ g1k.

Now, Zm acts on {P̃1, . . . , P̃k} and {Q̃1, . . . , Q̃k} without fixed points, and each of

them decomposes into k/m orbits (i.e., fibers of π). Therefore, there are points

P1, . . . , Pk/m; Q1, . . . , Qk/m on D such that π∗(P̃1 + · · ·+ P̃k) = m(P1 + · · ·+ Pk/m)

and π∗(Q̃1 + · · · + Q̃k) = m(Q1 + · · · + Qk/m), and ϕ is given by the linear system

|m(P1+ · · ·+Pk/m)| = |m(Q1+ · · ·+Qk/m)|. Now [
∑k/m

i=1 Pi−
∑k/m

j=1 Qj] is a torsion
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of order m and its pull-back to C by π is trivial. Hence we can assume that π is

induced by [
∑k/m

i=1 Pi −
∑k/m

j=1 Qj]. □

Since F̃ admits a fixed-point-free action of Zm, it must be a rather special curve

among those with the same gonality. Here we collect some features indicated by

Lemma 2.2.

Corollary 2.1. Let F = mD be a smooth multiple fiber in a pencil of curves of genus

g ≥ 3. Let F̃ be the reduction of F and put gon(F̃ ) = k. Then #W 1
k (F̃ ) ≥ m/k. If

k < m and (k,m) = 1, then #W 1
k (F̃ ) ≥ m.

Proof. Immediately follows from Lemma 2.2. □

Corollary 2.2. Assume that h = 2 and let F = (g− 1)D be a smooth multiple fiber

in a pencil of curves of genus g ≥ 6. Put gon(F̃ ) = k for the reduction F̃ of F . If

(k, g− 1) = 1, then either W 1
k (F̃ ) is infinite or its cardinality is a multiple of g− 1.

Proof. It is known that the gonality of a curve of genus g is not bigger than (g+3)/2.

Since g ≥ 6, we see that k is smaller than g − 1. Hence, the assertion follows from

Lemma 2.2. □

Remark 2.2. If C is a tetragonal curve of genus 6 with several g14, then it is either a

plane quintic curve, a bielliptic curve or a plane sextic curve with 4 double points.

In the former two cases, W 1
4 (C) is one dimensional. In the last case, which is the

general case, C has at most five g14’s obtained by the projection from each of 4

double points and by conics through all 4 double points. We do not know, however,

which type can be realized as an unramified five sheeted cyclic covering of a curve

of genus two, or how to characterize such curves. For example, if C is a Fermat

quintic {x5 + y5 + z5 = 0} ⊂ P2, then the quotient of C by the action of the cyclic

group of order 5 generated by the projective transformation1 0 0

0 ε 0

0 0 ε2

 (ε = exp(2π
√
−1/5))

gives us a smooth curve D of genus 2.

We close the section by an apparent remark:

Lemma 2.3. Assume that a general fiber of f : S → ∆ is a k-gonal curve. Then

gon(F̃ ) ≤ k.

Proof. Let f̃ : S̃ → ∆̃ be the semi-stable reduction. In the present case, it is nothing

more than a deformation family of smooth algebraic curves. Since the gonality is

lower semi-continuous with respect to the moduli parameters by Namba [9, §5.3],
the assertion follows. □
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3. Base points on multiple fibers

Let F = mD be a multiple fiber in a relatively minimal fibration f : S → B of genus

g, where D is a numerically 1-connected curve of arithmetic genus h ≥ 2. Here, an

effective divisor E is called numerically k-connected if either E is irreducible or

E1E2 ≥ k holds for any effective decomposition E = E1 + E2, 0 ≺ E1, E2.

As we showed in [8], the restriction map H0(F,KF ) → H0(iD,KF ) is surjective

for any integer i with 1 ≤ i < m. Hence the canonical linear system |KF | on F has

a base point if and only if so does |KF ⊗OD|. When h = 2, we have degKF |D = 2

and h0(D,KF ) = 1 implying that |KF | has a base point. In general, however, it

is difficult to determine whether |KF | has a base point or not, even when D is a

non-singular hyperelliptic curve.

The following may be well-known for experts, but we include the proof for the

sake of completeness.

Lemma 3.1. Let F = mD be a multiple fiber and assume that D is a numerically

2-connected curve of arithmetic genus h > 0. Then, for a non-singular point P of

D, the following three conditions are equivalent.

(1) P is a base point of |KF |.
(2) KF |D = KD + P −Q for another non-singular point Q ∈ D, Q ̸= P .

(3) [D]|D = [Q− P ] for another non-singular point Q ∈ D, Q ̸= P .

Proof. Since KF |D = KS|D and KD = (KS + [D])|D by the adjunction formula, the

equivalence between (2) and (3) is obvious.

