ON SOME GENERALIZED TRIANGLE INEQUALITIES AND $\ell_{\psi} ext{-SPACES}$

TAMOTSU IZUMIDA

ABSTRACT. In this paper, we consider a generalized triangle inequality of the following type:

$$||a_1x_1 + \dots + a_1x_n||^p \le ||x_1||^p + \dots + ||x_n||^p (x_1, \dots, x_n \in X),$$

where $(X, \|\cdot\|)$ is a normed space, $(a_1, \ldots, a_n) \in \mathbb{C}^n$ and p > 0. By using generalized ℓ_p -spaces, we present a characterization of above inequality for infinite sequences $\{x_n\}_{n=1}^{\infty} \subset X$.

1. Introduction

The triangle inequality plays a fundamental role in establishing various properties of a normed linear space. In this paper, for a normed linear space $(X, \|\cdot\|)$, we consider a following generalized triangle inequality which is involved with the Euler-Lagrange type identity: for any fixed $n \in \mathbb{N}$ with $n \geq 2$ and fixed $p \in \mathbb{R}$ with p > 0,

$$\frac{\|a_1x_1 + \dots + a_nx_n\|^p}{\lambda} \le \frac{\|x_1\|^p}{\mu_1} + \dots + \frac{\|x_n\|^p}{\mu_n} (x_1, \dots, x_n \in X), \tag{1.1}$$

where $(a_1, \ldots, a_n, \lambda, \mu_1, \ldots, \mu_n) \in \mathbb{C}^n \times \mathbb{R} \times \mathbb{R}^n$. Several authors have been studying its characterizations (cf. [1], [2] and [10]). In [3], by using ψ -direct sums of Banach spaces (cf. [4]), we characterized all $(a_1, \ldots, a_n) \in \mathbb{C}^n$ which satisfy a special case of (1.1):

$$||a_1x_1 + \dots + a_nx_n||^p \le ||x_1||^p + \dots + ||x_n||^p (x_1, \dots, x_n \in X).$$
 (1.2)

So we gave another approach to characterizations of all $(\mu_1, \ldots, \mu_n) \in \mathbb{R}^n$ which satisfy the following inequality:

$$||a_1x_1 + \dots + a_nx_n||^p \le \frac{||x_1||^p}{\mu_1} + \dots + \frac{||x_n||^p}{\mu_n} (x_1, \dots, x_n \in X).$$

In this paper, our aim is to present a characterization of (1.2) for infinite sequences $\{x_n\}_{n=1}^{\infty} \subset X$ by using generalized ℓ_p -spaces.

²⁰¹⁰ Mathematics Subject Classification. Primary 49J53, 54C60: Secondary 90C29.

Key words and phrases. Generalized triangle inequality, absolute norm, ψ -direct sums, generalized ℓ_p -spaces.

2. Preliminaries

In this section, we summarize basic results of ℓ_{ψ} -spaces which is a generalization of ℓ_{p} -spaces by [6].

Let ℓ_0 denote the set of all infinite sequences of complex numbers with only finitely many non-zero elements. A norm $\|\cdot\|$ on ℓ_0 is called absolute if $\|\{z_n\}_{n=1}^{\infty}\|=\|\{|z_n|\}_{n=1}^{\infty}\|$ for all $\{z_n\}_{n=1}^{\infty}\in\ell_0$, and normalized if $\|e_n\|=1$ for all $n=1,2,\ldots$, where $e_n=(0,\ldots,0,\frac{n}{1},0,\ldots)\in\ell_0$. We remark that every absolute normalized norm is monotone: if $|z_i|\leq |w_i|$ for every $i=1,2,\cdots$, then $\|\{z_n\}_{n=1}^{\infty}\|\leq \|\{w_n\}_{n=1}^{\infty}\|$, where $\{z_n\}_{n=1}^{\infty},\ \{w_n\}_{n=1}^{\infty}\in\ell_0$.

