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GENERALIZED SPLIT FEASIBILITY PROBLEM
GOVERNED BY WIDELY MORE GENERALIZED

HYBRID MAPPINGS IN HILBERT SPACES

MAYUMI HOJO AND WATARU TAKAHASHI

Abstract. Generalized split feasibility problem governed by a widely more gen-

eralized hybrid mapping is studied. In particular, strong convergence of this al-

gorithm is proved. As tools, resolvents of maximal monotone operators are tech-

nically maneuvered to facilitate the argument of the proof to the main result.

Applications to iteration methods for various nonlinear mappings and to equilib-

rium problem are included.

1. Introduction

Let H be a real Hilbert space and let C be a non-empty, closed and convex subset

of H. A mapping U : C → H is called inverse strongly monotone if there exists

α > 0 such that

⟨x− y, Ux− Uy⟩ ≥ α∥Ux− Uy∥2, ∀x, y ∈ C.

Such a mapping U is called α-inverse strongly monotone. Let H1 and H2 be two

real Hilbert spaces. Let D and Q be non-empty, closed and convex subsets of H1

and H2, respectively. Let A : H1 → H2 be a bounded linear operator. Then the split

feasibility problem [6] is to find z ∈ H1 such that z ∈ D ∩ A−1Q. Recently, Byrne,

Censor, Gibali and Reich [5] considered the following problem: Given set-valued

mappings Ai : H1 → 2H1 , 1 ≤ i ≤ m, and Bj : H2 → 2H2 , 1 ≤ j ≤ n, respectively,

and bounded linear operators Tj : H1 → H2, 1 ≤ j ≤ n, the split common null point

problem [5] is to find a point z ∈ H1 such that

z ∈
(
∩m

i=1 A
−1
i 0

)
∩ (∩n

j=1T
−1
j (B−1

j 0)
)
,
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where A−1
i 0 and B−1

j 0 are null point sets of Ai and Bj, respectively. Defining

U = A∗(I − PQ)A in the split feasibility problem, we have that U : H1 → H1 is an

inverse strongly monotone operator, where A∗ is the adjoint operator of A and PQ

is the metric projection of H2 onto Q. Furthermore, if D∩A−1Q is non-empty, then

z ∈ D ∩ A−1Q is equivalent to

z = PD(I − λA∗(I − PQ)A)z, (1.1)

where λ > 0 and PD is the metric projection of H1 onto D. Using such results

regarding nonlinear operators and fixed points, many authors have studied the split

feasibility problem and generalized split feasibility problems including the split com-

mon null point problem; see, for instance, [5, 7, 16, 29]. In the study, they used

established results for solving the problems. In particular, established convergence

theorems have been used for finding solutions of the problems. On the other hand,

we know many existence and convergence theorems for inverse strongly monotone

mappings in Hilbert spaces; see, for instance, [9, 17,19,21,25,26].

In this paper, motivated by the ideas of these problems and results, we consider

generalized split feasibility problem and then the problem governed by a widely

more generalized hybrid mapping is studied. In particular, strong convergence of

this algorithm is proved. As tools, resolvents of maximal monotone operators are

technically maneuvered to facilitate the argument of the proof to the main result.

Applications to iteration methods for various nonlinear mappings and to equilibrium

problem are included.

2. Preliminaries

LetH be a real Hilbert space with inner product ⟨ · , · ⟩ and norm ∥ · ∥, respectively.
For x, y ∈ H and λ ∈ R, we have from [24] that

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩; (2.1)

∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2. (2.2)

Furthermore we have that for x, y, u, v ∈ H,

2⟨x− y, u− v⟩ = ∥x− v∥2 + ∥y − u∥2 − ∥x− u∥2 − ∥y − v∥2. (2.3)

Let C be a non-empty, closed and convex subset of a Hilbert space H. The nearest

point projection of H onto C is denoted by PC , that is, ∥x− PCx∥ ≤ ∥x− y∥ for all

x ∈ H and y ∈ C. Such PC is called the metric projection of H onto C. We know

that the metric projection PC is firmly nonexpansive, i.e.,

∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩ (2.4)
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for all x, y ∈ H. Furthermore ⟨x− PCx, y − PCx⟩ ≤ 0 holds for all x ∈ H and

y ∈ C; see [22]. Let α > 0 be a given constant. A mapping A : C → H is said to be

α-inverse strongly monotone if ⟨x− y,Ax− Ay⟩ ≥ α ∥Ax− Ay∥2 for all x, y ∈ C.

