MULTIPLIERS OF A WANDERING SUBSPACE FOR A SHIFT INVARIANT SUBSPACE II

TAKAHIKO NAKAZI

ABSTRACT. Let M be a shift invariant subspace in the two variable Hardy space $H^2(\Gamma_z \times \Gamma_w)$. We study $\mathcal{M}(M_z) = \{\phi \in H^\infty(\Gamma_z \times \Gamma_w) : \phi M_z \subseteq M_z\}$ where $M_z = M \ominus zM$. We give several sufficient conditions for $\mathcal{M}(M_z) = H^\infty(\Gamma_w)$ where $H^\infty(\Gamma_w)$ is the one variable Hardy space.

1. Introduction

Let Γ^2 be the torus that is the Cartesian product of two unit circle Γ in \mathbb{C} . For $1 \leq p \leq \infty$, the usual Lebesgue spaces, with respect to the Lebesgue measure m on Γ^2 , are denoted by $L^p = L^p(\Gamma^2)$, and $H^p = H^p(\Gamma^2)$ is the space of all f in L^p whose Fourier coefficients

$$\hat{f}(j,\ell) = \int_{\Gamma^2} f(z,w) \bar{z}^j \bar{w}^\ell dm(z,w)$$

are zero as soon as at least one component of (j, ℓ) is negative. Then H^p is called a Hardy space. As $\Gamma^2 = \Gamma_z \times \Gamma_w$, $H^p(\Gamma_z)$ and $H^p(\Gamma_w)$ denote one variable Hardy spaces. $H^{\infty}(\Gamma_q)$ (or $L^{\infty}(\Gamma_q)$) is a weak * closure of polynomials of q (or q and \bar{q}).

A closed subspace $M \subseteq H^2$ is said to be (shift) invariant if $zM \subseteq M$ and $wM \subseteq M$. Suppose $\zeta = \zeta(z, w)$ is in H^{∞} and $T_{\zeta}f = \zeta f$ ($f \in H^2$). Put $V_{\zeta} = T_{\zeta} \mid M$. Then $M = \overline{\operatorname{Ran}}V_{\zeta} \oplus \operatorname{Ker}V_{\zeta}^*$ where $\overline{\operatorname{Ran}}V_{\zeta}$ denotes the closure of the range of V_{ζ} and $\operatorname{Ker}V_{\zeta}^* = \operatorname{the}$ kernel of V_{ζ}^* . We write $M_{\zeta} = \operatorname{Ker}V_{\zeta}^*$ and $[\zeta M] = \overline{\operatorname{Ran}}V_{\zeta}$. We call M_{ζ} a wandering subspace and $\mathcal{M}(M_{\zeta}) = \{f \in H^{\infty} : fM_{\zeta} \subseteq M_{\zeta}\}$ the set of multipliers of M_{ζ} . In this paper we assume $M_{\zeta} \neq \langle 0 \rangle$.

In the previous paper [5], we considered $\mathcal{M}(M_{\zeta})$ when $\zeta = z$. Then we show $\mathcal{M}(M_z) = H^{\infty}(\Gamma_w)$ when $\mathcal{M}(M_z) \cap H^{\infty}(\Gamma_w) \neq \mathbb{C}$. K. J. Izuchi pointed out me privately that the proof of Lemma 2 in the previous paper [5] has a gap. Lemma 2 can be proved only in a very special case. Hence Theorem in [5] has not shown yet in general. Therefore we would like to study the following problem for a nonzero invariant subspace M in H^2 .

²⁰¹⁰ Mathematics Subject Classification. Primary 47A15; Secondary 46J15. Key words and phrases. Wandering, multiplier, bidisc.

I. If $\mathcal{M}(M_z)$ contains a nonconstant function then $\mathcal{M}(M_z) = H^{\infty}(\Gamma_w)$. II. It is true that $\mathcal{M}(M_z) \cap \mathcal{M}(M_w) = \mathbb{C}$.

