MULTIPLIERS OF A WANDERING SUBSPACE FOR A SHIFT INVARIANT SUBSPACE II #### TAKAHIKO NAKAZI ABSTRACT. Let M be a shift invariant subspace in the two variable Hardy space $H^2(\Gamma_z \times \Gamma_w)$. We study $\mathcal{M}(M_z) = \{\phi \in H^\infty(\Gamma_z \times \Gamma_w) : \phi M_z \subseteq M_z\}$ where $M_z = M \ominus zM$. We give several sufficient conditions for $\mathcal{M}(M_z) = H^\infty(\Gamma_w)$ where $H^\infty(\Gamma_w)$ is the one variable Hardy space. #### 1. Introduction Let Γ^2 be the torus that is the Cartesian product of two unit circle Γ in \mathbb{C} . For $1 \leq p \leq \infty$, the usual Lebesgue spaces, with respect to the Lebesgue measure m on Γ^2 , are denoted by $L^p = L^p(\Gamma^2)$, and $H^p = H^p(\Gamma^2)$ is the space of all f in L^p whose Fourier coefficients $$\hat{f}(j,\ell) = \int_{\Gamma^2} f(z,w) \bar{z}^j \bar{w}^\ell dm(z,w)$$ are zero as soon as at least one component of (j, ℓ) is negative. Then H^p is called a Hardy space. As $\Gamma^2 = \Gamma_z \times \Gamma_w$, $H^p(\Gamma_z)$ and $H^p(\Gamma_w)$ denote one variable Hardy spaces. $H^{\infty}(\Gamma_q)$ (or $L^{\infty}(\Gamma_q)$) is a weak * closure of polynomials of q (or q and \bar{q}). A closed subspace $M \subseteq H^2$ is said to be (shift) invariant if $zM \subseteq M$ and $wM \subseteq M$. Suppose $\zeta = \zeta(z, w)$ is in H^{∞} and $T_{\zeta}f = \zeta f$ ($f \in H^2$). Put $V_{\zeta} = T_{\zeta} \mid M$. Then $M = \overline{\operatorname{Ran}}V_{\zeta} \oplus \operatorname{Ker}V_{\zeta}^*$ where $\overline{\operatorname{Ran}}V_{\zeta}$ denotes the closure of the range of V_{ζ} and $\operatorname{Ker}V_{\zeta}^* = \operatorname{the}$ kernel of V_{ζ}^* . We write $M_{\zeta} = \operatorname{Ker}V_{\zeta}^*$ and $[\zeta M] = \overline{\operatorname{Ran}}V_{\zeta}$. We call M_{ζ} a wandering subspace and $\mathcal{M}(M_{\zeta}) = \{f \in H^{\infty} : fM_{\zeta} \subseteq M_{\zeta}\}$ the set of multipliers of M_{ζ} . In this paper we assume $M_{\zeta} \neq \langle 0 \rangle$. In the previous paper [5], we considered $\mathcal{M}(M_{\zeta})$ when $\zeta = z$. Then we show $\mathcal{M}(M_z) = H^{\infty}(\Gamma_w)$ when $\mathcal{M}(M_z) \cap H^{\infty}(\Gamma_w) \neq \mathbb{C}$. K. J. Izuchi pointed out me privately that the proof of Lemma 2 in the previous paper [5] has a gap. Lemma 2 can be proved only in a very special case. Hence Theorem in [5] has not shown yet in general. Therefore we would like to study the following problem for a nonzero invariant subspace M in H^2 . ²⁰¹⁰ Mathematics Subject Classification. Primary 47A15; Secondary 46J15. Key words and phrases. Wandering, multiplier, bidisc. I. If $\mathcal{M}(M_z)$ contains a nonconstant function then $\mathcal{M}(M_z) = H^{\infty}(\Gamma_w)$. II. It is true that $\mathcal{M}(M_z) \cap \mathcal{M}(M_w) = \mathbb{C}$. Of course, I shows II. In this paper, we use the following notations. Put $K_z = \{f \in M_z : w^{\ell} f \in M_z \text{ for } \ell = 1, 2, \cdots \}$. If $K_z = M_z$ then $\mathcal{M}(M_z)$ contains w. Z denotes the set of all integers and Z_+ denotes the set of nonnegative integers. If ϕ is a function in H^{∞} with absolute value one, ϕ is called inner. # 2. $\mathcal{M}(M_{\zeta})$ for general ζ In this section, $\mathcal{M}(M_{\zeta})$ is studied for arbitrary $\zeta = \zeta(z, w)$ in H^{∞} . **Proposition 1.** Let ϕ and ψ be nonconstant functions in H^{∞} . - (1) If $V_{\psi}^* V_{\phi} = V_{\phi} V_{\psi}^*$ then $\phi \in \mathcal{M}(M_{\psi})$ and $\psi \in \mathcal{M}(M_{\phi})$. - (2) Suppose ϕ or ψ is inner. Then if $\phi \in \mathcal{M}(M_{\psi})$ and $\psi \in \mathcal{M}(M_{\phi})$ then $V_{\psi}^*V_{\phi} = V_{\phi}V_{\psi}^*$. - *Proof.* (1) Since $V_{\psi}^*V_{\phi} = V_{\phi}V_{\psi}^*$ and $V_{\phi}^*V_{\psi} = V_{\psi}V_{\phi}^*$, it is clear because $\phi \text{Ker}V_{\psi}^* \subseteq \text{Ker}V_{\psi}^*$ and $\psi \text{Ker}V_{\phi}^* \subseteq \text{Ker}V_{\phi}^*$. - (2) Let ψ be inner. If ϕ is in $\mathcal{M}(M_{\psi})$ then $V_{\psi}^*V_{\phi} = V_{\phi}V_{\psi}^*$ on $\operatorname{Ker}V_{\psi}^*$. While, $V_{\psi}^*V_{\phi} = V_{\phi}V_{\psi}^*$ holds clearly on ψM . This shows (2). **Theorem 1.** Let $\zeta = \zeta(z, w)$ be a function in H^{∞} . Then $\mathcal{M}(M_{\zeta}) \cap H^{\infty}(\Gamma_w) = H^{\infty}(\Gamma_w)$ or \mathbb{C} . Proof. If ζ is a constant c then $M_{\zeta} = M$ or $M_{\zeta} = \{0\}$. Hence $\mathcal{M}(M_{\zeta}) = H^{\infty}$ and so $\mathcal{M}(M_{\zeta}) \cap H^{\infty}(\Gamma_w) = H^{\infty}(\Gamma_w)$. Suppose ζ is nonconstant and $\mathcal{M}(M_{\zeta}) \cap H^{\infty}(\Gamma_w) \neq \mathbb{C}$. If f is a nonconstant function in $\mathcal{M}(M_{\zeta}) \cap H^{\infty}(\Gamma_w)$ then f(w) - f(0) belongs to $\mathcal{M}(M_{\zeta}) \cap H^{\infty}(\Gamma_w)$ because $f(0) \in \mathcal{M}(M_{\zeta})$. Let f(w) - f(0) = wh(w) and $h \in H^{\infty}(\Gamma_w)$. If g is a function in M_{ζ} then $whg \in M_{\zeta}$ and so $whg \perp w\zeta M$. This implies that $hg \perp \zeta M$ and so $hg \in M_{\zeta}$. Since g is arbitrary, $h \in \mathcal{M}(M_{\zeta})$ and so (f(w) - f(0))/w belongs to $\mathcal{M}(M_{\zeta}) \cap H^{\infty}(\Gamma_w)$. Since $\mathcal{M}(M_{\zeta}) \cap H^{\infty}(\Gamma_w)$ is a nonzero weak * closed subalgebra in $H^{\infty}(\Gamma_w)$ which contains constants, by [1, Theorem 1] $\mathcal{M}(M_{\zeta}) \cap H^{\infty}(\Gamma_w) = H^{\infty}(\Gamma_w)$. Corollary 1. Let $\zeta = \zeta(z, w)$ be a function in H^{∞} . - (1) If $\phi = \phi(w)$ is a nonconstant function in $\mathcal{M}(M_{\zeta})$, then $\mathcal{M}(M_{\zeta}) \cap H^{\infty}(\Gamma_{w}) = H^{\infty}(\Gamma_{w})$. - (2) If $\phi = \phi(w)$ is a nonconstant function and $\zeta = \zeta(z)$, then the inner part of ζ belongs to $\mathcal{M}(M_w)$ and w belongs to $\mathcal{M}(M_{\zeta})$. *Proof.* (1) It is clear by Theorem 1. (2) If $\zeta = \zeta(z)$ then we can write $\zeta = q(z)h(z)$ where q is inner and h is outer. Then $\mathcal{M}(M_{\zeta}) = \mathcal{M}(M_q)$ because h is outer. By (1) $w \in \mathcal{M}(M_q)$, and so by Proposition 1 $V_w^*V_q = V_qV_w^*$ and q belongs to $\mathcal{M}(M_w)$. ### 3. One variable function and $\mathcal{M}(M_z)$ In this section, we study $\mathcal{M}(M_z)$ which contains nonconstant one variable functions in some sense. Corollary 2 is known in [3]. **Theorem 2.** Let M be a nonzero invariant subspace. - (1) $\mathcal{M}(M_z)$ does not contain any nonconstant function f with f = f(z). - (2) If $\mathcal{M}(M_z)$ contains a nonconstant function f with f = f(w) then $\mathcal{M}(M_z) = H^{\infty}(\Gamma_w)$. - Proof. (1) Suppose f is a nonconstant function in $\mathcal{M}(M_z) \cap L^{\infty}(\Gamma_z)$. If $g \in M_z$ then $|g|^2 \perp zk\overline{f^{\ell}}$ for $k \in H^{\infty}(\Gamma_z)$ and $\ell \geq 0$. Hence for any $\ell, t \geq 0$ and any $k, h \in H^{\infty}(\Gamma_z)$, $\bar{z}|g|^2$ is orthogonal to $k\overline{f^{\ell}} + h\overline{f^t}$ and $(k\overline{f^{\ell}})(h\overline{f^t})$. Therefore $\bar{z}|g|^2$ is orthogonal to the weak * closed algebra generated by $H^{\infty}(\Gamma_z)$ and \bar{f} . Wermer's maximality theorem in [2] shows such an algebra is just $L^{\infty}(\Gamma_z)$. Thus $\bar{z}|g|^2$ is orthogonal to $L^{\infty}(\Gamma_z)$ and so $g \equiv 0$. This contradiction shows (1). - (2) By Corollary 1, $\mathcal{M}(M_z) \cap H^{\infty}(\Gamma_w) = H^{\infty}(\Gamma_w)$. By [4, Theorem 5] $M = QH^2$ for some inner Q and so $M_z = QH^2(\Gamma_w)$. Thus $\mathcal{M}(M_z) = H^{\infty}(\Gamma_w)$. Corollary 2. Let $\zeta = \zeta(z)$ be in $H^{\infty}(\Gamma_z)$. If $\mathcal{M}(M_{\zeta}) \cap H^{\infty}(\Gamma_w) \neq \mathbb{C}$ then $\mathcal{M}(M_{\zeta}) = H^{\infty}(\Gamma_w)$. *Proof.* This is a result of Corollary 1 and (2) of Theorem 2. Corollary 3. Let M be a nonzero invariant subspace. If $\phi(z,w) = \phi_1(z,w)\phi_2(w)$ and ϕ_2 is nonconstant, ϕ_1 is inner and ϕ is in $\mathcal{M}(M_z)$ then $\mathcal{M}(M_z) = H^{\infty}(\Gamma_w)$. *Proof.