It is known that ∥Ax− Ay∥ ≤ (1/α) ∥x− y∥ for all x, y ∈ C if A is α-inverse-

strongly monotone. Let B be a mapping of H into 2H . The effective domain of B

is denoted by D(B), that is, D(B) = {x ∈ H : Bx ̸= ∅}. A multi-valued mapping

B on H is said to be monotone if ⟨x− y, u− v⟩ ≥ 0 for all x, y ∈ D(B), u ∈ Bx,

and v ∈ By. A monotone operator B on H is said to be maximal if its graph is

not properly contained in the graph of any other monotone operator on H. For

a maximal monotone operator B on H and r > 0, we may define a single-valued

operator Jr = (I + rB)−1 : H → D(B), which is called the resolvent of B for r.

Let B be a maximal monotone operator on H and let B−10 = {x ∈ H : 0 ∈ Bx}.
It is known that the resolvent Jr is firmly nonexpansive and B−10 = F (Jr) for

all r > 0, where F (Jr) is the set of fixed points of Jr. It is also known that

∥Jλx− Jµx∥ ≤ (|λ− µ| /λ) ∥x− Jλx∥ holds for all λ, µ > 0 and x ∈ H; see [10, 22]

for more details. As a matter of fact, we know the following lemma [21].

Lemma 2.1. Let H be a real Hilbert space and let B be a maximal monotone

operator on H. For r > 0 and x ∈ H, define the resolvent Jrx. Then the following

holds:
s− t

s
⟨Jsx− Jtx, Jsx− x⟩ ≥ ∥Jsx− Jtx∥2

for all s, t > 0 and x ∈ H.

We also know the following lemmas:

Lemma 2.2 ([2], [28]). Let {sn} be a sequence of nonnegative real numbers, let {αn}
be a sequence of [0, 1] with

∑∞
n=1 αn = ∞, let {βn} be a sequence of nonnegative

real numbers with
∑∞

n=1 βn < ∞, and let {γn} be a sequence of real numbers with

lim supn→∞ γn ≤ 0. Suppose that

sn+1 ≤ (1− αn)sn + αnγn + βn

for all n = 1, 2, .... Then limn→∞ sn = 0.

Lemma 2.3 ([15]). Let {Γn} be a sequence of real numbers that does not decrease

at infinity in the sense that there exists a subsequence {Γni
} of {Γn} which satisfies

Γni
< Γni+1 for all i ∈ N. Define the sequence {τ(n)}n≥n0 of integers as follows:

τ(n) = max{k ≤ n : Γk < Γk+1},

where n0 ∈ N such that {k ≤ n0 : Γk < Γk+1} ̸= ∅. Then, the following hold:

(i) τ(n0) ≤ τ(n0 + 1) ≤ . . . and τ(n) → ∞;

(ii) Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1, ∀n ≥ n0.
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Let H be a Hilbert space and let S be a firmly nonexpansive mapping of H into

itself with F (S) ̸= ∅. Then we have that

⟨x− Sx, Sx− y⟩ ≥ 0 (2.5)

for all x ∈ H and y ∈ F (S). In fact, we have that for all x ∈ H and y ∈ F (S)

⟨x−Sx, Sx− y⟩ = ⟨x− y + y − Sx, Sx− y⟩
= ⟨x− y, Sx− y⟩+ ⟨y − Sx, Sx− y⟩
≥ ∥Sx− y∥2 − ∥Sx− y∥2

= 0.

From [27], we also have the following lemmas.

Lemma 2.4. Let H1 and H2 be Hilbert spaces. Let A : H1 → H2 be a bounded linear

operator such that A ̸= 0. Let T : H2 → H2 be a nonexpansive mapping. Then a

mapping A∗(I − T )A : H1 → H1 is 1
2∥A∥2 -inverse strongly monotone.