We put L := KF |D for simplicity, and show (1) ⇒ (2). Assume that a non-singular

point P ∈ D is a base point of |L| and consider the exact sequence

0 → OD(L− P ) → OD(L) → CP → 0.

Since P is a base point, the restriction map H0(D,L) → CP is the zero map and,

thus, we have 0 ̸= H1(D,L−P ) ≃ H0(D,KD−L+P )∗ by the Serre duality theorem.

Since OD(KD − L+ P ) is a nef invertible sheaf of degree 1 on a 2-connected curve

D, we get a point Q as the zero of any non-zero element of H0(D,KD − L+ P ) by

[5, (A.5)]. Then L = KD + P −Q.

It remains to show that (2) ⇒ (1). Assume that KF |D = KD + P − Q. Since

P ̸= Q and h > 0, we have h0(D,Q− P ) = 0. Hence h0(D,KD + P −Q) = h− 1.

Since |KD| is free from base points if D is a 2-connected curve of positive arithmetic

genus ([5, (A.7)]), one has h0(D,KD − Q) = h − 1. These together with the fact

|KD −Q|+ P ⊆ |KD + P −Q| imply P ∈ Bs|KD + P −Q|. □

We restrict ourselves to the case of smooth multiple fibers. As to the number of

possible base points, we have the following:
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Lemma 3.2. Let F = mD be a smooth multiple fiber in a pencil of curves of genus

g ≥ 3 and assume that |KF | has a base point. If D is non-hyperelliptic, then Bs|KF |
consists of one point. If D is hyperelliptic, then Bs|KF | consists of two points which

may be infinitely near.

Proof. Let P be a base point of |KF | and write KF |D = KD + P −Q with another

point Q. Then we have h0(D,KD − Q) = h − 1 by h0(D,KF ) = h − 1. Let us

consider the exact sequence

0 → H0(D,KD −Q) → H0(D,KD + P −Q) → CP

If D is hyperelliptic, then we clearly have Bs|KD − Q| = {Q′}, where Q′ denotes

the conjugate of Q (that is, the point Q′ satisfying Q + Q′ ∈ g12) and it follows

that Bs|KF | = {P, Q′}. In this case, we have [D]|D = [Q − P ] = [P ′ − Q′], where

P ′ denotes the conjugate of P . It may be possible that Q = P ′. If D is non-

hyperelliptic, then |KD − Q| is free from base points, since KD is very ample. It

follows Bs|KF | = {P}. □

The presence of a base point affects the gonality.

Lemma 3.3. Let f : S → ∆ be a relatively minimal fibration of genus g ≥ 3,

F = mD a smooth multiple central fiber and F̃ the reduction of F . Assume that

|KF | has a base point. Then gon(D) ≤ m and gon(F̃ ) ≤ m. Furthermore, there are

morphisms ϕ : D → P1, ϕ̃ : F̃ → P1 of respective degree m and an m-sheeted cyclic

covering ϖ : P1 → P1 such that ϕ ◦ π = ϖ ◦ ϕ̃, where π : F̃ → D denotes the natural

covering map.

Proof. Let P be a base point of |KF | and write KF |D = KD + P −Q with another

point Q. Then the m-torsion bundle [D]|D is given by [Q − P ] (cf. Lemma 3.1).

It follows that we have mP ∼ mQ but iP ̸∼ iQ for 0 < i < m. In particular, we

see that |mP | is free from base points and gon(D) ≤ m. Let ϕ : D → P1 be the

morphism of degree m corresponding to the pencil spanned by mP and mQ. Let F̃

be the reduction of F and π : F̃ → D the natural unramified cyclic covering map

of degree m. Since π∗[Q − P ] is trivial on F̃ , the pencil Λ spanned by π∗P and

π∗Q gives us a morphism ϕ̃ : F̃ → P1 of degree m. Hence, gon(F̃ ) ≤ m. Note that

Λ is invariant under the action of the Galois group Gal(F̃ /F ) = Zm. Hence, Zm

acts on the base curve P1 of ϕ̃ and we have a cyclic m-sheeted branched covering

ϖ : P1 → P1 = P1/Zm such that ϕ ◦ π = ϖ ◦ ϕ̃. □

Remark 3.1. Let the notation be as in the proof of Lemma 3.2. Assume that D is

a hyperelliptic curve and Q ̸= P ′. If m ≥ 3, then we have two g1m’s on D as in the

proof of Lemma 3.3: one coming from (P,Q) and the other from (P ′, Q′). Hence

there are two g1m’s on F̃ in this case.
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The following shows that a high multiple of a hyperelliptic curve merely appears.

Lemma 3.4. Let F = mD be a multiple fiber in a pencil of curves. Assume that D

is a hyperelliptic curve of genus h, and P ∈ Bs|KF |. If mP is a special divisor on

D, then m = 2. In particular, if h ≥ m, then m = 2.

