CORRIGENDUM TO "BI-UNIQUE RANGE SETS FOR MEROMORPHIC FUNCTIONS" [NIHONKAI MATH. J. 24 (2013) 121-134]

ABHIJIT BANERJEE

1. Corrigendum of the paper

There is a gap in the analysis in Subcase 1.2.1 of the proof of Theorem 1.1 in page number 130 line numbers 15-22 from top. In Subcase 1.2.1 in the case of $\frac{A}{C}=\frac{1}{c}$ using the second fundamental theorem we wrote

$$
\begin{aligned}
& (n-1) T(r, f) \\
\leq & \bar{N}(r, 0 ; f)+\bar{N}(r, 1 ; f)+\bar{N}(r, \infty ; f)+\bar{N}\left(r, \frac{1}{c} ; F\right)+S(r, f) \\
\leq & \cdots
\end{aligned}
$$

Here in the very beginning, at the time of using the second fundamental theorem we counted distinct 1-points of f twice once in $\bar{N}(r, 1 ; f)$ and other in $\bar{N}\left(r, \frac{1}{c} ; F\right)$. This is the violation of the second fundamental theorem.

So Page number 130 line numbers 15-22 from top will be replaced by the following arguments :-

Next suppose $\frac{A}{C}=\frac{1}{c}$. Then

$$
F-\frac{A}{C} \equiv \frac{B C-A D}{C(C G+D)}
$$

i.e.,

$$
(f-1)^{3} Q_{n-3}(f) \equiv \frac{B C-A D}{C(C G+D)}
$$

If there are some 1 points of f then the above expression implies that those 1-points of f will be poles of g which is a contradiction to the fact that f and g share the

[^0]set S_{1}. Therefore let 1 be an e.v.p of f. Now,
$$
Q_{n-3}(f)=\left(f-\alpha_{1}\right)\left(f-\alpha_{2}\right) \ldots\left(f-\alpha_{n-3}\right),
$$
where α_{i}^{\prime} 's $i=1,2, \ldots, n-3$ are distinct. Let any α_{i}-pt of f of order p be a pole of order q of g then we have
$$
p=n q \geq n .
$$

Now by the second fundamental theorem we have

$$
\begin{aligned}
& (n-2) T(r, f) \\
\leq & \bar{N}(r, 0 ; f)+\bar{N}(r, 1 ; f)+\bar{N}(r, \infty ; f)+\sum_{i=1}^{n-3} \bar{N}\left(r, \alpha_{i} ; f\right)+S(r, f) \\
\leq & \bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; f)+\frac{(n-3)}{n} T(r, f)+S(r, f) \\
\leq & \left(2+\frac{n-3}{n}\right) T(r, f)+S(r, f),
\end{aligned}
$$

which is a contradiction for $n \geq 5$.

Page number 131 the lastline before Subcase 1.2.3

Since we have proved that $F \equiv G$ and this is under $\Phi \not \equiv 0$. So $F \equiv G$ implies $\Phi \equiv 0$, we do not have to use Lemma 2.7. So line number 9 from bottom in Page number 131 i.e., "So by Lemma 2.7 we get $f \equiv g$." will be replaced by :-

So we have $\Phi \equiv 0$, a contradiction to the initial assumption.

Next in Page number 132 Subcase 2.2 there should be more subcases to be considered. Its elaborative form will be as follows :-
Subcase 2.2. Next suppose that f, g do not share $(0,0),(1,0)$. We now consider the following subcases.
Subcase 2.2.1. Suppose there exist z_{0}, z_{1} such that

$$
\begin{array}{cc}
f\left(z_{0}\right)=0, & g\left(z_{0}\right)=1 \\
f\left(z_{1}\right)=1, & g\left(z_{1}\right)=0
\end{array}
$$

i.e., none of 0 and 1 is an e.v.P. of f and g. We note that from $(F-1) \equiv A(G-1)$ we get $P(f)-c(1-A) \equiv A P(g)$. If $A \neq 1$, then $c(1-A) \neq 0$. If $c(1-A)=1$, then $A=\frac{c-1}{c}$. So $F-\frac{1}{c} \equiv \frac{c-1}{c} G$. At the point z_{0}, we have $F\left(z_{0}\right)=0$ and $G\left(z_{0}\right)=\frac{1}{c}$. Putting this values we obtain $\frac{-1}{c}=\frac{c-1}{c^{2}}$ which implies $c=\frac{1}{2}$, a contradiction. So $c(1-A) \neq 0,1$. Hence $P(f)-c(1-A)$ has simple zeros and consequently we have