Lemma 2.5. Let H1 and H2 be Hilbert spaces. Let B : H1 → 2H1 be a maximal

monotone mapping and let Jλ = (I + λB)−1 be the resolvent of B for λ > 0. Let

T : H2 → H2 be a nonexpansive mapping and let A : H1 → H2 be a bounded linear

operator. Suppose that B−10 ∩ A−1F (T ) ̸= ∅. Let λ, r > 0 and z ∈ H. Then the

following are equivalent:

(i) z = Jλ(I − rA∗(I − T )A)z;

(ii) 0 ∈ A∗(I − T )Az +Bz;

(iii) z ∈ B−10 ∩ A−1F (T ).

Let H be a Hilbert space and let C be a non-empty, closed and convex subset

of H. Then, a mapping T : C → H is called generalized hybrid [14] if there exist

α, β ∈ R such that

α∥Tx− Ty∥2 + (1− α)∥x− Ty∥2 ≤ β∥Tx− y∥2 + (1− β)∥x− y∥2 (2.6)

for all x, y ∈ C. We call such a mapping (α, β)-generalized hybrid. Notice that

the mapping above covers several well-known mappings. For example, an (α, β)-

generalized hybrid mapping is nonexpansive for α = 1 and β = 0, nonspreading

for α = 2 and β = 1, and hybrid for α = 3
2
and β = 1

2
. Kawasaki and Takahashi

[13] defined a more broad class of nonlinear mappings than the class of generalized

hybrid mappings. A mapping S from C into H is said to be widely more generalized

hybrid if there exist α, β, γ, δ, ε, ζ, η ∈ R such that

α∥Sx− Sy∥2 + β∥x− Sy∥2 + γ∥Sx− y∥2 + δ∥x− y∥2 (2.7)

+ε∥x− Sx∥2 + ζ∥y − Sy∥2 + η∥(x− Sx)− (y − Sy)∥2 ≤ 0
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for all x, y ∈ C. Such a mapping S is called (α, β, γ, δ, ε, ζ, η)-widely more generalized

hybrid. An (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping is generalized

hybrid in the sense of Kocourek, Takahashi and Yao [14] if α+ β = −γ − δ = 1 and

ε = ζ = η = 0. A generalized hybrid mapping with a fixed point is quasinonexpan-

sive. However, a widely more generalized hybrid mapping is not quasi-nonexpansive

generally even if it has a fixed point. We know the following theorem from Kawasaki

and Takahashi [13].

Theorem 2.1 ([13]). Let H be a Hilbert space, let C be a non-empty, closed and

convex subset of H and let S be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid

mapping from C into itself which satisfies the following conditions (1) or (2):

(1) α + β + γ + δ ≥ 0, α+ γ + ε+ η > 0 and ζ + η ≥ 0;

(2) α + β + γ + δ ≥ 0, α+ β + ζ + η > 0 and ε+ η ≥ 0.

Then S has a fixed point if and only if there exists z ∈ C such that {Snz : n =

0, 1, . . .} is bounded. In particular, a fixed point of S is unique in the case of α +

β + γ + δ > 0 on the conditions (1) and (2).

The following lemmas for widely more generalized hybrid mappings are essential

for proving our main theorem.

Lemma 2.6 ([13]). Let H be a Hilbert space, let C be a non-empty, closed and

convex subset of H and let S be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid

mapping from C into itself such that F (S) ̸= ∅ and it satisfies the conditions (1) or

(2):

(1) α + β + γ + δ ≥ 0, ζ + η ≥ 0 and α + β > 0;

(2) α + β + γ + δ ≥ 0, ε+ η ≥ 0 and α + γ > 0.

Then S is quasi-nonexpansive.

Lemma 2.7 ([12]). Let H be a Hilbert space and let C be a non-empty, closed and

convex subset of H. Let S : C → H be an (α, β, γ, δ, ε, ζ, η)-widely more generalized

hybrid mapping. Suppose that it satisfies the following conditions (1) or (2):

(1) α + β + γ + δ ≥ 0 and α + γ + ε+ η > 0;

(2) α + β + γ + δ ≥ 0 and α + β + ζ + η > 0.

If xn ⇀ z and xn − Sxn → 0, then z ∈ F (S).