Of course, I shows II.

In this paper, we use the following notations. Put $K_z = \{f \in M_z : w^{\ell} f \in M_z \text{ for } \ell = 1, 2, \cdots \}$. If $K_z = M_z$ then $\mathcal{M}(M_z)$ contains w. Z denotes the set of all integers and Z_+ denotes the set of nonnegative integers. If ϕ is a function in H^{∞} with absolute value one, ϕ is called inner.

2. $\mathcal{M}(M_{\zeta})$ for general ζ

In this section, $\mathcal{M}(M_{\zeta})$ is studied for arbitrary $\zeta = \zeta(z, w)$ in H^{∞} .

Proposition 1. Let ϕ and ψ be nonconstant functions in H^{∞} .

- (1) If $V_{\psi}^* V_{\phi} = V_{\phi} V_{\psi}^*$ then $\phi \in \mathcal{M}(M_{\psi})$ and $\psi \in \mathcal{M}(M_{\phi})$.
- (2) Suppose ϕ or ψ is inner. Then if $\phi \in \mathcal{M}(M_{\psi})$ and $\psi \in \mathcal{M}(M_{\phi})$ then $V_{\psi}^*V_{\phi} = V_{\phi}V_{\psi}^*$.
- *Proof.* (1) Since $V_{\psi}^*V_{\phi} = V_{\phi}V_{\psi}^*$ and $V_{\phi}^*V_{\psi} = V_{\psi}V_{\phi}^*$, it is clear because $\phi \text{Ker}V_{\psi}^* \subseteq \text{Ker}V_{\psi}^*$ and $\psi \text{Ker}V_{\phi}^* \subseteq \text{Ker}V_{\phi}^*$.
- (2) Let ψ be inner. If ϕ is in $\mathcal{M}(M_{\psi})$ then $V_{\psi}^*V_{\phi} = V_{\phi}V_{\psi}^*$ on $\operatorname{Ker}V_{\psi}^*$. While, $V_{\psi}^*V_{\phi} = V_{\phi}V_{\psi}^*$ holds clearly on ψM . This shows (2).

Theorem 1. Let $\zeta = \zeta(z, w)$ be a function in H^{∞} . Then $\mathcal{M}(M_{\zeta}) \cap H^{\infty}(\Gamma_w) = H^{\infty}(\Gamma_w)$ or \mathbb{C} .

Proof. If ζ is a constant c then $M_{\zeta} = M$ or $M_{\zeta} = \{0\}$. Hence $\mathcal{M}(M_{\zeta}) = H^{\infty}$ and so $\mathcal{M}(M_{\zeta}) \cap H^{\infty}(\Gamma_w) = H^{\infty}(\Gamma_w)$. Suppose ζ is nonconstant and $\mathcal{M}(M_{\zeta}) \cap H^{\infty}(\Gamma_w) \neq \mathbb{C}$. If f is a nonconstant function in $\mathcal{M}(M_{\zeta}) \cap H^{\infty}(\Gamma_w)$ then f(w) - f(0) belongs to $\mathcal{M}(M_{\zeta}) \cap H^{\infty}(\Gamma_w)$ because $f(0) \in \mathcal{M}(M_{\zeta})$. Let f(w) - f(0) = wh(w) and $h \in H^{\infty}(\Gamma_w)$. If g is a function in M_{ζ} then $whg \in M_{\zeta}$ and so $whg \perp w\zeta M$. This implies that $hg \perp \zeta M$ and so $hg \in M_{\zeta}$. Since g is arbitrary, $h \in \mathcal{M}(M_{\zeta})$ and so (f(w) - f(0))/w belongs to $\mathcal{M}(M_{\zeta}) \cap H^{\infty}(\Gamma_w)$. Since $\mathcal{M}(M_{\zeta}) \cap H^{\infty}(\Gamma_w)$ is a nonzero weak * closed subalgebra in $H^{\infty}(\Gamma_w)$ which contains constants, by [1, Theorem 1] $\mathcal{M}(M_{\zeta}) \cap H^{\infty}(\Gamma_w) = H^{\infty}(\Gamma_w)$.