Let AN_{∞} be the family of all absolute normalized norms on ℓ_0 , and put

$$\Delta_{\infty} = \left\{ t = \{t_n\}_{n=1}^{\infty} \in \ell_0 : t_n \ge 0, \sum_{n=1}^{\infty} t_n = 1 \right\}.$$

For every $\|\cdot\| \in AN_{\infty}$, we define the function on Δ_{∞} such that

$$\psi(t) = ||t|| \ (t = \{t_n\}_{n=1}^{\infty} \in \Delta_{\infty}), \tag{2.1}$$

then ψ is a continuous convex function on Δ_{∞} satisfying the following conditions:

$$\psi(e_n) = 1 \tag{A_0}$$

$$\psi(t) \ge (1 - t_n)\psi\left(\frac{t_1}{1 - t_n}, \dots, \frac{t_{n-1}}{1 - t_n}, 0, \frac{t_{n+1}}{1 - t_n}, \dots\right)$$
 (A_n)

for all n = 1, 2, ... and every $t = \{t_n\}_{n=1}^{\infty} \in \Delta_{\infty}$ with $t_n \neq 1$, where $e_n = (0, ..., 0, 1, ...) \in \ell_0$.

Conversely, we define the set Ψ_{∞} of all continuous convex functions on Δ_{∞} satisfying the conditions (A_n) for all $n = 0, 1, 2, \ldots$ For any $\psi \in \Psi_{\infty}$, we define the mapping on ℓ_0 :

$$\begin{aligned}
&\|\{z_n\}_{n=1}^{\infty}\|_{\psi} \\
&= \begin{cases}
\left(\sum_{j=1}^{\infty} |z_j|\right) \psi\left(\frac{|z_1|}{\sum_{j=1}^{\infty} |z_j|}, \dots, \frac{|z_n|}{\sum_{j=1}^{\infty} |z_j|}, \dots\right) & (\{z_n\}_{n=1}^{\infty} \neq 0) \\
0 & (\{z_n\}_{n=1}^{\infty} = 0),
\end{aligned}$$

then $\|\cdot\|_{\psi} \in AN_{\infty}$ and it satisfies (2.1).

In fact, AN_{∞} and Ψ_{∞} are in a one-to-one correspondence under the equation (2.1).

Using this, we introduce the ℓ_{ψ} -spaces. Let ℓ_{∞} is the Banach space of all bounded infinite sequences of complex numbers. For any $\psi \in \Psi_{\infty}$, we define the space ℓ_{ψ} by

$$\ell_{\psi} = \left\{ \{z_n\}_{n=1}^{\infty} \in \ell_{\infty} : \lim_{n \to \infty} \|(z_1, \dots, z_n, 0, 0, \dots)\|_{\psi} < \infty \right\}.$$
 (2.2)

Then ℓ_{ψ} is a Banach space with the norm

$$\|\{z_n\}_{n=1}^{\infty}\|_{\psi} = \lim_{n\to\infty} \|(z_1,\ldots,z_n,0,0,\ldots)\|_{\psi}$$

Next, we consider the dual space of ℓ_{ψ} . Let $\psi \in \Psi_{\infty}$. For any $\{z_n\}_{n=1}^{\infty} \in \ell_0$, the dual norm of $\|\cdot\|_{\psi}$ is defined by following:

$$\|\{z_n\}\|_{\psi}^* = \sup \left\{ \left| \sum_{n=1}^{\infty} z_n w_n \right| : w = \{w_n\}_{n=1}^{\infty} \in \ell_0, \|w\|_{\psi} = 1 \right\}.$$

Then $\|\cdot\|_{\psi}^* \in AN_{\infty}$ and the corresponding convex function in Ψ_{∞} is given by

$$\psi^*(s) = \sup_{t \in \Delta_{\infty}} \frac{\sum_{n=1}^{\infty} s_n t_n}{\psi(t)} \ (s = \{s_n\}_{n=1}^{\infty} \in \Delta_{\infty}),$$

and $\|\cdot\|_{\psi}^* = \|\cdot\|_{\psi^*}$. Then

$$\ell_{\psi^*} = \left\{ \{w_n\}_{n=1}^{\infty} \in \ell_{\infty} : \lim_{n \to \infty} \|(w_1, \dots, w_n, 0, 0, \dots)\|_{\psi^*} < \infty \right\}$$

is also a Banach space with the norm

$$\|\{w_n\}_{n=1}^{\infty}\|_{\psi^*} = \lim_{n\to\infty} \|(w_1,\ldots,w_n,0,0,\ldots)\|_{\psi^*}.$$

Moreover we have the Generalized Hölder inequality:

$$\sum_{n=1}^{\infty} |z_n w_n| \le \|\{z_n\}_{n=1}^{\infty}\|_{\psi} \|\{w_n\}_{n=1}^{\infty}\|_{\psi^*}$$
(2.3)

for any $\{z_n\}_{n=1}^{\infty} \in \ell_{\psi}$ and any $\{w_n\}_{n=1}^{\infty} \in \ell_{\psi^*}$.