* If $f \in M_z$ then $\phi_1 \phi_2 f \in M_z$ and so $\phi_1 \phi_2 f \perp z \phi_1 M$. Hence $\phi_2 f \in M_z$ and so ϕ_2 belongs to $\mathcal{M}(M_z)$. (2) of Theorem 2 implies the corollary. **Theorem 3.** Let M be a nonzero invariant subspace. If \bar{w} is contained in the weak * closed subalgebra generated by the complex conjugate of $\mathcal{M}(M_z)$ and H^{∞} , then $\mathcal{M}(M_z) = H^{\infty}(\Gamma_w)$. Proof. If $k \in M_z$ and $f \in \mathcal{M}(M_z)$ then $f^{\ell}k \in M_z$ for any $\ell \geq 0$. Hence $|k|^2$ is orthogonal to $\bar{f}^{\ell}zH^{\infty}$ for $\ell \geq 0$. By the hypothesis, \bar{w}^t can be approximated by $\sum_{t,\ell \geq 0} \bar{f}_t^{\ell}g_{\ell t}$ where $f_t \in \mathcal{M}(M_z)$ and $g_{\ell t} \in H^{\infty}$. Therefore $|k|^2$ is orthogonal to \bar{w}^tzH^{∞} for $t \geq 0$. Hence $|k(z,w)|^2 = u(w)$ for some $u \in L^1(\Gamma_w)$ and so there exists an outer function $h_1 = h_1(w)$ in $H^2(\Gamma_w)$ such that $|k(z,w)|^2 = |h_1(w)|^2$. Since $\phi k \in \mathcal{M}_z$ for any $\phi \in \mathcal{M}(M_z)$, by the proof above $|\phi(z,w)k(z,w)|^2 = |h_2(w)|$ for some outer function $h_2 = h_2(w)$. Hence $k(z,w) = q_1(z,w)h_1(w)$ and $\phi(z,w)k(z,w) = q_2(z,w)h_2(w)$ where q_j is inner in H^∞ (j=1,2). Therefore $\phi = q_2h_2/q_1h_1$. If $q = q_2\bar{q}_1$, $h = h_2/h_1$ and $\phi = qh$ then q is inner and h is outer in $H^2(\Gamma_w)$. Thus $qh \in \mathcal{M}(M_z)$ and so $h \in \mathcal{M}(M_z)$. If h is nonconstant, by (2) of Theorem 2 $\mathcal{M}(M_z) = H^\infty(\Gamma_w)$. Now we may assume that any nonzero functions in $\mathcal{M}(M_z)$ are scalar multiples of inner functions. Thus $\mathcal{M}(M_\zeta) = \langle q \rangle$. Since $\mathcal{M}(M_\zeta)$ is an algebra, this shows $\mathcal{M}(M_\zeta) = \mathbb{C}$. Corollary 4. Let M be a nonzero invariant subspace. If $\phi(z,w) = f(zw)$ and f is nonconstant in $H^{\infty}(\Gamma)$, and ϕ is in $\mathcal{M}(M_z)$ then $\mathcal{M}(M_z) = H^{\infty}(\Gamma_w)$. *Proof.* The weak * closed algebra $[\overline{f(zw)}, H^{\infty}]$ generated by $\overline{f(zw)}$ and H^{∞} contains $[\overline{f(zw)}, H^{\infty}(\Gamma_{zw})]$. Since $H^{\infty}(\Gamma_{zw})$ is maximal in $L^{\infty}(\Gamma_{zw})$ as a weak star closed subalgebra by [2], $[\overline{f(zw)}, H^{\infty}(\Gamma_{zw})]$ contains \overline{zw} . Hence $[\overline{f}, H^{\infty}]$ contains \overline{w} . Now Theorem 2 shows the corollary. ## 4. K_z and $\mathcal{M}(M_z)$ If $K_z = M_z$ then $\mathcal{M}(M_z)$ contains w and so (2) of Theorem 2 shows $\mathcal{M}(M_z) = H^{\infty}(\Gamma_w)$. Hence we are interested in when $K_z \neq M_z$. **Theorem 4.