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PERIODIC POINTS OF SOME DISCONTINUOUS
MAPS

SATOMI MURAKAMI AND HIROKI OHWA

Abstract. The purpose of this paper is to investigate periodic points of discon-

tinuous maps. For some discontinuous maps, we establish a characterization of

periodic points.

1. Introduction

Let a and b be constants with a < b, and denote by I the closed and bounded

interval defined by I = [a, b]. Moreover, let f : I → I be a (discontinuous) map and

denote by fn the n-th iteration defined by f 0 = id, where id is the identity map,

and

fn = f ◦ fn−1 for each integer n ≥ 1.

In general, a point p ∈ I is said to be a periodic point of f with period n if fn(p) = p,

fm(p) 6= p for any integer m with 1 ≤ m < n.

Let l be an integer with l ≥ 2. Throughout this paper, we make the following

assumptions.

(A) For any integer n ≥ 1, the discontinuities of f 2n−1 are upward jumps, i.e.,

f 2n−1 is piecewise continuous and satisfies

f 2n−1(p−) ≤ f 2n−1(p) ≤ f 2n−1(p+) for each discontinuity point p ∈ I,

where f 2n−1(p−) := lim
x→p−0

f 2n−1(x) and f 2n−1(p+) := lim
x→p+0

f 2n−1(x). Note

that if the discontinuity is an endpoint of I, then the one-sided inequality is

only defined.

(Al) There exist points u < v < z (u, v, z ∈ I) such that f 3(u) = z, f 2l−1(v) = v

and f(z) = z. Moreover, the following inequality holds:

f 2(x) < x for any x ∈ (u, v].
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We remark that analogous results in this paper can be obtained even if assumption

(Al) is replaced by the following assumption.

(Âl) There exist points z < v < u (z, v, u ∈ I) such that f(z) = z, f 2l−1(v) = v

and f 3(u) = z. Moreover, the following inequality holds:

f 2(x) > x for any x ∈ [v, u).

Although a lot of papers have been written on periodic points of continuous maps

(e.g. [1], [2], [3], [4], [5], [6], [8], [9], [10] and others), few papers have been written

on periodic points of discontinuous maps (e.g. [11]). In a recent paper [7], the

authors investigate periodic points of some discontinuous maps whose discontinuities

are downward jumps. In this paper, we improve the method of proof in [7] and

investigate periodic points of some discontinuous maps whose discontinuities are

upward jumps. We shall prove the following theorems on the existence of periodic

points by applying an improved method of [7].

Theorem 1.1. Let l be an integer with l ≥ 2 and assume that (A) and (Al) are

satisfied. Then, f has periodic points with period 2k − 1 for all integers k ≥ l.

Theorem 1.2. For each integer l ≥ 2, there exists a discontinuous map fl : I → I

satisfying assumptions (A) and (Al) such that fl has a periodic point with period

2l − 1, but no periodic points with period 2k − 1 for any integers k with 1 < k < l.

Remark 1.1. Theorem 1.2 shows that the conclusion of Theorem 1.1 is sharp in

the sense that for each integer l ≥ 2, there exists a discontinuous map which has

a periodic point with period 2l − 1, but no periodic points with period k for any

integers 2k − 1 with 1 < k < l.

Remark 1.2. For all discontinuous maps satisfying assumptions (A) and (Al), the

same conclusion as in Sharkovsky theorem (cf. [8]) is not obtained. Indeed, there

exists a discontinuous map satisfying assumptions (A) and (A2), which has a periodic

point with period 3, but no periodic points with period 2 (see Example 3.1 below).

2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. This theorem follows from the following two

lemmas.

Lemma 2.1. Let n be an integer with n ≥ 1 and assume that (A) is satisfied. If

f 2n−1(x1)− x1 > 0 > f 2n−1(x2)− x2 for x1, x2 ∈ I with x1 < x2, then there exists a

point p ∈ (x1, x2) such that f 2n−1(p) = p.