Proof. We write KF |D = KD + P − Q. By the proof of Lemma 3.3, |mP | is free

from base points. Since |mP | is a special linear system on a hyperelliptic curve, it

must be a multiple of g12. In particular, we see that m is even.

We assume that P is not a Weierstrass point. If P ′ is the conjugate of P , we

have (m/2)P ∼ (m/2)P ′ from mP ∼ (m/2)g12 ∼ (m/2)(P + P ′). This implies

that [(m/2)P ] is free from base points and, again, it is a multiple of g12 being a

special divisor. In particular, m/2 is even and we have (m/22)P ∼ (m/22)P ′.

Continuing such a process, we finally see that [2P ] is free from base points. But

this implies that P must be a Weierstrass point, a contradiction. Hence, P is a

Weierstrass point. Similarly, we can show that Q is a Weierstrass point, because

mQ ∈ |mP | = (m/2)g12. Since [Q− P ] is a m-torsion, this implies that m = 2.

As we have seen in the proof of Lemma 3.3, we have h0(D,mP ) ≥ 2. By the

Riemann-Roch theorem, h0(D,mP )−h1(D,mP ) = m+1−h. Hence h1(D,mP ) ̸= 0

provided that h ≥ m. In other words, mP is special when h ≥ m. □

The following is our main result.

Theorem 3.1. Let F = mD be a smooth multiple fiber in a pencil of curves of

genus g, and F̃ the reduction of F . Let p be a prime number satisfying g > (p− 1)2.

Then, F̃ is a p-gonal curve if and only if m = p and |KF | has a base point.

Proof. Assume that F̃ is a p-gonal curve. If F̃ were have distinct two g1p’s, then

we would have a morphism F̃ → P1 × P1 that is birational onto the image, and

the Castelnuovo-Severi inequality would imply g ≤ (p−1)2, a contradiction. Hence,

W 1
p (F̃ ) is one point. Then, by Proposition 2.1, we get m = p and [D]|D is of the form

[Q−P ]. This last is equivalent to saying that |KF | has a base point by Lemma 3.1.

Conversely, assume that m = p and Bs|KF | ̸= ∅. Then, by Lemma 3.3, we have

gon(F̃ ) ≤ p and there is a base point free g1p on F̃ . If gon(F̃ ) = k < p, then the

Castelnuovo-Severi inequality shows g ≤ (k − 1)(p − 1), which is absurd. Hence F̃

is a p-gonal curve. □

It would be worth stating a more accurate result for p = 2, 3.

Proposition 3.1. Let F = mD be a smooth multiple fiber in a pencil of curves of

genus g ≥ 3 and F̃ the reduction of F .

(1) F̃ is a hyperelliptic curve if and only if m = 2 and |KF | has two base points

which are Weierstrass points on the hyperelliptic curve D.
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(2) When g ≥ 5, F̃ is a trigonal curve if and only if m = 3 and |KF | has a

unique base point on a trigonal curve D.

Proof. By Theorem 3.1, we only have to show the assertions for D and Bs|KF |. (1) If
F̃ is hyperelliptic, we can apply Lemma 2.1 (and Proposition 2.1) to see that m = 2

and |KF | has two base points which are Weierstrass points. (2) Assume that F̃ is

trigonal. Since g ≥ 5, W 1
3 (F̃ ) is one point. Hence we can apply Proposition 2.1 to

see that m = 3 and Bs|KF | ̸= ∅. Then we have gon(D) ≤ 3 by Lemma 3.3 and there

is a base point free g13 on D. If D were a hyperelliptic curve, then it would follow

from Lemma 3.4 that h < m = 3, which is impossible when g ≥ 5. Therefore, D is

not hyperelliptic. Then Lemma 3.2 implies that |KF | has only one base point. □

For hyperelliptic fibrations, we have the following:

Proposition 3.2. Let f : S → ∆ be a hyperelliptic fibration of genus g ≥ 3. Then

the multiplicity of a multiple fiber is at most two. If F = 2D is a smooth double

fiber, then |KF | has two base points which are Weierstrass points on the hyperelliptic

curve D. Furthermore, Bs|KF | coincides with the set of isolated fixed points of the

hyperelliptic involution of f : S → ∆.

Proof. Let ρ : Ŝ → S be the minimal succession of blowing-ups which eliminates

all the isolated fixed points of the hyperelliptic involution of f : S → ∆. Then

we have a finite double covering θ : Ŝ → Ŵ over ∆, where Ŵ is a non-singular

surface and the induced morphism Ŵ → ∆ is a P1 fiber space. Then the fiber over

0 of Ŵ → ∆ has a component Γ of multiplicity one corresponding to the fiber of

one of its relatively minimal models. Since Ŝ → Ŵ is a finite double covering, the

multiplicity of the pull-back to Ŝ of Γ is at most 2. Therefore, so is the multiplicity

of the central fiber.

