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ON SOME GENERALIZED TRIANGLE INEQUALITIES
AND /,-SPACES

TAMOTSU IZUMIDA

ABSTRACT. In this paper, we consider a generalized triangle inequality of the
following type:
larzy + - 4+ a1z, ||P < |lz1||P+ - + |z (21,..., 20 € X),

where (X, ]| - ||) is a normed space, (a1,...,a,) € C” and p > 0. By using
generalized £),-spaces, we present a characterization of above inequality for infinite
sequences {z,}5; C X.

1. Introduction

The triangle inequality plays a fundamental role in establishing various properties of
a normed linear space. In this paper, for a normed linear space (X, ||-||), we consider
a following generalized triangle inequality which is involved with the Euler-Lagrange
type identity: for any fixed n € N with n > 2 and fixed p € R with p > 0,
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where (a1, ..., a5, A\, fi1, ..., pn) € C" x R X R™. Several authors have been studying
its characterizations (cf. [1], [2] and [10]). In [3], by using t-direct sums of Banach

[

(x1,...,2, € X), (1.1)

spaces (cf. [4]), we characterized all (ay,...,a,) € C" which satisfy a special case of
(1.1):

a1z + -+ + apxy||” < ||lz||P 4+ -+ ||aall? (21, .., 2, € X). (1.2)
So we gave another approach to characterizations of all (u1,...,u,) € R™ which

satisfy the following inequality:

[+ [[7 [

a1z + - + apz,||P < +-

1 Hn

(X1, ..., 2, € X).

In this paper, our aim is to present a characterization of (1.2) for infinite sequences
{z,}52, C X by using generalized £,-spaces.
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2. Preliminaries

In this section, we summarize basic results of ¢,-spaces which is a generalization of
¢,-spaces by [6].

Let ¢y denote the set of all infinite sequences of complex numbers with only
finitely many non-zero elements. A norm || -|| on ¢, is called absolute if ||{z,}22,] =
I{|znl}5, || for all {2z, }2°, € ly, and normalized if |le,, || = 1 foralln = 1,2,. .., where

n
en, = (0,...,0,1,0,...) € {5. We remark that every absolute normalized norm is
monotone: if |z;| < |w;| for every i = 1,2,---, then ||{z,}72,] < [{wn}32,]|, where

{Zn}?zozla {wn}zozl S 60-
Let AN, be the family of all absolute normalized norms on ¢y, and put

Ay = {t:{tn};?l €loity>0,) t,= 1}.

n=1
For every || - || € ANy, we define the function on A, such that
U(t) = It (¢ =A{ta}ols € Ax), (2.1)
then ) is a continuous convex function on A, satisfying the following conditions:
Plen) =1 (Ao)
tl tn,1 tn+1

t)y>(1—-t, ey ,0, . A,
002 (=t (12 ) (A

foralln =1,2,... and every t = {t,}32, € A with ¢, # 1, where e, = (0,...,0, 1
,0,...) € L.

Conversely, we define the set U, of all continuous convex functions on A, sat-
isfying the conditions (A,) for all n = 0,1,2,.... For any ¢ € VU, we define the
mapping on fy:

[REY oy [0

(Tl v (s o) e £0)

0 {zn}nz = 0),
then || - ||y € AN and it satisfies (2.1).
In fact, AN, and ¥, are in a one-to-one correspondence under the equation
(2.1).
Using this, we introduce the £,-spaces. Let (., is the Banach space of all bounded
infinite sequences of complex numbers. For any ¢ € W, we define the space ¢, by

0y = {{zn}ff:l € b Tim [[(z1, -, 20, 0,0,. )y < oo}. (2.2)



Then £, is a Banach space with the norm

||{zn}$zo:1||1/} = lim ||(Zlv"'727170707"')”1/1‘
n—00

Next, we consider the dual space of ;. Let ¢p € ... For any {z,}7°, € {o, the
dual norm of || - ||, is defined by following:

€zl = sup { S s,

w = {wa s € b, [lwlly = 1} :

n=1
Then || - [}, € ANy and the corresponding convex function in W, is given by
D Sntn
P*(s) = sup =—— (s = {sp}ro; € An),
( ) N w(t) ( { } 1 )
and || - [, = || - |ly=- Then
lye = {{wn};?f’:l € loo: lim ||(wr, ..., w00, 0,0,.. |y < oo}
n—oo
is also a Banach space with the norm
||{wn}20:1| Yr = nlggo H(wlv oy W, 0,0, )| -
Moreover we have the Generalized Holder inequality:
Y lzwal < Izndilly Hwn oyl (2.3)
n=1

for any {z,},>, € £, and any {w, }32, € ly-.
Now we note the £,-norm which is a good example of absolute normalized norms.
For any {z,}52, € {p, it is