Proof. Suppose that f 2n−1 has m discontinuity points such that x1 < p1 < p2 <

· · · < pm < x2. If f 2n−1(p) 6= p for any p ∈ (x1, x2), then, by the intermediate value
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theorem on (x1, p1), we see that f 2n−1(p1−) ≥ p1. Therefore, by assumption (A), we

have f 2n−1(p1) > p1. Moreover, by the intermediate value theorem on (p1, p2), we

see that f 2n−1(p2−) ≥ p2. Therefore, by assumption (A), we have f 2n−1(p2) > p2.

By repeatedly using the arguments, we have f 2n−1(pm) > pm. Therefore, by the

intermediate value theorem on (pm, x2), we see that f 2n−1(x2) ≥ x2. But, this

contradicts the assumption that f 2n−1(x2) < x2.

0

y=x
y

x

y=f 2n-1(x)

f 2n-1(x1 )

f 2n-1(x2)

x2

x2

x1

x1

p

p

Figure 1. The figure where y = f 2n−1(x) intersects y = x.

�

Lemma 2.2. Let k and l be integers with k ≥ l ≥ 2 and assume that (A) and (Al)

are satisfied. If f 2k−1(pk) = pk for some point pk ∈ (u, v], then f has a periodic

point qk ∈ (u, pk] with period 2k − 1.

Proof. Setting

qk = inf
{
x : u < x ≤ pk, f

2k−1(x) = x
}
,

we obtain f 2k−1(qk) = qk. Indeed, if this equation does not hold, then, by assumption

(A), we see that f 2k−1(qk) < qk. Since f 2k−1(u) = f 2k−4(z) = z > u, it follows from

Lemma 2.1 that there exists a point wk ∈ (u, qk) such that f 2k−1(wk) = wk. This

contradicts the definition of qk. Suppose now that qk is a periodic point of f with

period 2i − 1 for some i < k. Then, by assumption (Al), we have i ≥ 2. Since

f 2i+1(u) = f 2i−2(z) = z > u and f 2i+1(qk) = f 2(qk) < qk, we have

f 2i+1(u)− u > 0 > f 2i+1(qk)− qk.

By Lemma 2.1, there exists a point zi+1 ∈ (u, qk) such that f 2i+1(zi+1) = zi+1.

Moreover, since f 2i+3(u) = f 2i(z) = z > u and f 2i+3(zi+1) = f 2(zi+1) < zi+1, by
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Lemma 2.1, there exists a point zi+2 ∈ (u, zi+1) such that f 2i+3(zi+2) = zi+2. By

repeatedly using the arguments, we inductively obtain points

u < · · · < zk+1 < zk < zk−1 < · · · < zi+2 < zi+1 < qk ≤ pk

such that f 2(i+j)−1(zi+j) = zi+j (j = 1, 2, 3, ...). In particular, we have f 2k−1(zk) =

zk < qk. This contradicts the definition of qk. Thus, f has a periodic point qk ∈
(u, pk] with period 2k − 1 and the proof of Lemma 2.2 is complete. �

We now prove Theorem 1.1 by induction. By assumptions (A) and (Al) and by

Lemma 2.2, f has a periodic point ql ∈ (u, v] with period 2l−1. Suppose that k ≥ l

is a positive integer such that f has a periodic point qk ∈ (u, v] with period 2k − 1.

Then, since f 2k+1(u) = f 2k−2(z) = z > u and f 2k+1(qk) = f 2(qk) < qk, we have

f 2k+1(u)− u > 0 > f 2k+1(qk)− qk.

Therefore, by Lemma 2.1, there exists a point pk+1 ∈ (u, qk) such that f 2k+1(pk+1) =

pk+1. Thus, by Lemma 2.2, f has a periodic point qk+1 ∈ (u, pk+1] with period 2k+1.

This completes the proof of Theorem 1.1.

3. Examples

In the following, we give a few examples which satisfy assumptions (A) and (Al).