If f : S → ∆ is a hyperelliptic pencil, then the semi-stable reduction f̃ : S̃ → ∆̃ is

also hyperelliptic and, hence, F̃ must be a hyperelliptic curve of genus g. The rest

follows from Proposition 3.1 (1) and Lemma 2.1. □

Remark 3.2. The above consideration suggests us a canonical way to obtain a smooth

double fiber. Let g ≥ 3 be an odd integer and f : S → ∆ a hyperelliptic fibration

of genus g. Assume that the central fiber F is a smooth double fiber and put

F = 2D. Let σ be the hyperelliptic involution of f : S → ∆. Then, it is clear from

the proof of Lemma 2.1 that there are two distinct isolated fixed points of ⟨σ⟩ on

F , equivalently, the base points of |KF |. Let ρ : Ŝ → S be the blowing-up with

center Bs|KF |. Then, the involution σ̂ induced by σ has no isolated fixed points

and the quotient Ŵ = Ŝ/⟨σ̂⟩ is non-singular. Two exceptional (−1)-curves E1, E2

for ρ are among the 1-dimensional fixed locus of σ̂, that is, the ramification divisor

for θ : Ŝ → Ŵ . If we denote by D̂ the proper transform of D, then Ei ∩ D̂ is a
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Weierstrass point of D̂ for i = 1, 2. The central fiber of the induced fibration Ŝ → ∆

is F̂ = 2D̂+2E1+2E2. Note that θ|D̂ ramifies at 2h+2(= g+3) points in total, two

of which come from the Ei’s. Hence, the ramification divisor has g + 1 horizontal

local components each of which meets D̂ at a distinct Weierstrass point. Since Ei is

a (−1)-curve in the ramification divisor, θ(Ei) is a (−2)-curve. Then θ(D̂) ≃ P1 and

its self-intersection number is −1, because D̂2 = −2. The central fiber of Ŵ → ∆

is of the form 2θ(D̂) + θ(E1) + θ(E2). Contracting the (−1)-curve θ(D̂) to a point

ξ, we have the fiber consisting of two (−1)-curves meeting simply at ξ. The branch

locus has ordinary (g + 3)-ple point at ξ. Contracting one of two (−1)-curves, we

get a relatively minimal model W ≃ P1 ×∆ of Ŵ . Here the branch locus contains

the fiber of W → ∆ and has one so-called (g + 2 → g + 2)-point on it.

Conversely, put W = P1 ×∆ and let p : W → ∆ be the natural projection. Take

a reduced curve B0 on W such that B0 meets p−1(t) at distinct 2g + 2 points when

t ̸= 0, and it has a 2-fold (g + 1)-ple point on Γ = p−1(0). Put B1 = B0 + Γ and let

S ′ be the double covering of W branched along B1. Take the canonical resolution

of singularities of S ′ and let S be the relatively minimal model. The central fiber of

S → ∆ is then a double fiber. A sample equation of B1 is x{(x + y2)g+1 − 2xg+1},
where x is the parameter on ∆ and y the inhomogeneous coordinate on P1.

For trigonal fibrations, we have the following:

Theorem 3.2. Let f : S → ∆ be a relatively minimal trigonal fibration of genus

g ≥ 3 and assume that the central fiber F = mD is a smooth multiple fiber. Then

m ≤ 3. Furthermore, the following hold.

(1) m = 3 if and only if F̃ is trigonal. When m = 3 and g ̸= 4, D is a trigonal

curve and |KF | has a unique base point.

(2) m = 2 if and only if F̃ is hyperelliptic, and |KF | has two base points which

are Weierstrass points on D.

Proof. Since f is a trigonal fibration, its semi-stable reduction f̃ : S̃ → ∆̃ is also

trigonal. It follows that gon(F̃ ) is at most three. When g ≤ 4, we automatically

have m ≤ 3. If g ≥ 5, then W 1
k , k = gon(F̃ ), consists of one point and it follows from

Lemma 2.2 that m must divide gon(F̃ ). Therefore, we have m = 2 or 3 according

to whether gon(F̃ ) = 2 or 3. □

Remark 3.3. Let D be as in (1) of Theorem 3.2. As the proof of Lemma 3.3 shows,

the trigonal structure of D is given by a triple covering ϕ : D → P1 that has at least

two totally ramified points P , Q. Hence, D cannot be an arbitrary trigonal curve.