3. Main result

In this section, we solve a generalized split feasibility problem governed by a

widely more generalized hybrid mapping in Hilbert spaces.
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Theorem 3.1. Let H1 and H2 be Hilbert spaces and let C be a non-empty, closed

and convex subset of H1. Let B : H1 → 2H1 be a maximal monotone mapping such

that D(B) ⊂ C and let Jλ = (I + λB)−1 be the resolvent of B for λ > 0. Let S be

an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping from C into C which

satisfies the conditions (1) or (2):

(1) α + β + γ + δ ≥ 0, α+ β > 0 and ζ + η ≥ 0;

(2) α + β + γ + δ ≥ 0, α+ γ > 0 and ε+ η ≥ 0.

Let T : H2 → H2 be a nonexpansive mapping. Let A : H1 → H2 be a bounded linear

operator. Suppose that B−10 ∩ F (S) ∩ A−1F (T ) ̸= ∅. Let {un} be a sequence in C

such that un → u. Let x1 = x ∈ C and let {xn} ⊂ C be a sequence generated by

xn+1 = βnxn + (1− βn)(αnun + (1− αn)SJλn(I − λnA
∗(I − T )A)xn)

for all n ∈ N, where {λn} ⊂ (0,∞), {βn} ⊂ (0, 1) and {αn} ⊂ (0, 1) satisfy

0 < a ≤ λn ≤ b <
1

∥A∥2
, 0 < c ≤ βn ≤ d < 1,

lim
n→∞

αn = 0 and

∞∑
n=1

αn = ∞.

Then the sequence {xn} converges strongly to a point z0 ∈ B−10∩F (S)∩A−1F (T ),

where z0 = PB−10∩F (S)∩A−1F (T )u.

Proof. Let z ∈ B−10 ∩ F (S) ∩ A−1F (T ). We have that Sz = z, Jλnz = z and

(I − T )Az = 0. Since S is quasi-nonexpansive (Lemma 2.6), Jλn is nonexpansive

and (I − T ) is 1
2
-inverse strongly monotone, we obtain that for any n ∈ N,

∥SJλn(xn − λnA
∗(I − T )Axn)− z∥2 ≤ ∥Jλn(xn − λnA

∗(I − T )Axn)− z∥2

≤ ∥xn − λnA
∗(I − T )Axn − z∥2 (3.1)

= ∥xn − z∥2 − 2λn⟨xn − z, A∗(I − T )Axn⟩+ (λn)
2 ∥A∗(I − T )Axn∥2

= ∥xn − z∥2 − 2λn⟨Axn − Az, (I − T )Axn⟩+ (λn)
2 ∥A∗(I − T )Axn∥2

≤ ∥xn − z∥2 − λn ∥(I − T )Axn∥2 + (λn)
2 ∥A∥2 ∥(I − T )Axn∥2

= ∥xn − z∥2 + λn(λn ∥A∥2 − 1) ∥(I − T )Axn∥2 .

≤ ∥xn − z∥2 .

Let yn = αnun + (1− αn)SJλn(xn − λnA
∗(I − T )Axn). We have that

∥yn − z∥ = ∥αn(un − z) + (1− αn)(SJλn(xn − λnA
∗(I − T )Axn)− z)∥

≤ αn ∥un − z∥+ (1− αn) ∥xn − z∥ .

Using this, we get that

∥xn+1 − z∥
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= ∥βn(xn − z) + (1− βn)(yn − z)∥
≤ βn ∥xn − z∥+ (1− βn) ∥yn − z∥
≤ βn ∥xn − z∥+ (1− βn)(αn ∥un − z∥+ (1− αn) ∥xn − z∥)
= (1− αn(1− βn))∥xn − z∥+ αn(1− βn)∥un − z∥.

Since {un} is bounded, there exists M > 0 such that supn∈N ∥un− z∥ ≤ M . Putting

K = max{∥x1 − z∥,M}, we have that ∥xn − z∥ ≤ K for all n ∈ N. In fact, it is

obvious that ∥x1 − z∥ ≤ K. Suppose that ∥xk − z∥ ≤ K for some k ∈ N. Then we

have that

∥xk+1 − z∥ ≤ (1− αk(1− βk))∥xk − z∥+ αk(1− βk)∥uk − z∥
≤ (1− αk(1− βk))K + αk(1− βk)K = K.