Corollary 1. Let $\zeta = \zeta(z, w)$ be a function in H^{∞} .

- (1) If $\phi = \phi(w)$ is a nonconstant function in $\mathcal{M}(M_{\zeta})$, then $\mathcal{M}(M_{\zeta}) \cap H^{\infty}(\Gamma_{w}) = H^{\infty}(\Gamma_{w})$.
- (2) If $\phi = \phi(w)$ is a nonconstant function and $\zeta = \zeta(z)$, then the inner part of ζ belongs to $\mathcal{M}(M_w)$ and w belongs to $\mathcal{M}(M_{\zeta})$.

Proof. (1) It is clear by Theorem 1.

(2) If $\zeta = \zeta(z)$ then we can write $\zeta = q(z)h(z)$ where q is inner and h is outer. Then $\mathcal{M}(M_{\zeta}) = \mathcal{M}(M_q)$ because h is outer. By (1) $w \in \mathcal{M}(M_q)$, and so by Proposition 1 $V_w^*V_q = V_qV_w^*$ and q belongs to $\mathcal{M}(M_w)$.

3. One variable function and $\mathcal{M}(M_z)$

In this section, we study $\mathcal{M}(M_z)$ which contains nonconstant one variable functions in some sense. Corollary 2 is known in [3].

Theorem 2. Let M be a nonzero invariant subspace.

- (1) $\mathcal{M}(M_z)$ does not contain any nonconstant function f with f = f(z).
- (2) If $\mathcal{M}(M_z)$ contains a nonconstant function f with f = f(w) then $\mathcal{M}(M_z) = H^{\infty}(\Gamma_w)$.
- Proof. (1) Suppose f is a nonconstant function in $\mathcal{M}(M_z) \cap L^{\infty}(\Gamma_z)$. If $g \in M_z$ then $|g|^2 \perp zk\overline{f^{\ell}}$ for $k \in H^{\infty}(\Gamma_z)$ and $\ell \geq 0$. Hence for any $\ell, t \geq 0$ and any $k, h \in H^{\infty}(\Gamma_z)$, $\bar{z}|g|^2$ is orthogonal to $k\overline{f^{\ell}} + h\overline{f^t}$ and $(k\overline{f^{\ell}})(h\overline{f^t})$. Therefore $\bar{z}|g|^2$ is orthogonal to the weak * closed algebra generated by $H^{\infty}(\Gamma_z)$ and \bar{f} . Wermer's maximality theorem in [2] shows such an algebra is just $L^{\infty}(\Gamma_z)$. Thus $\bar{z}|g|^2$ is orthogonal to $L^{\infty}(\Gamma_z)$ and so $g \equiv 0$. This contradiction shows (1).
- (2) By Corollary 1, $\mathcal{M}(M_z) \cap H^{\infty}(\Gamma_w) = H^{\infty}(\Gamma_w)$. By [4, Theorem 5] $M = QH^2$ for some inner Q and so $M_z = QH^2(\Gamma_w)$. Thus $\mathcal{M}(M_z) = H^{\infty}(\Gamma_w)$.

Corollary 2. Let $\zeta = \zeta(z)$ be in $H^{\infty}(\Gamma_z)$. If $\mathcal{M}(M_{\zeta}) \cap H^{\infty}(\Gamma_w) \neq \mathbb{C}$ then $\mathcal{M}(M_{\zeta}) = H^{\infty}(\Gamma_w)$.

Proof. This is a result of Corollary 1 and (2) of Theorem 2.

Corollary 3. Let M be a nonzero invariant subspace. If $\phi(z,w) = \phi_1(z,w)\phi_2(w)$ and ϕ_2 is nonconstant, ϕ_1 is inner and ϕ is in $\mathcal{M}(M_z)$ then $\mathcal{M}(M_z) = H^{\infty}(\Gamma_w)$.