Example 3.1. Here, we give an example of a smooth triple fiber. Put W = P1 ×∆

and Γ = P1 × {0}. Take a positive integer h and let B0 be the reduced curve on W
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defined by

b0(x, y) = (x+ y3)h − 2xh,

where x denotes the coordinate on ∆ and y is the inhomogeneous coordinate on P1.

Then B0 meets P1 × {x} at distinct 3h points, when x ̸= 0, while it has a 3-fold

h-ple point at (0, 0) ∈ Γ. Put B1 = ϵΓ + B0, where ϵ = 2 when h ≡ 2 (mod 3),

otherwise ϵ = 1. Let S ′ be the cyclic triple covering of W branched along B1 defined

by w3 = xϵb0(x, y). We resolve the singular point of S ′ by the method described in

[3]. This can be done by 4 times of blowing-ups at singular points of the branch

loci as in the picture below, where the dotted, solid and double lines respectively

mean the multiplicity in the branch locus of the corresponding component is zero,

one and two (see [3, Example 3.7]).

−3
−3

−3

−1

−1

−2 −2

−1

h
Γ

−3
−3

−3

−1

−1

−2 −2

−1

h

h ≡ 1 (mod 3)

h ≡ 0 (mod 3)

−3
−3

−3

−1

−1

−2 −2

−1

h

h ≡ 2 (mod 3)

B0

Taking cyclic triple covering with the resolved branch locus and performing the

normalization along its compound cusps, we get a non-singular surface S♯ with the

natural birational morphism S♯ → S ′. Then, S♯ has three (−1)-curves originating
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from (−3)-curves in the branch locus. After contracting them all, we find another

(−1)-curve resulting from a (−3)-curve on S♯. Then contracting it, we get a trigonal

fibration S → ∆ of genus g = 3h− 2 as the relatively minimal model of S♯ → S ′ →
W → ∆. Its central fiber is the triple fiber F = 3D, where D is the non-singular

curve of genus h obtained by resolving cusps of the cyclic triple covering D♯ of P1

(the (−1)-curve expressed as a dotted line). The number of (2, 3)-cusps on D♯ is

one, zero or two according to h ≡ 0, 1, 2 (mod 3).

In light of the hyperelliptic case, it would be worth remarking that, in our example,

the base point of |KF | is the isolated fixed point of the natural Z3-action around

which it is normalized as (z1, z2) 7→ (ωz1, ω
2z2), where ω = exp(2π

√
−1/3).

We summarize here some properties of smooth multiple fibers for g small.

The case g = 3: If F = 2D is a smooth double fiber in a pencil of curves of

genus 3, then |KF | has exactly two base points which are Weierstrass points on D.

Furthermore, the reduction F̃ of F is a hyperelliptic curve of genus 3.

The case g = 4: If F = 3D is a smooth triple fiber in a pencil f : S → ∆ of curves

of genus 4, then D is of genus 2 but f cannot be a hyperelliptic fibration. Then |KF |
has two base points which may be infinitely near. Assume that Bs|KF | consists of
two distinct points. Then, as we already noted in Remark 3.1, there are two distinct

g13’s on the reduction F̃ . It follows that F̃ , identified with its canonical image, lies

on a quadric of rank 4. Hence so does a general fiber of f : S → ∆. In particular,

if a general fiber of f lies on a quadric of rank 3, then Bs|KF | consists of one point

of multiplicity two.

The case g = 5: We have m = 2 or m = 4. Hence F̃ is not a trigonal curve by

Proposition 3.1. If F̃ is hyperelliptic, then m = 2, D is also hyperelliptic and |KF |
has two base points. When f : S → ∆ is a hyperelliptic or trigonal fibration, we have

only such a case. Assume that f : S → ∆ is tetragonal and that F̃ is a tetragonal

curve. If m = 2, then Bs|KF | = ∅ since otherwise F̃ would be hyperelliptic. If

m = 4, then Bs|KF | consists of two points. When Bs|KF | consists of two distinct

points, F̃ has at least two g14’s.

The case g = 6: We have m = 5 and h = 2. Since g = 6, gon(F̃ ) is at most 4.

By Corollary 2.1 or Proposition 3.1, we get gon(F̃ ) = 4. Therefore, f : S → ∆

must be a tetragonal fibration. F̃ is one of the curves described in Remark 2.2 by

Lemma 2.2.
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4. Local invariants

By using the geometric information obtained in the previous sections, we shall com-

pute local invariants of smooth multiple fibers (cf. [4]).

The notion of fiber germs is defined in a natural way. Namely, two relatively

minimal fibrations fi : Si → ∆i (i = 1, 2) of curves are equivalent if and only if

there exist a open disk 0 ∈ ∆′
i ⊂ ∆i for i = 1, 2 and bi-holomorphic maps between

S ′
i := f−1

i (∆′
i), ∆

′
i (i = 1, 2) such that the diagram

S ′
1

f1
��

≃ // S ′
2

f2
��

∆′
1

≃ // ∆′
2

commutes. Then a fiber germ is one of the equivalence classes.

