Nihonkai Math. J.
Vol.26(2015), 31-36

MULTIPLIERS OF A WANDERING SUBSPACE FOR
A SHIFT INVARIANT SUBSPACE 1II

TAKAHIKO NAKAZI

ABSTRACT. Let M be a shift invariant subspace in the two variable Hardy space
H2(T, x T'y,). We study M(M,) = {¢p € H®(', x Ty,) : ¢M, C M,} where
M, = M & zM. We give several sufficient conditions for M(M,) = H>®(T,)
where H*(T",,) is the one variable Hardy space.

1. Introduction

Let I'? be the torus that is the Cartesian product of two unit circle I" in C. For
1 < p < o0, the usual Lebesgue spaces, with respect to the Lebesgue measure m on
['2) are denoted by L = LP(I'?), and H? = H?(I'?) is the space of all f in L whose
Fourier coefficients

fG0 = | flzw)Za'dm(z w)

12
are zero as soon as at least one component of (4, ¢) is negative. Then H? is called
a Hardy space. AsT? =T, x I, H?(T',) and H?(T',,) denote one variable Hardy
spaces. H*(I',) (or L>(I',)) is a weak = closure of polynomials of ¢ (or ¢ and ).

A closed subspace M C H? is said to be (shift) invariant if zM C M and wM C
M. Suppose ¢ = ((z,w) isin H* and T f = (f (f € H?). Put V; = T | M.
Then M = %Vg @ KerV;* where %Vg denotes the closure of the range of V; and
KerV} = the kernel of V*. We write M = KerV* and [(M] = RanV;. We call M
a wandering subspace and M(M;) = {f € H>® : fM; C M} the set of multipliers
of M. In this paper we assume M, # (0).

In the previous paper [5], we considered M(M;) when ¢ = z. Then we show
M(M,) = H>(I'y) when M(M,)n H*(T',,) # C. K. J. Izuchi pointed out me
privately that the proof of Lemma 2 in the previous paper [5] has a gap. Lemma 2
can be proved only in a very special case. Hence Theorem in [5] has not shown yet
in general. Therefore we would like to study the following problem for a nonzero
invariant subspace M in H?.
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L. If M(M,) contains a nonconstant function then M(M,) = H*>*(T',,).
II. It is true that M(M,) N M(M,,) = C.

Of course, I shows II.

In this paper, we use the following notations. Put K, = {f € M, : w'f € M,
for ¢ =1,2,---}. If K, = M, then M(M,) contains w. Z denotes the set of all
integers and Z, denotes the set of nonnegative integers. If ¢ is a function in H*>
with absolute value one, ¢ is called inner.

2. M(M;) for general (
In this section, M (M) is studied for arbitrary ¢ = ((z,w) in H*®.

Proposition 1. Let ¢ and v be nonconstant functions in H*.
(1) If VJVQS = V¢VJ then ¢ € M(My) and ¢ € M(My).
(2) Suppose ¢ or 1 is inner. Then if ¢ € M(My) and v € M(M,) then
VJV¢ = V¢VJ.

Proof. (1) Since V;Vy = V4V and ViV, = V, V7, it is clear because ¢pKerV,; C
KerV; and ¢ KerV} C KerV.

(2) Let ¢ be inner. If ¢ is in M(My) then ViV, = V4Vi on KerV;. While,
ViVs = Vu Vi holds clearly on 1) M. This shows (2). O

Theorem 1. Let ¢ = ((z,w) be a function in H*. Then M(M;) N H>®(L,) =
H>(,) orC.

Proof. 1f ¢ is a constant ¢ then M, = M or M, = {0}. Hence M(M;) = H* and so
M(M;)n H>(T,) = H*(T,). Suppose ¢ is nonconstant and M(M¢;) N H>*(T',,) #
C. If f is a nonconstant function in M(M;) N H>(',) then f(w) — f(0) belongs
to M(M¢) N H*(L'y) because f(0) € M(M). Let f(w) — f(0) = wh(w) and
h € H*(I'y). If g is a function in M, then whg € M, and so whg L w(M. This
implies that hg L (M and so hg € M,. Since g is arbitrary, h € M(M;) and so
(f(w)—f(0))/w belongs to M(M,)NH>*(T"y,). Since M(M;)NH>(T",) is a nonzero
weak * closed subalgebra in H*°(I',,) which contains constants, by [1, Theorem 1]
M(M:) N H>®(T,) = H(T,). O
Corollary 1. Let ( = ((z,w) be a function in H>.
(1) If ¢ = ¢p(w) is a nonconstant function in M(M¢), then M(M;)NH>(T,,) =
H>®(Ty,).
(2) If ¢ = ¢(w) is a nonconstant function and ¢ = ((z), then the inner part of
¢ belongs to M(M,,) and w belongs to M(M;).