(5, [zP)r (1< p<o0)

{zn}nilly =
Maxi<n<oo |2n| (P = 00),
and also for every || - || € AN, we have || - oo < || || < || - |1 In this case,
Y =1, € Uy is
(St (1<p<oo)
Yy(t) =
MaXi<p<ooln (P = 00)
for any ¢ = {t,}52, € As. For any {z,}72, € £y, anorm || - ||, = || - ||y, is
(Eilzl)?  (1<p <o)
{zn}nzilly =

SUP| <pcco | 20| (P = 00),



and a dual norm || - [[; = [/ - [[;, is

S

(Xnt [zl (1 <p < o0)
{zntnzally = (2.4)

Sup1§n<oo |Zn| (p = 1)’

where 1/p+1/q = 1. Thus ¢ is a generalization of /,.

3. Main result and corollary I

Let (X,]| - ||) be a Banach space. For any ¢ € W, we define the ¢-direct sums of
X to be the space

Cp(X) = {{zn}ily C X {llanll}7l € 6o}

where £y is (2.2). Then it is a Banach space with the norm |[{z,, }52, |l = [[{|lzn ]l }oZq o
(cf. [11]). We first prove the following result.

Theorem 3.1. Let X be a Banach space, ¢ € Vo and {a,};2, € lo. Then
following conditions are equivalent :

(i) for all {xn}, € €y(X), D0 anx, converges in X and satisfies

12y annll < [{wn 3o llos
(ii) {an}22, € by~ and satisfies ||[{an}i,

o <1

Proof. If {a,};2, satisfies (ii), we remark that ||(ai,...,a,)|ly» < 1 for all n € N.
As in the proof of [3, Theorem 3.1], from the Generalized Hélder inequality (2.3),
we have

n
> lajagll < 12, 2n) |l
j=1

for all zy,...,z, € X. Then we have (i).
Conversely, assume that {a,}5°, € {, satisfies (i). For all fixed n € N, put
Tpt1l = Tpio = -+ = 0, then we have

n
E a;T 5
j=1

From [3, Theorem 3.1], we have ||(ai,...,an)||y+ <1 for all n € N. Hence {a,};°,
holds (ii). O

S ||(Zl§'1, s 7xn)||1/)‘

In this theorem, |[{a,}32 [y < 1 is an element in the unit ball of (£;(X))* =
Ly« (X), where (£,(X))* is a dual space of £, (X).

From this theorem, we have a following corollary by putting ¢ = ¢, and using
(2.4).




Corollary 3.1. Let X be a Banach space, p € R with p > 1, and {a,}5°, € lw.

Then following conditions are equivalent :
(i) for all {x,}°, € 0,(X), Y07 anx, converges in X and satisfies

n=1

1>t @nalP? < [[{zn o |1P;
(i) {an}s>, € ¢, and satisfies ||{an}224llq < 1, where 1/p+1/q = 1.

4. A set \Iloo of concave functions

In this section, we generalize the result of a set U of concave functions which gave
by [7], and introduce the £;-space.
For each n € N with n > 2, put

n
A, = {(tl,tg,...,tn) eR" :ty,ty,...,t, ZO,Zt] = 1}
j=1

Let \Tfn denote the family of all continuous concave functions for 1; on A, with

¥(1,0,...,0)=4(0,1,0,...,0) = --- =(0,...,0,1) = 1.
Let us define the mapping || - [|; on C* by
7 |21 E2
<|Zl‘ T+t ‘Zn‘)w <|21|+-'-+|an’ ) |z1|+-~-+\zn|>
(2155 2a)llg = ((z1,...,20) # (0,...,0))
0 ((z1,--+,20) = (0,...,0)).

This mapping is monotone since the following proposition holds.

Proposition 4.1. For any (p1,...,pn), (a1,...,a,) € C" such that 0 < p; < a; (i =
1,...,n), we have that

[(p1, -5 pa)llg < llar, - an)llg- (4.1)
Proof. We first show that, if 0 < p; < ay, then
(1, P2, - - 0l < Ml(a1, p2- .. an)llg- (4.2)

This is, we show that if 0 < p; < a4

~ D1 Pn
pr+p +-~-+pnw( )
(1 2 ) p1+p2+ -+ pn pP1+p2+ -+ DPn

~ aq Pn
_(a1+p2+ +p )w (Cll+p2+"'+pn a1+p2+...+pn>

Take any (s1,...,5,) € A, such that s; +---+s, = 1, and consider the line segment

59 Sn
1,0,...
{( 707 70)7 (07 1 _ Sl? ) 1 _ 81):|




in A,. For any real number X such that 1 < A <1/(1 — s1), we put
(81,85, ...,8)=(1,0,...,0) + M{(s1,82,...,8,) — (1,0,...,0)}.