Now we note the ℓ_p -norm which is a good example of absolute normalized norms. For any $\{x_n\}_{n=1}^{\infty} \in \ell_0$, it is

$$\|\{z_n\}_{n=1}^{\infty}\|_p = \begin{cases} \left(\sum_{n=1}^{\infty} |z_n|^p\right)^{\frac{1}{p}} & (1 \le p < \infty) \\ \max_{1 \le n < \infty} |z_n| & (p = \infty), \end{cases}$$

and also for every $\|\cdot\| \in AN_{\infty}$, we have $\|\cdot\|_{\infty} \leq \|\cdot\| \leq \|\cdot\|_1$. In this case, $\psi = \psi_p \in \Psi_{\infty}$ is

$$\psi_p(t) = \begin{cases} \left(\sum_{n=1}^{\infty} t_n^p\right)^{\frac{1}{p}} & (1 \le p < \infty) \\ \max_{1 \le n < \infty} t_n & (p = \infty) \end{cases}$$

for any $t = \{t_n\}_{n=1}^{\infty} \in \Delta_{\infty}$. For any $\{z_n\}_{n=1}^{\infty} \in \ell_{\psi}$, a norm $\|\cdot\|_p = \|\cdot\|_{\psi_p}$ is

$$\|\{z_n\}_{n=1}^{\infty}\|_p = \begin{cases} \left(\sum_{n=1}^{\infty} |z_n|^p\right)^{\frac{1}{p}} & (1 \le p < \infty) \\ \sup_{1 \le n < \infty} |z_n| & (p = \infty), \end{cases}$$

and a dual norm $\|\cdot\|_p^* = \|\cdot\|_{\psi_p}^*$ is

$$\|\{z_n\}_{n=1}^{\infty}\|_p^* = \begin{cases} \left(\sum_{n=1}^{\infty} |z_n|^q\right)^{\frac{1}{q}} & (1
$$(2.4)$$$$

where 1/p + 1/q = 1. Thus ℓ_{ψ} is a generalization of ℓ_{p} .

3. Main result and corollary I

Let $(X, \|\cdot\|)$ be a Banach space. For any $\psi \in \Psi_{\infty}$, we define the ψ -direct sums of X to be the space

$$\ell_{\psi}(X) = \{ \{x_n\}_{n=1}^{\infty} \subset X : \{ \|x_n\| \}_{n=1}^{\infty} \in \ell_{\psi} \},\,$$

where ℓ_{ψ} is (2.2). Then it is a Banach space with the norm $\|\{x_n\}_{n=1}^{\infty}\|_{\psi} = \|\{\|x_n\|\}_{n=1}^{\infty}\|_{\psi}$ (cf. [11]). We first prove the following result.

Theorem 3.1. Let X be a Banach space, $\psi \in \Psi_{\infty}$ and $\{a_n\}_{n=1}^{\infty} \in \ell_{\infty}$. Then following conditions are equivalent:

- (i) for all $\{x_n\}_{n=1}^{\infty} \in \ell_{\psi}(X)$, $\sum_{n=1}^{\infty} a_n x_n$ converges in X and satisfies $\|\sum_{n=1}^{\infty} a_n x_n\| \le \|\{x_n\}_{n=1}^{\infty}\|_{\psi}$;
- (ii) $\{a_n\}_{n=1}^{\infty} \in \ell_{\psi^*} \text{ and satisfies } \|\{a_n\}_{n=1}^{\infty}\|_{\psi^*} \leq 1.$

Proof. If $\{a_n\}_{n=1}^{\infty}$ satisfies (ii), we remark that $\|(a_1,\ldots,a_n)\|_{\psi^*} \leq 1$ for all $n \in \mathbb{N}$. As in the proof of [3, Theorem 3.1], from the Generalized Hölder inequality (2.3), we have

$$\sum_{j=1}^{n} ||a_j x_j|| \le ||(x_1, \dots, x_n)||_{\psi}$$

for all $x_1, \ldots, x_n \in X$. Then we have (i).