Let g be a positive odd integer ≥ 3 and A the set of all fiber germs of (g + 3)/2-

gonal fibrations of genus g. Recall from [7] and [4] that, we have a well-defined

function Ind : A → Q≥0 such that, for any (g + 3)/2-gonal fibration f : S → B of

genus g, Ind(f−1P ) = 0 holds whenever P ∈ B is general and we have

K2
S/B =

6(g − 1)

g + 1
χf +

∑
P∈B

Ind(f−1P ),

where KS/B = KS − f ∗KB and χf = deg f∗OS(KS/B). Ind(f−1P ) is called the

Horikawa index of the fiber germ f−1P . Furthermore, if we put

σ(f−1P ) :=
2(g + 1)

3(g + 3)
Ind(f−1P )− g + 7

3(g + 3)
ef (f

−1P ),

where ef (f
−1P ) = e(f−1P )−(2−2g) is the relative Euler number, then the signature

of S can be written as

Sign(S) =
∑
P∈B

σ(f−1P )

(see, [4]). We call σ(f−1P ) the local signature of f−1P .

Since the Horikawa index is defined as an alternating sum of the length of certain

OB,P -modules, it is hard to compute it in general. So, we “linearize” the situation

to simplify the problem. Let F be the central fiber of a (g + 3)/2-gonal fibration

f : S → ∆. We denote by Kp,q(F,KF ) the (co)homology group at the middle term

of the Koszul complex (cf. [6])

p+1∧
H0(KF )⊗H0((q − 1)KF ) →

p∧
H0(KF )⊗H0(qKF )

→
p−1∧

H0(KF )⊗H0((q + 1)KF ).
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Then, the (linearized) Horikawa index can be defined by

Ind0(F ) =

(
g − 3

(g − 3)/2

)−1 (g+1)/2∑
i=2

(−1)i dimK(g+1)/2−i,i(F,KF ).

We also put

σ0(F ) :=
2(g + 1)

3(g + 3)
Ind0(F )− g + 7

3(g + 3)
ef (F ).

We in fact have Ind0(F ) = Ind(F ) if the dependency on the moduli parameter is

simple. For example, for a non-hyperelliptic fibration of genus 3, the Horikawa index

is defined as the length of the cokernel of the multiplication map

Sym2(f∗ωS/∆) → f∗(ω
⊗2
S/∆)

which is surjective off 0 ∈ ∆ by the Max Noether theorem. On the other hand, we

have Ind0(F ) = dimCoker{H0(KF )⊗H0(KF ) → H0(2KF )}.
Now, let F = mD be a smooth multiple fiber and ζ ∈ H0(S, [D]) the section

defining D. Then ζm = 0 on F .

4.1. Non-hyperelliptic fibrations of genus three

Let f : S → ∆ be a (relatively minimal) non-hyperelliptic fibration of genus 3. If

F = 2D is a smooth double fiber, then we have Ind0(F ) = 3. This can be seen as

follows. Let x0, x1 be sections of KS + [D] which induce a basis for H0(D,KD). We

take a section y of KS + [F ] restricted to a non-zero element in H0(D,KF |D). Then
the restrictions to F of ζx0, ζx1 and y form a basis forH0(F,KF ). Since ζ

2 = 0 on F ,

we see that their products give us only three independent elements ζx0y, ζx1y and y2

in the six dimensional vector space H0(F, 2KF ). Hence, Ind0(F ) = 6− 3 = 3. Since

ef (F ) = 2, we get σ0(F ) = 2/9. Similarly, we have Ind0(F̃ ) = 1, since the reduction

F̃ is hyperelliptic: the map Sym2H0(KF̃ ) → H0(2KF̃ ) between 6-dimensional vector

spaces has one dimensional kernel defining the plane conic curve (= the canonical

image of F̃ ). Thus, we get σ0(F̃ ) = 4/9 = 2σ0(F ) by ef̃ (F̃ ) = 0.

4.2. Tetragonal fibrations of genus five

Let f : S → ∆ be a tetragonal fibration of genus 5. We put V = H0(F,KF ) and let

S(V ) be the symmetric algebra over V . We denote by Sn the homogeneous part of

degree n. Put Rn = H0(F, nKF ) and let R = ⊕n≥0Rn be the canonical ring of F .

(I) Firstly, we consider the case m = 2. As we have already seen, there are two

possibilities: (i) Bs|KF | = ∅, (ii) Bs|KF | ̸= ∅. Let x0, x1, x2 be sections of KS + [D]

which give us a basis for H0(D,KD). If y0, y1 are sections of KS + [F ] inducing a
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basis for H0(D,KF |D), then {ei}4i=0 forms a basis for V , where ei = ζxi (0 ≤ i ≤ 2),

e3 = y0 and e4 = y1.