Proof. (1) It is clear by Theorem 1.

(2) If ¢ = ((2) then we can write ( = q(2)h(z) where ¢ is inner and h is outer.
Then M(M;) = M(M,) because h is outer. By (1) w € M(M,), and so by
Proposition 1 ViV, = V, V> and ¢ belongs to M(M,,). O

3. One variable function and M(M,)

In this section, we study M (M, ) which contains nonconstant one variable functions
in some sense. Corollary 2 is known in [3].

Theorem 2. Let M be a nonzero invariant subspace.

(1) M(M.) does not contain any nonconstant function f with f = f(z).
(2) If M(M,) contains a nonconstant function f with f = f(w) then M(M,) =
H*>(Ty).

Proof. (1) Suppose f is a nonconstant function in M(M,) N L>(T,). If g € M,
then [g]> L zkf? for k € H®(T,) and ¢ > 0. Hence for any ¢,t > 0 and any
k,h € H®(T,), Z|g|* is orthogonal to kff 4+ hft and (kf?)(hff). Therefore z|g|>
is orthogonal to the weak * closed algebra generated by H*(T',) and f. Wermer’s
maximality theorem in [2] shows such an algebra is just L>(T',). Thus z|g|? is
orthogonal to L*°(T',) and so g = 0. This contradiction shows (1).

(2) By Corollary 1, M(M,)Nn H>®(T,,) = H®(T,). By [4, Theorem 5| M = QH?
for some inner @ and so M, = QH?*(T',,). Thus M(M,) = H*(T,,). O

Corollary 2. Let ( = ((2) be in H*(I',). If M(M;)NH>(T'y,) # C then M(M;) =
H>(T,,).
Proof. This is a result of Corollary 1 and (2) of Theorem 2. O

Corollary 3. Let M be a nonzero invariant subspace. If ¢(z,w) = ¢1(z, w)ps(w)
and ¢y is nonconstant, ¢y is inner and ¢ is in M(M,) then M(M,) = H*(T',).

Proof. If f € M, then ¢1¢0of € M, and so ¢1¢of Lz M. Hence ¢of € M, and so
¢2 belongs to M(M,). (2) of Theorem 2 implies the corollary. O

Theorem 3. Let M be a nonzero invariant subspace. If w is contained in the weak
% closed subalgebra generated by the complex conjugate of M(M,) and H>, then
M(M) = H*(Tw).

Proof. If k € M, and f € M(M.,) then f‘k € M, for any £ > 0. Hence |k|? is
orthogonal to f'2H> for ¢ > 0. By the hypothesis, @' can be approximated by
> 50 flgu where f, € M(M,) and g, € H™. Therefore |k|? is orthogonal to
w'zH> for t > 0. Hence |k(z, w)|* = u(w) for some u € L'(I',,) and so there exists



an outer function hy = hy(w) in H*(T,) such that |k(z,w)|* = |hi(w)]?. Since ¢k €
M., for any ¢ € M(M,), by the proof above |¢(z, w)k(z,w)|? = |hy(w)| for some
outer function hy = ho(w). Hence k(z,w) = q(z,w)hi(w) and ¢(z,w)k(z,w) =
¢2(z, w)hy(w) where g; is inner in H* (j = 1,2). Therefore ¢ = ghy/qihy. If
q = ¢q1, h = ha/hy and ¢ = gh then ¢ is inner and h is outer in H?(T',,). Thus
gh € M(M,) and so h € M(M,). If h is nonconstant, by (2) of Theorem 2
M(M,) = H>*(T',). Now we may assume that any nonzero functions in M (M,)
are scalar multiples of inner functions. Thus M(M;) = (g). Since M(M;) is an
algebra, this shows M (M) = C. O

Corollary 4. Let M be a nonzero invariant subspace. If ¢(z,w) = f(zw) and f is
nonconstant in H*(I'), and ¢ is in M(M,) then M(M,) = H>*(T',).