Conversely, assume that $\{a_n\}_{n=1}^{\infty} \in \ell_{\infty}$ satisfies (i). For all fixed $n \in \mathbb{N}$, put $x_{n+1} = x_{n+2} = \cdots = 0$, then we have

$$\left\| \sum_{j=1}^{n} a_j x_j \right\| \le \| (x_1, \dots, x_n) \|_{\psi}.$$

From [3, Theorem 3.1], we have $||(a_1, \ldots, a_n)||_{\psi^*} \leq 1$ for all $n \in \mathbb{N}$. Hence $\{a_n\}_{n=1}^{\infty}$ holds (ii).

In this theorem, $\|\{a_n\}_{n=1}^{\infty}\|_{\psi^*} \leq 1$ is an element in the unit ball of $(\ell_{\psi}(X))^* = \ell_{\psi^*}(X)$, where $(\ell_{\psi}(X))^*$ is a dual space of $\ell_{\psi}(X)$.

From this theorem, we have a following corollary by putting $\psi = \psi_p$ and using (2.4).

Corollary 3.1. Let X be a Banach space, $p \in \mathbb{R}$ with p > 1, and $\{a_n\}_{n=1}^{\infty} \in \ell_{\infty}$. Then following conditions are equivalent:

- (i) for all $\{x_n\}_{n=1}^{\infty} \in \ell_p(X)$, $\sum_{n=1}^{\infty} a_n x_n$ converges in X and satisfies $\|\sum_{n=1}^{\infty} a_n x_n\|^p \le \|\{x_n\}_{n=1}^{\infty}\|^p$; (ii) $\{a_n\}_{n=1}^{\infty} \in \ell_q \text{ and satisfies } \|\{a_n\}_{n=1}^{\infty}\|_q \le 1$, where 1/p + 1/q = 1.

A set $\widetilde{\Psi}_{\infty}$ of concave functions

In this section, we generalize the result of a set $\widetilde{\Psi}$ of concave functions which gave by [7], and introduce the $\ell_{\tilde{\psi}}$ -space.

For each $n \in \mathbb{N}$ with $n \geq 2$, put

$$\Delta_n = \left\{ (t_1, t_2, \dots, t_n) \in \mathbb{R}^n : t_1, t_2, \dots, t_n \ge 0, \sum_{j=1}^n t_j = 1 \right\}.$$

Let $\widetilde{\Psi}_n$ denote the family of all continuous concave functions for $\widetilde{\psi}$ on Δ_n with

$$\tilde{\psi}(1,0,\ldots,0) = \tilde{\psi}(0,1,0,\ldots,0) = \cdots = \tilde{\psi}(0,\ldots,0,1) = 1.$$

Let us define the mapping $\|\cdot\|_{\tilde{\psi}}$ on \mathbb{C}^n by

$$\|(z_1,\ldots,z_n)\|_{\tilde{\psi}} = \begin{cases} (|z_1| + \cdots + |z_n|)\tilde{\psi}\left(\frac{|z_1|}{|z_1|+\cdots+|z_n|},\ldots,\frac{|z_n|}{|z_1|+\cdots+|z_n|}\right) \\ ((z_1,\ldots,z_n) \neq (0,\ldots,0)) \\ 0 & ((z_1,\ldots,z_n) = (0,\ldots,0)). \end{cases}$$

This mapping is monotone since the following proposition holds.

Proposition 4.1. For any $(p_1, \ldots, p_n), (a_1, \ldots, a_n) \in \mathbb{C}^n$ such that $0 \le p_i \le a_i$ $(i = 1, \ldots, n)$ $1, \ldots, n$), we have that

$$\|(p_1,\ldots,p_n)\|_{\tilde{\psi}} \le \|(a_1,\ldots,a_n)\|_{\tilde{\psi}}.$$
 (4.1)

Proof. We first show that, if $0 \le p_1 < a_1$, then

$$\|(p_1, p_2, \dots, p_n)\|_{\tilde{\psi}} \le \|(a_1, p_2, \dots, a_n)\|_{\tilde{\psi}}.$$
 (4.2)

This is, we show that if $0 \le p_1 < a_1$

$$(p_1 + p_2 + \dots + p_n)\tilde{\psi}\left(\frac{p_1}{p_1 + p_2 + \dots + p_n}, \dots, \frac{p_n}{p_1 + p_2 + \dots + p_n}\right)$$

$$\leq (a_1 + p_2 + \dots + p_n)\tilde{\psi}\left(\frac{a_1}{a_1 + p_2 + \dots + p_n}, \dots, \frac{p_n}{a_1 + p_2 + \dots + p_n}\right).$$