Proof. If $f \in M_z$ then $\phi_1 \phi_2 f \in M_z$ and so $\phi_1 \phi_2 f \perp z \phi_1 M$. Hence $\phi_2 f \in M_z$ and so ϕ_2 belongs to $\mathcal{M}(M_z)$. (2) of Theorem 2 implies the corollary.

Theorem 3. Let M be a nonzero invariant subspace. If \bar{w} is contained in the weak * closed subalgebra generated by the complex conjugate of $\mathcal{M}(M_z)$ and H^{∞} , then $\mathcal{M}(M_z) = H^{\infty}(\Gamma_w)$.

Proof. If $k \in M_z$ and $f \in \mathcal{M}(M_z)$ then $f^{\ell}k \in M_z$ for any $\ell \geq 0$. Hence $|k|^2$ is orthogonal to $\bar{f}^{\ell}zH^{\infty}$ for $\ell \geq 0$. By the hypothesis, \bar{w}^t can be approximated by $\sum_{t,\ell \geq 0} \bar{f}_t^{\ell}g_{\ell t}$ where $f_t \in \mathcal{M}(M_z)$ and $g_{\ell t} \in H^{\infty}$. Therefore $|k|^2$ is orthogonal to \bar{w}^tzH^{∞} for $t \geq 0$. Hence $|k(z,w)|^2 = u(w)$ for some $u \in L^1(\Gamma_w)$ and so there exists

an outer function $h_1 = h_1(w)$ in $H^2(\Gamma_w)$ such that $|k(z,w)|^2 = |h_1(w)|^2$. Since $\phi k \in \mathcal{M}_z$ for any $\phi \in \mathcal{M}(M_z)$, by the proof above $|\phi(z,w)k(z,w)|^2 = |h_2(w)|$ for some outer function $h_2 = h_2(w)$. Hence $k(z,w) = q_1(z,w)h_1(w)$ and $\phi(z,w)k(z,w) = q_2(z,w)h_2(w)$ where q_j is inner in H^∞ (j=1,2). Therefore $\phi = q_2h_2/q_1h_1$. If $q = q_2\bar{q}_1$, $h = h_2/h_1$ and $\phi = qh$ then q is inner and h is outer in $H^2(\Gamma_w)$. Thus $qh \in \mathcal{M}(M_z)$ and so $h \in \mathcal{M}(M_z)$. If h is nonconstant, by (2) of Theorem 2 $\mathcal{M}(M_z) = H^\infty(\Gamma_w)$. Now we may assume that any nonzero functions in $\mathcal{M}(M_z)$ are scalar multiples of inner functions. Thus $\mathcal{M}(M_\zeta) = \langle q \rangle$. Since $\mathcal{M}(M_\zeta)$ is an algebra, this shows $\mathcal{M}(M_\zeta) = \mathbb{C}$.

Corollary 4. Let M be a nonzero invariant subspace. If $\phi(z,w) = f(zw)$ and f is nonconstant in $H^{\infty}(\Gamma)$, and ϕ is in $\mathcal{M}(M_z)$ then $\mathcal{M}(M_z) = H^{\infty}(\Gamma_w)$.

Proof. The weak * closed algebra $[\overline{f(zw)}, H^{\infty}]$ generated by $\overline{f(zw)}$ and H^{∞} contains $[\overline{f(zw)}, H^{\infty}(\Gamma_{zw})]$. Since $H^{\infty}(\Gamma_{zw})$ is maximal in $L^{\infty}(\Gamma_{zw})$ as a weak star closed subalgebra by [2], $[\overline{f(zw)}, H^{\infty}(\Gamma_{zw})]$ contains \overline{zw} . Hence $[\overline{f}, H^{\infty}]$ contains \overline{w} . Now Theorem 2 shows the corollary.