(i) We assume that Bs|KF | = ∅. Then F̃ is a tetragonal curve as we saw in

the previous section. We shall show that Ind0(F ) = 4. We have K0,3(F,KF ) = 0,

because Bs|KF | = ∅ implies the surjectivity of R1 ⊗ R2 → R3 (see, [8]). So it

suffices to compute dimK1,2(F,KF ). We let W be the 3-dimensional subspace of V

generated by e0, e1, e2. Since KF |D = KD + [D]|D induces a free pencil on D, the

evaluation map gives us an exact sequence

0 → OD(−D) → H0(D,KF )⊗OD(KD) → OD(KF |D +KD) → 0.

We have h0(D,−[D]|D) = 0. Hence the multiplication map H0(KF |D)⊗H0(KD) →
H0(KF |D +KD) is an isomorphism between 6-dimensional vector spaces. Similarly,

Sym2H0(KF |D) → H0(2KF |D) is injective. It follows that the 9 products ζxiyj,

yiyj are independent in R2. Then the kernel I2 of the restriction µ2 : S2 → R2 is

6-dimensional and, in fact, we have I2 = Sym2(W ). Now, consider the commutative

diagram of Koszul complexes:

0 //
∧3R1

//
∧2R1 ⊗R1

// R1 ⊗R2
// R3

// 0

0 //
∧3 S1

//
∧2 S1 ⊗ S1

// S1 ⊗ S2
//

1⊗µ2

OO

S3
//

OO

0,

where the bottom sequence is exact.

We claim that

Im

(
2∧
S1 ⊗ S1

)
∩ S1 ⊗ I2 = Im

(
2∧
W ⊗W

)
and it is of dimension 8. To see this, we argue as follows. We take an element

α =
1

2

∑
i,j

aijei ∧ ej ∈
2∧
S1 ⊗ S1, (1)

where the aij’s are linear forms in e0, . . . , e4 satisfying aji = −aij. Then its image

in S1 ⊗ S2 under the differential is given by∑
i

(∑
j

aijej

)
⊗ ei. (2)

Assume that it is contained in S1 ⊗ I2. Recall that I2 = Sym2(W ). Then we have

aij = 0 when ej ̸∈ W , and aij ∈ W when ej ∈ W . Hence α = (1/2)
∑

0≤i,j≤2 aijei ∧
ej∈ ∧2W ⊗ W . Furthermore, we have dim Im(∧2W ⊗ W ) = dim(∧2W ⊗ W ) −
dim(∧3W ) = 9− 1 = 8. This shows the claim. It follows that dimK1,2(F,KF ) = 8
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and, hence, Ind0(F ) = 4. Since ef (F ) = 4, we get σ0(F ) = 0. We also have

Ind0(F̃ ) = 0, ef̃ (F̃ ) = 0 and σ0(F̃ ) = 0 for the reduction F̃ of F .

(ii) Assume that Bs|KF | ≠ ∅. Then F̃ and D are both hyperelliptic. Since |KF |
has two base points, we get dimK0,3(F,KF ) = 2. This can be seen as follows. Put

KF |D = KD +P −Q. Then P,Q are Weierstrass points and KF |D −P −Q gives us

g12. Therefore,

0 → OD(−KF + P +Q) → H0(D,KF − P −Q)⊗OD → OD(KF − P −Q) → 0

is exact. The exact sequence obtained by tensoring 2KF |D shows that H0(D,KF −
P − Q) ⊗ H0(D, 2KF ) → H0(D, 3KF − P − Q) is surjective. Hence the image of

H0(D,KF ) ⊗ H0(D, 2KF ) → H0(D, 3KF ) is the subspace of codimension 2 con-

sisting of sections vanishing at P , Q. Furthermore, H0(D,KD) ⊗ H0(D, 2KF ) →
H0(D, 3KF −D) is surjective, since the canonical ring of D is generated in degrees

≤ 2. These together show that dimK0,3(F,KF ) = 2.

Take two elements t0, t1 of H
0(D,KF −P −Q) such that the zero divisors satisfy

(t0) = 2P and (t1) = 2Q. We may assume that x0 = t20, x1 = t0t1 and x2 = t21 on D.

Furthermore, yi = sti on D, where s is the section of [P + Q] defining P + Q, i.e.,

(s) = P +Q. Hence we may assume s2 = t0t1 = x1. Then

I2 = ⟨e20, e0e1, e0e2, e1e2, e21, e22, e1e3 − e0e4, e2e3 − e1e4⟩.