By induction, we obtain that ∥xn − z∥ ≤ K for all n ∈ N. Then {xn} is bounded.

Furthermore, {Axn}, {yn} and {Jλn(xn − λnA
∗(I − T )Axn)} are bounded. Putting

zn = Jλn(I − λnA
∗(I − T )A)xn, from the definition of {xn} we have that

xn+1 − xn = βnxn + (1− βn){αnun + (1− αn)Szn} − xn

and hence

xn+1 − xn−(1− βn)αnun = βnxn + (1− βn)(1− αn)Szn − xn

= (1− βn){(1− αn)Szn − xn}
= (1− βn){Szn − xn − αnSzn}.

Thus we have that

⟨xn+1−xn − (1− βn)αnun, xn − z0⟩
= (1− βn)⟨Szn − xn, xn − z0⟩ − (1− βn)⟨αnSzn, xn − z0⟩ (3.2)

= −(1− βn)⟨xn − Szn, xn − z0⟩ − (1− βn)αn⟨Szn, xn − z0⟩.

From (2.3) and (3.1), we have that

2⟨xn − Szn, xn−z0⟩ = ∥xn − z0∥2 + ∥Szn − xn∥2 − ∥Szn − z0∥2

≥ ∥xn − z0∥2 + ∥Szn − xn∥2 − ∥xn − z0∥2 (3.3)

= ∥Szn − xn∥2.

From (3.2) and (3.3), we have that

−2⟨xn − xn+1, xn − z0⟩ = 2(1− βn)αn⟨un, xn − z0⟩
− 2(1− βn)⟨xn − Szn, xn − z0⟩ − 2(1− βn)αn⟨Szn, xn − z0⟩ (3.4)

≤ 2(1− βn)αn⟨un, xn − z0⟩
− (1− βn)∥Szn − xn∥2 − 2(1− βn)αn⟨Szn, xn − z0⟩.
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Furthermore, using (2.3) and (3.4), we have that

∥xn+1 − z0∥2−∥xn − xn+1∥2 − ∥xn − z0∥2

≤ 2(1− βn)αn⟨un, xn − z0⟩
− (1− βn)∥Szn − xn∥2 − 2(1− βn)αn⟨Szn, xn − z0⟩.

Setting Γn = ∥xn − z0∥2, we have that

Γn+1 − Γn − ∥xn − xn+1∥2

≤ 2(1− βn)αn⟨un, xn − z0⟩ (3.5)

− (1− βn)∥Szn − xn∥2 − 2(1− βn)αn⟨Szn, xn − z0⟩.

Since

∥xn+1 − xn∥ = ∥(1− βn)αn(un − Szn) + (1− βn)(Szn − xn)∥ (3.6)

≤ (1− βn)
(
∥Szn − xn∥+ αn∥un − Szn∥

)
,

we have that

∥xn+1−xn∥2 ≤ (1− βn)
2
(
∥Szn − xn∥+ αn∥un − Szn∥

)2
= (1− βn)

2∥Szn − xn∥2 (3.7)

+ (1− βn)
2
(
2αn∥Szn − xn∥∥un − Szn∥+ α2

n∥un − Szn∥2
)
.

Thus we have from (3.5) and (3.7) that

Γn+1−Γn ≤ ∥xn − xn+1∥2 + 2(1− βn)αn⟨un, xn − z0⟩
− (1− βn)∥Szn − xn∥2 − 2(1− βn)αn⟨Szn, xn − z0⟩

≤ (1− βn)
2∥Szn − xn∥2

+ (1− βn)
2
(
2αn∥Szn − xn∥∥un − Szn∥+ α2

n∥un − Szn∥2
)

+ 2(1− βn)αn⟨un, xn − z0⟩ − (1− βn)∥Szn − xn∥2

− 2(1− βn)αn⟨Szn, xn − z0⟩

and hence

Γn+1−Γn + βn(1− βn)∥Szn − xn∥2

≤ (1− βn)
2
(
2αn∥Szn − xn∥∥un − Szn∥+ α2

n∥un − Szn∥2
)

(3.8)

+ 2(1− βn)αn⟨un, xn − z0⟩ − 2(1− βn)αn⟨Szn, xn − z0⟩.