Proof. The weak * closed algebra [f(zw), H*| generated by f(zw) and H* contains

[f(zw), H*(T',,)]. Since H*(I',,) is maximal in L>*(T,,) as a weak star closed

subalgebra by [2], [f(zw), H*(T.,)] contains zw. Hence [f, H*] contains w. Now
Theorem 2 shows the corollary. U

4. K. and M(M.,)

If K, = M, then M(M,) contains w and so (2) of Theorem 2 shows M(M,) =
H>(T",,). Hence we are interested in when K, # M..

Theorem 4. Let M be a nonzero invariant subspace in H?. If K, # {0} and
M(M,) # C then M(M,) = H>*(Ty).

Proof. Since K, # {0}, there exists f € M, such that w’f belongs to M, for { € Z,.
Then w'f L fw™z! form € Z and t € Z, \ {0}. Thus

/|f|2wsztdm —0 (sezteZ\{0})

Therefore F' = |f|* € L'(T',,) and log F' € L*(T',). Hence F = |h|* for some outer
h € H*(T',). Then f = gh and q is an inner function in H.

Since w*(gh) € M,, ¢H*(T',) C M,. Let ¢ be in M(M,). Then ¢gH?(T,,) is
orthogonal to z'¢pqH*(T,) for t € Z,\{0}. Therefore |¢|* L 2'LY(T,) for t € Z,\{0}
and so |¢|? € L>=(T',). There exists an outer function k in H>°(T,,) such that ¢ = Qk
and @ is an inner function in H*. By Corollary 3 k = k(w) belongs to M(M,) and
so (2) of Theorem 2 shows M(M,) = H*(T',). O

5. Intersection of M(M,) and M(M,)

If M = qgH? and ¢ = q(z,w) is inner, then M(M,) = H>®(T,) and M(M,,) =
H>(T,). Hence M(M,) N M(M,) =C. It M = qH? + ¢oH?, and ¢; = ¢q1(z) and



g2 = @2(w) are inner, then M(M,) = C and M(M,,) = C by [4, Example 3]. Hence
M(M,) " M(M,) =C.

Lemma 1. Suppose M is a nonzero invariant subspace in H*. If M is orthogonal
to an invariant subspace M' in H? then M' = {0}.

Proof. 1t is easy to see. O

Theorem 5. Let M be a nonzero invariant subspace. If ¢ is a nonzero function in
M(M,) N M(M,,) then [pM] = M. Hence [¢M.| = M, and [¢pM,] = M,,.

Proof. If ¢ € M(M.) then by Proposition 1 VuV* = VVy and so V'V, = V. V.
This shows zM, C M,. Similarly ¢ € M(M,) shows wMy C My. Hence My
and [¢M] are invariant subspaces in H?, and M, is orthogonal to [¢M]. Therefore
Lemma 1 shows [pM] = M. Since oM, C M, and ¢pzM C zM, ¢M = ¢M, S ¢pzM.
This shows [¢M,] = M, because [¢M]| = M and so [¢pzM] = zM. O

Corollary 5. Suppose ¢ is a nonzero function in M(M,) N M(M,,). If ¢ has an
inner factor then its part is constant.

Proof. Since ¢ # 0, by Theorem 5 [¢pM] = M. This shows the corollary. O

Theorem 6. Let M be a nonzero invariant subspace. If M, N H*(T,) # {0} and
M, N H*T,) # {0} then M(M,) N M(M,,) = C.

Proof. If f is a nonzero function in M, N H*(T',,) then for any n > 0 w"f € M and
w"f L zM because zw"f L H?. Hence w"f € M, for any n > 0 and so K, # {0}.
If ¢ is a nonconstant function in M(M,) then by Theorem 4 M(M,) = H*(T,).
Similarly if f is a nonzero function in M, N H?(T',) and ¢ is a nonconstant function
in M(M,) then M(M,) = H*(I",). Thus M(M,) N M(M,) = C. O

If M is of finite codimension in H? then M(M,) N M(M,) = C. This is a
corollary of Theorem 6. In fact, if M is of finite codimension then by [4, (3) of
Theorem 6] M D ¢q.H? + q,H? where ¢, and ¢, are one variable inner functions.
Since zM 1 q,H?*(T',), M satisfies the condition in Theorem 6. When M is a
nonzero invariant subspace and M’ = F'M where F' is a unimodular function in L>,
it is easy to see M(M,) = M(M.) and M(M,,) = M(M,,). Therefore Theorem 6

can be applied to a lot of examples.
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