** Let M be a nonzero invariant subspace in H^2 . If $K_z \neq \{0\}$ and $\mathcal{M}(M_z) \neq \mathbb{C}$ then $\mathcal{M}(M_z) = H^{\infty}(\Gamma_w)$. *Proof.* Since $K_z \neq \{0\}$, there exists $f \in M_z$ such that $w^{\ell}f$ belongs to M_z for $\ell \in Z_+$. Then $w^{\ell}f \perp fw^mz^t$ for $m \in Z_+$ and $t \in Z_+ \setminus \{0\}$. Thus $$\int |f|^2 w^s z^t dm = 0 \quad (s \in Z, t \in Z_+ \setminus \{0\}).$$ Therefore $F = |f|^2 \in L^1(\Gamma_w)$ and $\log F \in L^1(\Gamma_w)$. Hence $F = |h|^2$ for some outer $h \in H^2(\Gamma_w)$. Then f = qh and q is an inner function in H^{∞} . Since $w^{\ell}(qh) \in M_z$, $qH^2(\Gamma_w) \subset M_z$. Let ϕ be in $\mathcal{M}(M_z)$. Then $\phi qH^2(\Gamma_w)$ is orthogonal to $z^t \phi qH^2(\Gamma_w)$ for $t \in Z_+ \setminus \{0\}$. Therefore $|\phi|^2 \perp z^t L^1(\Gamma_w)$ for $t \in Z_+ \setminus \{0\}$ and so $|\phi|^2 \in L^{\infty}(\Gamma_w)$. There exists an outer function k in $H^{\infty}(\Gamma_w)$ such that $\phi = Qk$ and Q is an inner function in H^{∞} . By Corollary 3 k = k(w) belongs to $\mathcal{M}(M_z)$ and so (2) of Theorem 2 shows $\mathcal{M}(M_z) = H^{\infty}(\Gamma_w)$. # 5. Intersection of $\mathcal{M}(M_z)$ and $\mathcal{M}(M_w)$ If $M = qH^2$ and q = q(z, w) is inner, then $\mathcal{M}(M_z) = H^{\infty}(\Gamma_w)$ and $\mathcal{M}(M_w) = H^{\infty}(\Gamma_z)$. Hence $\mathcal{M}(M_z) \cap \mathcal{M}(M_w) = \mathbb{C}$. If $M = q_1H^2 + q_2H^2$, and $q_1 = q_1(z)$ and $q_2 = q_2(w)$ are inner, then $\mathcal{M}(M_z) = \mathbb{C}$ and $\mathcal{M}(M_w) = \mathbb{C}$ by [4, Example 3]. Hence $\mathcal{M}(M_z) \cap \mathcal{M}(M_w) = \mathbb{C}$. **Lemma 1.** Suppose M is a nonzero invariant subspace in H^2 . If M is orthogonal to an invariant subspace M' in H^2 then $M' = \{0\}$. *Proof.* It is easy to see. \Box **Theorem 5.** Let M be a nonzero invariant subspace. If ϕ is a nonzero function in $\mathcal{M}(M_z) \cap \mathcal{M}(M_w)$ then $[\phi M] = M$. Hence $[\phi M_z] = M_z$ and $[\phi M_w] = M_w$. Proof. If $\phi \in \mathcal{M}(M_z)$ then by Proposition 1 $V_{\phi}V_z^* = V_z^*V_{\phi}$ and so $V_{\phi}^*V_z = V_zV_{\phi}^*$. This shows $zM_{\phi} \subseteq M_{\phi}$. Similarly $\phi \in \mathcal{M}(M_w)$ shows $wM_{\phi} \subseteq M_{\phi}$. Hence M_{ϕ} and $[\phi M]$ are invariant subspaces in H^2 , and M_{ϕ} is orthogonal to $[\phi M]$. Therefore Lemma 1 shows $[\phi M] = M$. Since $\phi M_z \subset M_z$ and $\phi zM \subset zM$, $\phi M = \phi M_z \oplus \phi zM$. This shows $[\phi M_z] = M_z$ because $[\phi M] = M$ and so $[\phi zM] = zM$. Corollary 5. Suppose ϕ is a nonzero function in $\mathcal{M}(M_z) \cap \mathcal{M}(M_w)$. If ϕ has an inner factor then its part is constant. *Proof.