Example 3.1. Consider the map f from [0, 1] into [0, 1] defined by

f(x) =


1
2

(
x = 0, 1

2
, 1
)
,

−2x + 1
(
0 < x < 1

2

)
,

−2x + 2
(
1
2
< x < 1

)
.

We show that f satisfies assumptions (A) and (A2). Let n be an integer with n ≥ 1

and pn,1 < pn,2 < · · · < pn,mn discontinuity points of f 2n−1. Suppose that for each

integer i with 1 ≤ i ≤ mn − 1, f 2n−1 is decreasing continuous on (pn,i, pn,i+1) and

satisfies f 2n−1((pn,i, pn,i+1)
)

= (0, 1). Suppose furthermore that for each integer i

with 1 ≤ i ≤ mn, f 2n−1(pn,i) = 1
2
. Then, from the geometry of f 2 (see Figure 2), it

follows that for each integer i with 1 ≤ i ≤ mn+1−1, f 2n+1 is decreasing continuous

on (pn+1,i, pn+1,i+1) and satisfies f 2n+1
(
(pn+1,i, pn+1,i+1)

)
= (0, 1). For each integer i

with 1 ≤ i ≤ mn+1, we additionally have f 2n+1(pn+1,i) = 1
2
. Therefore, by induction,

we see that assumption (A) is satisfied. Moreover, since

f 3
(13

24

)
=

2

3
, f 3

(5

9

)
=

5

9
, f

(2

3

)
=

2

3
,

and

f 2(x) < x for any x ∈
(13

24
,
5

9

]
,
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assumption (A2) is satisfied with u = 13
24

, v = 5
9

and z = 2
3
.
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Figure 2. The geometries of f , f 2 and f 3.

Example 3.2. Consider the map f from [0, 1] into [0, 1] defined by

f(x) =


−2x + 1

(
0 ≤ x ≤ 2

11

)
,

1
(

2
11

< x ≤ 1
2

)
,

−2x + 2
(
1
2
< x ≤ 1

)
.
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Figure 3. The geometries of f , f 2, f 3 and f 5.

— 95 —



1

_2
11

f 2

y

x

1

_8
11

0

1

f 2

_6
11

1

_7
11

1

f 2

_7
11

1

f 2

_8
11

0

0

f 2

0

_
11
01

0

1

f 2

0

1

0

1

pn, i pn, i+1

1

f 2

_7
11

1

pn,10

0

f 2

0

0

pn,mn 1

1

_8
11

pn, i pn, i pn, i pn, i pn, ipn, i+1 pn, i+1 pn, i+1 pn, i+1 pn, i+1

pn,mn

_
11
01_

11
01

pn, i+1pn, i+1pn, i+1pn, i+1pn, i+1pn, i+1pn,1 pn, i pn, i pn, i pn, i pn, i pn, i

_7
11

_7
11

_7
11

_7
11

_7
11

_6
11

_6
11

_2
11

_8
11

_8
11

_8
11

_8
11

Figure 4. The images of f 2.

We show that f satisfies assumptions (A) and (A3). Let n be an integer with

n ≥ 2 and pn,1 < pn,2 < · · · < pn,mn discontinuity points of f 2n−1. For notational

convenience, we set pn,0 = 0 and pn,mn+1 = 1. Then, we clearly have f 2n−1(pn,0) = 1

and f 2n−1(pn,mn+1) = 0. Let c, d and e be real numbers with c ∈
{

2
11
, 6
11
, 7
11

}
,

d ∈
{

8
11
, 10
11

}
and e ∈

{
2
11
, 6
11
, 7
11
, 8
11
, 10
11

}
. Suppose that for each integer i with

0 ≤ i ≤ mn, f 2n−1 is nonincreasing continuous on (pn,i, pn,i+1) and satisfies

f 2n−1((pn,i, pn,i+1)
)

=


(

7
11
, 1
)

(i = 0),

(c, 1], [0, d) or [0, 1] (1 ≤ i ≤ mn − 1),(
0, 8

11

)
(i = mn).