$$
\left(f-\omega_{1}\right)\left(f-\omega_{2}\right) \ldots\left(f-\omega_{n}\right) \equiv A \frac{(n-1)(n-2)}{2} g^{n-2}(g-\gamma)(g-\delta),
$$

where $\omega_{i},(i=1,2, \ldots, n)$ be the distinct zeros of $P(f)-c(1-A)$. Since f, g share the set S_{1}, from above we get 0 is an e.v.P. of g, a contradiction.
Subcase 2.2.2. If no such z_{0} exists i.e., if 0 is an e.v.P. of f and 1 is an e.v.P. of g, then again as above from $\Phi \equiv 0$ we get

$$
\begin{equation*}
F \equiv A G+1-A \tag{1}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\frac{P(f)}{A} \equiv P(g)-\frac{c(A-1)}{A} . \tag{2}
\end{equation*}
$$

Clearly, $\frac{c(A-1)}{A} \neq 0$ as $c \neq 0$ and $A \neq 1$. Now if $\frac{c(A-1)}{A}=1$ then $A=\frac{c}{c-1}$. Since any 1 -point of f is 0 -point of g, so from (1) we have $\frac{1}{c}=1-A$ i.e., $A=\frac{c-1}{c}$. Therefore we get

$$
\frac{c-1}{c}=\frac{c}{c-1}
$$

which implies $c=\frac{1}{2}$, a contradiction. This implies $\frac{c(A-1)}{A} \neq 1$ and so $P(g)-\frac{c(A-1)}{A}$ has n distinct zeros β_{j}^{\prime}, say $(j=1,2, \ldots, n)$. Hence from (2) we have

$$
\frac{(n-1)(n-2)}{2 A} f^{n-2}(f-\gamma)(f-\delta) \equiv\left(g-\beta_{1}^{\prime}\right)\left(g-\beta_{2}^{\prime}\right) \cdots\left(g-\beta_{n}^{\prime}\right) .
$$

Now by the second fundamental theorem and noting that $T(r, g)=T(r, f)+O(1)$ we get

$$
\begin{aligned}
n T(r, g) & \leq \bar{N}(r, 0 ; g)+\bar{N}(r, 1 ; g)+\sum_{j=1}^{n} \bar{N}\left(r, \beta_{j}^{\prime} ; g\right)+S(r, g) \\
& \leq \bar{N}(r, 0 ; g)+\bar{N}(r, \gamma ; f)+\bar{N}(r, \delta ; f)+S(r, g) \\
& \leq 3 T(r, g)+S(r, g),
\end{aligned}
$$

which is a contradiction for $n \geq 4$.
Subcase 2.2.3. If no such z_{0}, z_{1} exist at all i.e., 0 and 1 both are Picard exceptional values of f and g then again as above we can obtain either (2) or

$$
\begin{equation*}
P(f)-c(1-A) \equiv A P(g) \tag{3}
\end{equation*}
$$

We prove that either the right hand side expression of (2) or the left hand side expression of (3) will have n distinct factors. Now if $\frac{c(A-1)}{A}=1$ i.e., the right hand side expression of (2) does not have n distinct factors, then $A=\frac{c}{c-1}$ and hence $c(1-A)=-A=\frac{c}{1-c} \neq 1$ as $c \neq \frac{1}{2}$. So $P(f)-c(1-A)$ has simple zeros and consequently we have $\left(f-\omega_{1}\right)\left(f-\omega_{2}\right) \cdots\left(f-\omega_{n}\right) \equiv A \frac{(n-1)(n-2)}{2} g^{n-2}(g-\gamma)(g-\delta)$. Therefore by the second fundamental theorem and again noting that $T(r, g)=$
$T(r, f)+O(1)$ we get

$$
\begin{aligned}
n T(r, f) & \leq \sum_{i=1}^{n} \bar{N}\left(r, \omega_{i} ; f\right)+\bar{N}(r, 0 ; f)+\bar{N}(r, 1 ; f)+S(r, f) \\
& \leq \bar{N}(r, \gamma ; g)+\bar{N}(r, \delta ; g)+S(r, f)
\end{aligned}
$$

which is a contradiction for $n \geq 3$.
(Abhijit Banerjee) Department of Mathematics, University of Kalyani, Nadia, West Bengal, India, 74123.

E-mail address: abanerjee_kal@yahoo.co.in, abanerjeekal@gmail.com

Received 3 February, 2015

[^0]: 2010 Mathematics Subject Classification. Primary 30D35.
 Key words and phrases. Meromorphic functions, uniqueness, weighted sharing, shared set.