Take any $(s_1, \ldots, s_n) \in \Delta_n$ such that $s_1 + \cdots + s_n = 1$, and consider the line segment

$$\left[(1,0,\ldots,0), \left(0, \frac{s_2}{1-s_1}, \ldots, \frac{s_n}{1-s_1} \right) \right]$$

in Δ_n . For any real number λ such that $1 < \lambda \le 1/(1 - s_1)$, we put

$$(s'_1, s'_2, \dots, s'_n) = (1, 0, \dots, 0) + \lambda \{(s_1, s_2, \dots, s_n) - (1, 0, \dots, 0)\}.$$

Then we have

$$(s_1, s_2, \dots, s_n) = \frac{1}{\lambda}(s'_1, s'_2, \dots, s'_n) + \left(1 - \frac{1}{\lambda}\right)(1, 0, \dots, 0).$$

By the concavity of $\tilde{\psi}$,

$$\tilde{\psi}(s_{1}, s_{2}, \dots, s_{n}) \geq \frac{1}{\lambda} \tilde{\psi}(s'_{1}, s'_{2}, \dots, s'_{n}) + \left(1 - \frac{1}{\lambda}\right) \tilde{\psi}(1, 0, \dots, 0)
\geq \frac{1}{\lambda} \tilde{\psi}(s'_{1}, s'_{2}, \dots, s'_{n})
= \frac{1 - s_{1}}{1 - s'_{1}} \tilde{\psi}(s'_{1}, s'_{2}, \dots, s'_{n}).$$

Thus, we have

$$\frac{\tilde{\psi}(s_1, s_2, \dots, s_n)}{1 - s_1} \ge \frac{\tilde{\psi}(s_1', s_2', \dots, s_n')}{1 - s_1'}.$$
(4.3)

Since $0 \le p_1 < a_1$, we put

$$(s_{1}, s_{2}, \dots, s_{n})$$

$$= \left(\frac{a_{1}}{a_{1} + p_{2} + \dots + p_{n}}, \frac{p_{2}}{a_{1} + p_{2} + \dots + p_{n}}, \dots, \frac{p_{n}}{a_{1} + p_{2} + \dots + p_{n}}\right),$$

$$(s'_{1}, s'_{2}, \dots, s'_{n})$$

$$= \left(\frac{p_{1}}{p_{1} + p_{2} + \dots + p_{n}}, \frac{p_{2}}{p_{1} + p_{2} + \dots + p_{n}}, \dots, \frac{p_{n}}{p_{1} + p_{2} + \dots + p_{n}}\right),$$

$$\lambda = \frac{a_{1} + p_{2} + \dots + p_{n}}{p_{1} + p_{2} + \dots + p_{n}} > 1$$

respectively in (4.3). Thus, we have

$$\frac{\tilde{\psi}\left(\frac{a_{1}}{a_{1}+p_{2}+\cdots+p_{n}}, \frac{p_{2}}{a_{1}+p_{2}+\cdots+p_{n}}, \dots, \frac{p_{n}}{a_{1}+p_{2}+\cdots+p_{n}}\right)}{1-\frac{a_{1}}{a_{1}+p_{2}+\cdots+p_{n}}}$$

$$\geq \frac{\tilde{\psi}\left(\frac{p_{1}}{p_{1}+p_{2}+\cdots+p_{n}}, \frac{p_{2}}{p_{1}+p_{2}+\cdots+p_{n}}, \dots, \frac{p_{n}}{p_{1}+p_{2}+\cdots+p_{n}}\right)}{1-\frac{p_{1}}{p_{1}+p_{2}+\cdots+p_{n}}}.$$

This implies (4.2). Similarly, we can show that for $2 \le i \le n$,

$$\|(p_1,\ldots,p_{i-1},p_i,\ldots,p_n)\|_{\tilde{\psi}} \le \|(a_1,\ldots,p_{i-1},a_i,\ldots,a_n)\|_{\tilde{\psi}}.$$

Therefore, we have (4.1).