Suppose furthermore that for each integer i with 1 ≤ i ≤ mn, one of the following

inequalities holds:

0 < f 2n−1(pn,i−) = f 2n−1(pn,i) < f 2n−1(pn,i+) = 1,

0 = f 2n−1(pn,i−) < f 2n−1(pn,i) = f 2n−1(pn,i+) < 1,

0 = f 2n−1(pn,i−) < f 2n−1(pn,i) < f 2n−1(pn,i+) = 1,

with f 2n−1(pn,i) = e. Then, from the geometry of f 2 (see Figures 3 and 4), it follows

that for each integer i with 0 ≤ i ≤ mn+1, f 2n+1 is nonincreasing continuous on
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(pn+1,i, pn+1,i+1) and satisfies

f 2n+1
(
(pn+1,i, pn+1,i+1)

)
=


(

7
11
, 1
)

(i = 0),

(c, 1], [0, d) or [0, 1] (1 ≤ i ≤ mn+1 − 1),(
0, 8

11

)
(i = mn+1).

For each integer i with 1 ≤ i ≤ mn+1, we additionally have one of the following

inequalities:

0 < f 2n+1(pn+1,i−) = f 2n+1(pn+1,i) < f 2n+1(pn+1,i+) = 1,

0 = f 2n+1(pn+1,i−) < f 2n+1(pn+1,i) = f 2n+1(pn+1,i+) < 1,

0 = f 2n+1(pn+1,i−) < f 2n+1(pn+1,i) < f 2n+1(pn+1,i+) = 1,

with f 2n+1(pn+1,i) = e. Therefore, noting that

f 2n+1(pn+1,0) = 1 and f 2n+1(pn,mn+1+1) = 0,

by induction, we see that assumption (A) is satisfied. Moreover, since

f 3
(13

24

)
=

2

3
, f 5

( 7

11

)
=

7

11
, f

(2

3

)
=

2

3
,

and

f 2(x) < x for any x ∈
(13

24
,

7

11

]
,

assumption (A3) is satisfied with u = 13
24

, v = 7
11

and z = 2
3
.

4. Proof of Theorem 1.2

We here prove Theorem 1.2. By changing variables, it is sufficient to prove Theorem

1.2 for I = [0, 1]. Consider now the map fl from [0, 1] into [0, 1] defined by

fl(x) =


−2x + 1

(
0 ≤ x ≤ 4l−1+2

6·4l−1+3

)
,

1
(

4l−1+2
6·4l−1+3

< x ≤ 1
2

)
,

−2x + 2
(
1
2
< x ≤ 1

)
.
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Figure 5. The geometries of fl, f
2
l and f 3

l .

We remark that if l = 3, then fl becomes the map of Example 3.2. Setting v =
4l−1

6·4l−1+3
, since

1

2
< f i

l (v) <
3

4
(i = 0, 1, 2, ..., 2l − 4)

and

3

4
< f 2l−3

l (v) < 1,

we have

f i
l (v) =

4l − 3 · (−2)i + 2

6 · 4l−1 + 3
(i = 0, 1, 2, ..., 2l − 2).

Therefore, we have

f 2l−1
l (v) = fl

(
f 2l−2
l (v)

)
= fl

( 4l−1 + 2

6 · 4l−1 + 3

)
=

4l − 1

6 · 4l−1 + 3
= v.