Then we have
1 1
(81,82, -y 8n) = X(s’l,s’z,...,sg) - (1 — X) (1,0,...,0).

By the concavity of 1;,

~ 1 -~ 1\ -~
P(81,82,. .., 8,) > ng(sll,sg,...,s:l)—l—(1—X>@/J(1,O,...,O)
1~ rot /
> XQp(Sl?SQ""aSn)
1—s1 -~
- 1_—(9/17#(8,178/27"'78/71,)‘

Thus, we have

(51,525, 8n) _ (s, 8h, ..., 8.

1—81 1-8’1

Since 0 < p; < a1, we put

(51,82, .. .,Sn)

_ ay b2 Pn
ar+patdtp artpatotp @ tpattp)

(8,85,...,8)

:( ! P2 Pn )
Prtpatetpn prtpettpe it pettp)
a DR n
_ G pat ey
pLtp2t -+

respectively in (4.3). Thus, we have

QL ( a1 P2 Pn )
a1+p2+-+pn’ a1+p2totpn’ T art+p2ttpn
S ¢ B
ai1+p2+--+pn
1; ( P1 P2 Pn )
> p1+p2t-+pn’ prpettpn’ 7 prtpattpn
- I 1 S ’
P1+p2+-+pn

This implies (4.2). Similarly, we can show that for 2 <i <mn,

||(p17 vy Pi—15Diy - - - apn>”¢~, S H(ala vy Die1y Gy - :an)Hw-
Therefore, we have (4.1).

(4.3)



We define the set U, of all continuous concave functions on A satisfying the
following conditions: if ¢ € U, then ¢(e,) = 1 for all n = 1,2,..., where e, =

(n) -~
(0,...,0,1,0,...) € fy. For any ¢ € ¥, we define a mapping || - ||; on £y such
that

{zn il

(500 (s s Hadi #0)

0 ({zntnzy = 0).
Using this, we introduce the £;-spaces. Let (o is the Banach space of all bounded

infinite sequences of complex numbers. For any ¢ € \Tfoo, we define the space £; by
(= {{zn};:;l € loot lim (21, 20,0,0,.) | < oo}.
For any {2,}72, € {;, we define the mapping

||{Zn}?:1’|qﬁ = nh_{IOlo H(Zlv oy 20, 0,0, )HJ;

This mapping is not a norm, however, we have the generalized inverse Minkowski
inequality:

[zl + [wnl}oZilly = [{lzal3nallg + Hlwal}oZallg (4.4)
for any {2, }7%;, {wn}52; € ;. For all p € R with 0 <p <1,

Golt) = (Z t)

is an element of Woo and [[{z,}721 115, = {21321l = 252y [2al7) 7

B =

5. Main result and corollary 11

Let (X, | -||) be a Banach space. For any ¢ € U, we define the ¢-direct sums of
X to be the space

03(X) = {{za}ols € X {llzallizs € 65}

with the mapping |[{z,}72,[l; = [[{[|znll}ol]l ;- We have a following result.

Theorem 5.1. Let X be a Banach space, ¥ € Vo and {a,}2, € lsy. Then

following conditions are equivalent :
(i) for all {z,}52, € £5(X), Y202 antn converges in X and satisfies

1220 annll < [H{n}oallg:
(11> Sup1§n<oo |CLn’ S L.



Proof. 1f {a,}>2, satisfies (ii), we remark that max{|ai|,...,|a,|} < 1 for all n €
N. As in the proof of [3, Theorem 3.2], from the generalized inverse Minkowski
inequality (4.4), we have

n
DNzl < (e )l
j=1

for all zy,...,2, € X. Then we have (i).
Conversely, assume that {a,}32, € (. satisfies (i). For all fixed n € N, put
Tpi1 = Tpio = -+ =0, then we have

n

E :ajxj

J=1

<Nzl

From [3, Theorem 3.2], we have max{|a1|,...,|a,|} < 1foralln € N. Hence {a, }5°,
holds (ii). O

From this theorem, we have a following corollary by putting 1) = @/;p, where
0<p<l.

Corollary 5.1. Let X be a Banach space, p € R with 0 < p <1 and {a,}5°; € lw.
Then following conditions are equivalent :

(i) for all {z,}2, € 0,(X), D07 anxy converges in X and satisfies

1220 anzall” < {2} a7
(11) Sup1§n<oo |an’ S 1.
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