We define the set $\widetilde{\Psi}_{\infty}$ of all continuous concave functions on Δ_{∞} satisfying the following conditions: if $\widetilde{\psi} \in \widetilde{\Psi}_{\infty}$, then $\widetilde{\psi}(e_n) = 1$ for all n = 1, 2, ..., where $e_n = (0, ..., 0, 1, 0, ...) \in \ell_0$. For any $\widetilde{\psi} \in \widetilde{\Psi}_{\infty}$, we define a mapping $\|\cdot\|_{\widetilde{\psi}}$ on ℓ_0 such that

$$\begin{aligned}
&\|\{z_n\}_{n=1}^{\infty}\|_{\tilde{\psi}} \\
&= \begin{cases}
&(\sum_{j=1}^{\infty} |z_j|)\tilde{\psi}\left(\frac{|z_1|}{\sum_{j=1}^{\infty} |z_j|}, \dots, \frac{|z_n|}{\sum_{j=1}^{\infty} |z_j|}, \dots\right) & (\{z_n\}_{n=1}^{\infty} \neq 0) \\
&0 & (\{z_n\}_{n=1}^{\infty} = 0).
\end{aligned}$$

Using this, we introduce the $\ell_{\tilde{\psi}}$ -spaces. Let ℓ_{∞} is the Banach space of all bounded infinite sequences of complex numbers. For any $\tilde{\psi} \in \widetilde{\Psi}_{\infty}$, we define the space $\ell_{\tilde{\psi}}$ by

$$\ell_{\tilde{\psi}} = \left\{ \{z_n\}_{n=1}^{\infty} \in \ell_{\infty} : \lim_{n \to \infty} \|(z_1, \dots, z_n, 0, 0, \dots)\|_{\tilde{\psi}} < \infty \right\}.$$

For any $\{z_n\}_{n=1}^{\infty} \in \ell_{\tilde{\psi}}$, we define the mapping

$$\|\{z_n\}_{n=1}^{\infty}\|_{\tilde{\psi}} = \lim_{n\to\infty} \|(z_1,\ldots,z_n,0,0,\ldots)\|_{\tilde{\psi}}.$$

This mapping is not a norm, however, we have the generalized inverse Minkowski inequality:

$$\|\{|z_n| + |w_n|\}_{n=1}^{\infty}\|_{\tilde{\psi}} \ge \|\{|z_n|\}_{n=1}^{\infty}\|_{\tilde{\psi}} + \|\{|w_n|\}_{n=1}^{\infty}\|_{\tilde{\psi}}$$

$$(4.4)$$

for any $\{z_n\}_{n=1}^{\infty}$, $\{w_n\}_{n=1}^{\infty} \in \ell_{\tilde{\psi}}$. For all $p \in \mathbb{R}$ with 0 ,

$$\tilde{\psi_p}(t) = \left(\sum_{n=1}^{\infty} t_n^{\ p}\right)^{\frac{1}{p}}$$

is an element of $\widetilde{\Psi}_{\infty}$ and $\|\{z_n\}_{n=1}^{\infty}\|_{\widetilde{\psi}_p} = \|\{z_n\}_{n=1}^{\infty}\|_p = (\sum_{n=1}^{\infty} |z_n|^p)^{\frac{1}{p}}$.

5. Main result and corollary II

Let $(X, \|\cdot\|)$ be a Banach space. For any $\tilde{\psi} \in \widetilde{\Psi}_{\infty}$, we define the $\tilde{\psi}$ -direct sums of X to be the space

$$\ell_{\tilde{\psi}}(X) = \left\{ \{x_n\}_{n=1}^{\infty} \subset X : \{\|x_n\|\}_{n=1}^{\infty} \in \ell_{\tilde{\psi}} \right\},\,$$

with the mapping $\|\{x_n\}_{n=1}^{\infty}\|_{\tilde{\psi}} = \|\{\|x_n\|\}_{n=1}^{\infty}\|_{\tilde{\psi}}$. We have a following result.

Theorem 5.1. Let X be a Banach space, $\tilde{\psi} \in \widetilde{\Psi}_{\infty}$ and $\{a_n\}_{n=1}^{\infty} \in \ell_{\infty}$. Then following conditions are equivalent:

- (i) for all $\{x_n\}_{n=1}^{\infty} \in \ell_{\tilde{\psi}}(X)$, $\sum_{n=1}^{\infty} a_n x_n$ converges in X and satisfies $\|\sum_{n=1}^{\infty} a_n x_n\| \leq \|\{x_n\}_{n=1}^{\infty}\|_{\tilde{\psi}};$
- (ii) $\sup_{1 \le n < \infty} |a_n| \le 1$.