We find 14 linear sygyzies among the generators of I2. Since it equals to the di-

mension of (S1 ⊗ I2) ∩Ker(S1 ⊗ S2 → S3), we get dimK1,2(F,KF ) = 14. It follows

Ind0(F ) = (14− 2)/2 = 6, ef (F ) = 4 and σ0(F ) = 1.

Let us compute Ind0(F̃ ). We have K0,3(F̃ ,KF̃ ) = 0, since the canonical ring of F̃

is generated in degrees ≤ 2. If {ξi}4i=0 is a basis for H0(F̃ ,KF̃ ), then K1,2(F̃ ,KF̃ ) is

isomorphic to the space of linear sygyzies among 6 relations given by 2× 2 minors

of (
ξ0 ξ1 ξ2 ξ3
ξ1 ξ2 ξ3 ξ4

)
.

It is easy to see that there are 8 such sygyzies. Hence, Ind0(F̃ ) = 4 and σ0(F̃ ) =

2 = 2σ0(F ).

(II) Lastly, we consider the case m = 4. Then D is of genus 2 and we have

ef (F ) = 6. Let {x0, x1} be sections of KS +[D] inducing a basis for H0(D,KD) and

y, z, w sections of KS +2[D], KS +3[D] and KS +4[D], respectively, giving non-zero

elements of H0(D,KF |D − i[D]) for i = 2, 1, 0. We write KF |D = KD + P − Q as

in Lemma 3.1. Then we have (w|D) = P + Q′, where Q′ is the conjugate of Q. It

is easy to see that (y|D) = P ′ + Q, where P ′ is the conjugate of P . By using the

fact that [D]|D is torsion of order 4, one can show that (z|D) = P ′′ + Q′′ with two
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points P ′′, Q′′ ̸∈ {P,Q, P ′, Q′}. Then, it is not so hard to see that the image of

the multiplication map H0(F,KF )⊗H0(F, 2KF ) → H0(F, 3KF ) is the subspace of

codimension 2 consisting of elements vanishing at P,Q′, by considering it for each

“eigen-space”:

j⊕
i=0

H0(KF |D − iD)⊗H0(2KF |D − (j − i)D) → H0(3KF |D − jD)

for j ∈ {0, 1, 2, 3}, if one note that 2KF |D − (j − i)[D]|D is free from base points.

In fact, the above map fails to be surjective only when j = 0. Therefore, we have

K0,3(F,KF ) = 2.

Now {e0 := ζ3x0, e1 := ζ3x1, e2 := ζ2y, e3 := ζz, e4 := w} forms a basis for

H0(F,KF ). We have the obvious relations in degree 2 from ζ4 = 0: e20 = e21 = e22 =

e0e1 = e1e2 = e2e0 = e0e3 = e1e3 = 0. Then one sees

I2 = ⟨e20, e21, e22, e0e1, e1e2, e2e0, e0e3, e1e3⟩.

Let α ∈ ∧2S1⊗S1 be as in (1). Then its image in S1⊗S2 is as in (2). If it is in S1⊗I2,

then one sees the following: ai4 = 0 for any i. If j = 0, 1, then aij ∈ ⟨e0, e1, e2, e3⟩.
If j = 2, then ai2 ∈ ⟨e0, e1, e2⟩. If j = 3, then ai3 ∈ ⟨e0, e1⟩. Since aji = −aij, we see

that a01 ∈ ⟨e0, e1, e2, e3⟩; a02, a12 ∈ ⟨e0, e1, e2⟩; a03, a13, a23 ∈ ⟨e0, e1⟩, and

α = a01e0 ∧ e1 + a02e0 ∧ e2 + a03e0 ∧ e3 + a12e1 ∧ e2 + a13e1 ∧ e3 + a23e2 ∧ e3.

Modulo the image of ∧3S1, such α’s form a 14-dimensional vector space. Hence

dimK1,2(F,KF ) = 14. Of course, this can be computed as the number of linear

syzygies among generators of I2. Then, Ind0(F ) = (14 − 2)/2 = 6 and σ0(F ) =

6/2− 6/2 = 0. Since F̃ is tetragonal, Ind0(F̃ ) = 0 and σ0(F̃ ) = 0.

Remark 4.1. (1) In all cases above, we have σ0(F̃ ) = mσ0(F ). This fact follows from

Ashikaga’s formula in [2, Theorem 5.2.1] for the signature defect. Using it, Ind0(F )

can be computed as

Ind0(F ) =
1

m
Ind0(F̃ ) +

(
1− 1

m

)
g + 7

g + 1
(g − 1)

once we know Ind(F̃ ).

(2) If F = 2D is a smooth double fiber in a hyperelliptic fibration of odd genus

g, then it is known

IndH(F ) = g − 1

g
, σH(F ) = 0,

where IndH and σH are the corresponding local invariants (see, [1], [4]).
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