Let n be an integer with n ≥ 2 and pn,1 < pn,2 < · · · < pn,mn discontinuity points

of f 2n−1
l . For notational convenience, we set pn,0 = 0 and pn,mn+1 = 1. Then, we

clearly have f 2n−1
l (pn,0) = 1 and f 2n−1

l (pn,mn+1) = 0. Let c, d and e be real numbers

with c ∈
{
f i
l (v) : i = 0, 2, 4, ..., 2l − 2

}
, d ∈

{
f i
l (v) : i = 1, 3, 5, ..., 2l − 3

}
and

e ∈
{
f i
l (v) : i = 0, 1, 2, ..., 2l − 2

}
. Suppose that for each integer i with 0 ≤ i ≤ mn,

f 2n−1
l is nonincreasing continuous on (pn,i, pn,i+1) and satisfies

f 2n−1
l

(
(pn,i, pn,i+1)

)
=


(
f 2
l (v), 1

)
(i = 0),

(c, 1], [0, d) or [0, 1] (1 ≤ i ≤ mn − 1),(
0, fl(v)

)
(i = mn).
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Suppose furthermore that for each integer i with 1 ≤ i ≤ mn, one of the following

inequalities holds:

0 < f 2n−1
l (pn,i−) = f 2n−1

l (pn,i) < f 2n−1
l (pn,i+) = 1,

0 = f 2n−1
l (pn,i−) < f 2n−1

l (pn,i) = f 2n−1
l (pn,i+) < 1,

0 = f 2n−1
l (pn,i−) < f 2n−1

l (pn,i) < f 2n−1
l (pn,i+) = 1,

with f 2n−1
l (pn,i) = e. Then, from the geometry of f 2

l (see Figure 5) (cf. Figure 4), it

follows that for each integer i with 0 ≤ i ≤ mn+1, f
2n+1
l is nonincreasing continuous

on (pn+1,i, pn+1,i+1) and satisfies

f 2n+1
l

(
(pn+1,i, pn+1,i+1)

)
=


(
f 2
l (v), 1

)
(i = 0),

(c, 1], [0, d) or [0, 1] (1 ≤ i ≤ mn+1 − 1),(
0, fl(v)

)
(i = mn+1).

For each integer i with 1 ≤ i ≤ mn+1, we additionally have one of the following

inequalities:

0 < f 2n+1
l (pn+1,i−) = f 2n+1

l (pn+1,i) < f 2n+1
l (pn+1,i+) = 1,

0 = f 2n+1
l (pn+1,i−) < f 2n+1

l (pn+1,i) = f 2n+1
l (pn+1,i+) < 1,

0 = f 2n+1
l (pn+1,i−) < f 2n+1

l (pn+1,i) < f 2n+1
l (pn+1,i+) = 1,

with f 2n+1
l (pn+1,i) = e. Therefore, noting that

f 2n+1
l (pn+1,0) = 1 and f 2n+1

l (pn,mn+1+1) = 0,

by induction, we see that assumption (A) is satisfied. Also, for each integer k with

1 < k < l, we have

f 2k−1
l

([
0,

1

2

])
⊂
(1

2
, 1
]

so that

f 2k−1
l (x) > x for any x ∈

[
0,

1

2

]
.

Therefore, if f 2k−1
l (p) = p for some p ∈

[
0, 1
]
\
{

2
3

}
, then we see that

f i
l (p) ∈

(1

2
, 1
] ∖{2

3

}
for all integers i ≥ 0.

However, we then have

f i
l (p) =

(
p− 2

3

)
(−2)i +

2

3
so that ∣∣f i

l (p)
∣∣→∞ as i→∞.
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This is a contradiction. Hence, for all integers k with 1 < k < l, we obtain fk
l (x) 6= x

for any x ∈
[
0, 1
]
\
{

2
3

}
, which means that fl has no periodic points with period 2k−1.

Moreover, since

f 3
l

(13

24

)
=

2

3
, f 2l−1

l

( 4l − 1

6 · 4l−1 + 3

)
=

4l − 1

6 · 4l−1 + 3
, fl

(2

3

)
=

2

3
,

and

f 2
l (x) < x for any x ∈

(13

24
,

4l − 1

6 · 4l−1 + 3

]
,

assumption (Al) is satisfied with u = 13
24

, v = 4l−1
6·4l−1+3

and z = 2
3
. Thus, it follows

from Theorem 1.1 that fl has a periodic point with period 2l − 1. This completes

the proof of Theorem 1.2.
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