* Since $\phi \neq 0$, by Theorem 5 $[\phi M] = M$. This shows the corollary. **Theorem 6.** Let M be a nonzero invariant subspace. If $M_z \cap H^2(\Gamma_w) \neq \{0\}$ and $M_w \cap H^2(\Gamma_z) \neq \{0\}$ then $\mathcal{M}(M_z) \cap \mathcal{M}(M_w) = \mathbb{C}$. Proof. If f is a nonzero function in $\mathcal{M}_z \cap H^2(\Gamma_w)$ then for any $n \geq 0$ $w^n f \in M$ and $w^n f \perp zM$ because $\bar{z}w^n f \perp H^2$. Hence $w^n f \in M_z$ for any $n \geq 0$ and so $K_z \neq \{0\}$. If ϕ is a nonconstant function in $\mathcal{M}(M_z)$ then by Theorem 4 $\mathcal{M}(M_z) = H^{\infty}(\Gamma_w)$. Similarly if f is a nonzero function in $M_w \cap H^2(\Gamma_z)$ and ϕ is a nonconstant function in $\mathcal{M}(M_w)$ then $\mathcal{M}(M_w) = H^{\infty}(\Gamma_z)$. Thus $\mathcal{M}(M_z) \cap \mathcal{M}(M_w) = \mathbb{C}$. If M is of finite codimension in H^2 then $\mathcal{M}(M_z) \cap \mathcal{M}(M_w) = \mathbb{C}$. This is a corollary of Theorem 6. In fact, if M is of finite codimension then by [4, (3) of Theorem 6] $M \supseteq q_z H^2 + q_w H^2$ where q_z and q_z are one variable inner functions. Since $zM \perp q_w H^2(\Gamma_w)$, M satisfies the condition in Theorem 6. When M is a nonzero invariant subspace and M' = FM where F is a unimodular function in L^{∞} , it is easy to see $\mathcal{M}(M_z) = \mathcal{M}(M'_z)$ and $\mathcal{M}(M_w) = \mathcal{M}(M'_w)$. Therefore Theorem 6 can be applied to a lot of examples. **Acknowledgements.** The author would like to thank the referee for carefully reading the paper and providing corrections and suggestions for improvements. In particular, he simplifies the original proof of Theorem 5. ## References - [1] S. D. Fisher, Algebras of bounded functions invariant under the restricted backward shift, J. Funct. Anal. 12 (1973), 236–245. - [2] K. Hoffman and I. M. Singer, Maximal algebras of continuous functions, Acta. Math. 103 (1960), 217–241. - [3] K. J. Izuchi and K. H. Izuchi, Commutativity in two variable Jordan blocks on the Hardy space, Acta Sci. Math. (Szeged) 78 (2012), 129–136. - [4] T. Nakazi, Invariant subspaces in the bidisc and wandering subspaces, J. Aust. Math. Soc. 84 (2008), 367–374. - [5] T. Nakazi, Multipliers of a wandering subspace for a shift invariant subspace, J. Math. Anal. Appl. **377** (2011), 251–252. (T.Nakazi) Professor Emeritus, Hokkaido University, Sapporo 060-0810, Japan. $E\text{-}mail\ address$: tnakazi700gmail.com Received August 1, 2014 Revised March 1, 2015