4. K_z and $\mathcal{M}(M_z)$

If $K_z = M_z$ then $\mathcal{M}(M_z)$ contains w and so (2) of Theorem 2 shows $\mathcal{M}(M_z) = H^{\infty}(\Gamma_w)$. Hence we are interested in when $K_z \neq M_z$.

Theorem 4. Let M be a nonzero invariant subspace in H^2 . If $K_z \neq \{0\}$ and $\mathcal{M}(M_z) \neq \mathbb{C}$ then $\mathcal{M}(M_z) = H^{\infty}(\Gamma_w)$.

Proof. Since $K_z \neq \{0\}$, there exists $f \in M_z$ such that $w^{\ell}f$ belongs to M_z for $\ell \in Z_+$. Then $w^{\ell}f \perp fw^mz^t$ for $m \in Z_+$ and $t \in Z_+ \setminus \{0\}$. Thus

$$\int |f|^2 w^s z^t dm = 0 \quad (s \in Z, t \in Z_+ \setminus \{0\}).$$

Therefore $F = |f|^2 \in L^1(\Gamma_w)$ and $\log F \in L^1(\Gamma_w)$. Hence $F = |h|^2$ for some outer $h \in H^2(\Gamma_w)$. Then f = qh and q is an inner function in H^{∞} .

Since $w^{\ell}(qh) \in M_z$, $qH^2(\Gamma_w) \subset M_z$. Let ϕ be in $\mathcal{M}(M_z)$. Then $\phi qH^2(\Gamma_w)$ is orthogonal to $z^t \phi qH^2(\Gamma_w)$ for $t \in Z_+ \setminus \{0\}$. Therefore $|\phi|^2 \perp z^t L^1(\Gamma_w)$ for $t \in Z_+ \setminus \{0\}$ and so $|\phi|^2 \in L^{\infty}(\Gamma_w)$. There exists an outer function k in $H^{\infty}(\Gamma_w)$ such that $\phi = Qk$ and Q is an inner function in H^{∞} . By Corollary 3 k = k(w) belongs to $\mathcal{M}(M_z)$ and so (2) of Theorem 2 shows $\mathcal{M}(M_z) = H^{\infty}(\Gamma_w)$.

5. Intersection of $\mathcal{M}(M_z)$ and $\mathcal{M}(M_w)$

If $M = qH^2$ and q = q(z, w) is inner, then $\mathcal{M}(M_z) = H^{\infty}(\Gamma_w)$ and $\mathcal{M}(M_w) = H^{\infty}(\Gamma_z)$. Hence $\mathcal{M}(M_z) \cap \mathcal{M}(M_w) = \mathbb{C}$. If $M = q_1H^2 + q_2H^2$, and $q_1 = q_1(z)$ and

 $q_2 = q_2(w)$ are inner, then $\mathcal{M}(M_z) = \mathbb{C}$ and $\mathcal{M}(M_w) = \mathbb{C}$ by [4, Example 3]. Hence $\mathcal{M}(M_z) \cap \mathcal{M}(M_w) = \mathbb{C}$.

Lemma 1. Suppose M is a nonzero invariant subspace in H^2 . If M is orthogonal to an invariant subspace M' in H^2 then $M' = \{0\}$.

Proof. It is easy to see. \Box

Theorem 5. Let M be a nonzero invariant subspace. If ϕ is a nonzero function in $\mathcal{M}(M_z) \cap \mathcal{M}(M_w)$ then $[\phi M] = M$. Hence $[\phi M_z] = M_z$ and $[\phi M_w] = M_w$.