Proof. If $\{a_n\}_{n=1}^{\infty}$ satisfies (ii), we remark that $\max\{|a_1|,\ldots,|a_n|\} \leq 1$ for all $n \in \mathbb{N}$. As in the proof of [3, Theorem 3.2], from the generalized inverse Minkowski inequality (4.4), we have

$$\sum_{j=1}^{n} \|a_j x_j\| \le \|(x_1, \dots, x_n)\|_{\tilde{\psi}}$$

for all $x_1, \ldots, x_n \in X$. Then we have (i).

Conversely, assume that $\{a_n\}_{n=1}^{\infty} \in \ell_{\infty}$ satisfies (i). For all fixed $n \in \mathbb{N}$, put $x_{n+1} = x_{n+2} = \cdots = 0$, then we have

$$\left\| \sum_{j=1}^n a_j x_j \right\| \le \|(x_1, \dots, x_n)\|_{\tilde{\psi}}.$$

From [3, Theorem 3.2], we have $\max\{|a_1|, \ldots, |a_n|\} \leq 1$ for all $n \in \mathbb{N}$. Hence $\{a_n\}_{n=1}^{\infty}$ holds (ii).

From this theorem, we have a following corollary by putting $\tilde{\psi} = \tilde{\psi}_p$, where 0 .

Corollary 5.1. Let X be a Banach space, $p \in \mathbb{R}$ with $0 and <math>\{a_n\}_{n=1}^{\infty} \in \ell_{\infty}$. Then following conditions are equivalent:

- (i) for all $\{x_n\}_{n=1}^{\infty} \in \ell_p(X)$, $\sum_{n=1}^{\infty} a_n x_n$ converges in X and satisfies $\|\sum_{n=1}^{\infty} a_n x_n\|^p \le \|\{x_n\}_{n=1}^{\infty}\|^p$;
- (ii) $\sup_{1 \le n < \infty} |a_n| \le 1$.

References

- [1] S. Abramovich, S. Ivelić and J. Pečarić, Extension of the Euler-Lagrange identity by superquadratic power functions, International J. Pure and Applied Math. 74 (2012), 209–220.
- [2] F. Dadipour, M.S. Moslehian, J.M. Rassias and S.-E. Takahasi, *Characterizations of a generalized triangle inequality in normed spaces*, Nonlinear Analysis **75** (2012), 735–741.
- [3] T. Izumida, K.-I. Mitani and K.-S. Saito, Another approach to characterizations of generalized triangle inequalities in normed spaces, Cent. Eur. J. Math. 12 (2014), 1615–1623.
- [4] M. Kato, K.-S. Saito and T. Tamura, On ψ-direct sums of Banach spaces and convexity, J. Aust. Math. Soc. 75 (2003), 413–422.
- [5] K.-I. Mitani, S. Oshiro and K.-S. Saito, Smoothness of ψ -direct sums of Banach spaces, Math. Inequal. Appl. 8 (2005), 147–157.

- [6] K.-I. Mitani and K.-S. Saito, On generalized ℓ_p -spaces, Hiroshima Math. J. 37 (2007), 1–12.
- [7] L. Nikolova, L.-E. Persson and S. Varošanec, The Beckenbach-Dresher inequality in the ψ-direct sums of spaces and related results, J. Inequal. Appl. 2012, 2012:7, 14pp.
- [8] K.-S. Saito, M. Kato and Y. Takahashi, Von Neumann-Jordan constant of absolute normalized norms on \mathbb{C}^2 , J. Math. Anal. Appl. **244** (2000), 515–532.
- [9] K.-S. Saito, M. Kato and Y. Takahashi, Absolute norms on \mathbb{C}^n , J. Math. Anal. Appl. **252** (2000), 879–905.
- [10] S.-E. Takahasi, J.M. Rassias, S. Saitoh and Y. Takahashi, Refined generalizations of the triangle inequality on Banach spaces, Math. Inequal. Appl. 13 (2010), 733–741.
- [11] T. Zachariades, On ℓ_{ψ} spaces and ψ -direct sums of Banach space, Rocky Mountain J. Math. **41** (2011), 971–997.

Maki high school, Niigata 953-0044, Japan E-mail address: izumida.tamotsu@nein.ed.jp

Received April 4, 2015