Proof. If $\phi \in \mathcal{M}(M_z)$ then by Proposition 1 $V_{\phi}V_z^* = V_z^*V_{\phi}$ and so $V_{\phi}^*V_z = V_zV_{\phi}^*$. This shows $zM_{\phi} \subseteq M_{\phi}$. Similarly $\phi \in \mathcal{M}(M_w)$ shows $wM_{\phi} \subseteq M_{\phi}$. Hence M_{ϕ} and $[\phi M]$ are invariant subspaces in H^2 , and M_{ϕ} is orthogonal to $[\phi M]$. Therefore Lemma 1 shows $[\phi M] = M$. Since $\phi M_z \subset M_z$ and $\phi zM \subset zM$, $\phi M = \phi M_z \oplus \phi zM$. This shows $[\phi M_z] = M_z$ because $[\phi M] = M$ and so $[\phi zM] = zM$.

Corollary 5. Suppose ϕ is a nonzero function in $\mathcal{M}(M_z) \cap \mathcal{M}(M_w)$. If ϕ has an inner factor then its part is constant.

Proof. Since $\phi \neq 0$, by Theorem 5 $[\phi M] = M$. This shows the corollary.

Theorem 6. Let M be a nonzero invariant subspace. If $M_z \cap H^2(\Gamma_w) \neq \{0\}$ and $M_w \cap H^2(\Gamma_z) \neq \{0\}$ then $\mathcal{M}(M_z) \cap \mathcal{M}(M_w) = \mathbb{C}$.

Proof. If f is a nonzero function in $\mathcal{M}_z \cap H^2(\Gamma_w)$ then for any $n \geq 0$ $w^n f \in M$ and $w^n f \perp zM$ because $\bar{z}w^n f \perp H^2$. Hence $w^n f \in M_z$ for any $n \geq 0$ and so $K_z \neq \{0\}$. If ϕ is a nonconstant function in $\mathcal{M}(M_z)$ then by Theorem 4 $\mathcal{M}(M_z) = H^{\infty}(\Gamma_w)$. Similarly if f is a nonzero function in $M_w \cap H^2(\Gamma_z)$ and ϕ is a nonconstant function in $\mathcal{M}(M_w)$ then $\mathcal{M}(M_w) = H^{\infty}(\Gamma_z)$. Thus $\mathcal{M}(M_z) \cap \mathcal{M}(M_w) = \mathbb{C}$.

If M is of finite codimension in H^2 then $\mathcal{M}(M_z) \cap \mathcal{M}(M_w) = \mathbb{C}$. This is a corollary of Theorem 6. In fact, if M is of finite codimension then by [4, (3) of Theorem 6] $M \supseteq q_z H^2 + q_w H^2$ where q_z and q_z are one variable inner functions. Since $zM \perp q_w H^2(\Gamma_w)$, M satisfies the condition in Theorem 6. When M is a nonzero invariant subspace and M' = FM where F is a unimodular function in L^{∞} , it is easy to see $\mathcal{M}(M_z) = \mathcal{M}(M'_z)$ and $\mathcal{M}(M_w) = \mathcal{M}(M'_w)$. Therefore Theorem 6 can be applied to a lot of examples.

Acknowledgements. The author would like to thank the referee for carefully reading the paper and providing corrections and suggestions for improvements. In particular, he simplifies the original proof of Theorem 5.

References

- [1] S. D. Fisher, Algebras of bounded functions invariant under the restricted backward shift, J. Funct. Anal. 12 (1973), 236–245.
- [2] K. Hoffman and I. M. Singer, Maximal algebras of continuous functions, Acta. Math. 103 (1960), 217–241.
- [3] K. J. Izuchi and K. H. Izuchi, Commutativity in two variable Jordan blocks on the Hardy space, Acta Sci. Math. (Szeged) 78 (2012), 129–136.
- [4] T. Nakazi, Invariant subspaces in the bidisc and wandering subspaces, J. Aust. Math. Soc. 84 (2008), 367–374.
- [5] T. Nakazi, Multipliers of a wandering subspace for a shift invariant subspace, J. Math. Anal. Appl. **377** (2011), 251–252.

(T.Nakazi) Professor Emeritus, Hokkaido University, Sapporo 060-0810, Japan. $E\text{-}mail\ address$: tnakazi700gmail.com

Received August 1, 2014 Revised March 1, 2015