We will divide the proof into two cases.

Case 1: Suppose that there exists a natural number N such that Γn+1 ≤ Γn for

all n ≥ N . In this case, limn→∞ Γn exists and then limn→∞(Γn+1 − Γn) = 0. Using
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limn→∞ αn = 0 and 0 < c ≤ βn ≤ d < 1, we have from (3.8) that

lim
n→∞

∥Szn − xn∥ = 0. (3.9)

From (3.6) we have that

lim
n→∞

∥xn+1 − xn∥ = 0. (3.10)

We also have that

∥yn − Szn∥ = ∥αnun + (1− αn)Szn − Szn∥ (3.11)

= αn∥un − Szn∥ → 0.

Furthermore, from ∥yn − xn∥ ≤ ∥yn − Szn∥+ ∥Szn − xn∥, we have that

lim
n→∞

∥yn − xn∥ = 0. (3.12)

We show limn→∞ ∥Szn − zn∥ = 0. Since ∥ · ∥2 is a convex function, we have that

∥xn+1 − z0∥2 ≤ βn ∥xn − z0∥2 + (1− βn) ∥yn − z0∥2 . (3.13)

From (2.1) we also have that

∥yn − z0∥2 = ∥αn(un − z0) + (1− αn)(Szn − z0)∥2

≤ (1− αn)
2∥Szn − z0∥2 + 2αn⟨un − z0, yn − z0⟩

≤ (1− αn)
2∥zn − z0∥2 + 2αn⟨un − z0, yn − z0⟩ (3.14)

≤ ∥zn − z0∥2 + 2αn⟨un − z0, yn − z0⟩

≤ ∥xn − z0∥2 + λn(λn∥A∥2 − 1) ∥(I − T )Axn∥2

+ 2αn⟨un − z0, yn − z0⟩.

Using (3.13) and (3.14), we have that

∥xn+1 − z0∥2 ≤ βn ∥xn − z0∥2 + (1− βn) ∥xn − z0∥2

+ (1− βn)λn(λn∥A∥2 − 1) ∥(I − T )Axn∥2 + 2αn⟨un − z0, yn − z0⟩

= ∥xn − z0∥2 + (1− βn)λn(λn∥A∥2 − 1) ∥(I − T )Axn∥2 (3.15)

+ 2αn⟨un − z0, yn − z0⟩).

Thus we have that

(1− βn)λn(1− λn∥A∥2) ∥(I − T )Axn∥2

≤ ∥xn − z0∥2 − ∥xn+1 − z0∥2 + (1− βn)2αn⟨un − z0, yn − z0⟩. (3.16)

Then we have that

lim
n→∞

∥(I − T )Axn∥ = 0. (3.17)

Since Jλn is firmly nonexpansive, we have that

2∥zn−z0∥2 = 2 ∥Jλn(xn − λnA
∗(I − T )Axn)− Jλnz0∥

2
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≤ 2 ⟨xn − λnA
∗(I − T )Axn − z0, zn − z0⟩

= ∥xn − λnA
∗(I − T )Axn − z0∥2 + ∥zn − z0∥2

− ∥xn − λnA
∗(I − T )Axn − z0 − (zn − z0)∥2

≤ ∥xn − z0∥2 + ∥zn − z0∥2

− ∥xn − zn − λnA
∗(I − T )Axn∥

= ∥xn − z0∥2 + ∥zn − z0∥2 − ∥xn − zn∥2

+ 2λn ⟨xn − zn, A
∗(I − T )Axn⟩ − (λn)

2∥A∗(I − T )Axn∥2.

Thus we get that

∥zn − z0∥2 ≤ ∥xn − z0∥2 − ∥xn − zn∥2

+ 2λn ⟨xn − zn, A
∗(I − T )Axn⟩ − (λn)

2∥A∗(I − T )Axn∥2.

Using (3.14), we obtain

∥xn+1 − z0∥2 ≤ βn ∥xn − z0∥2 + (1− βn)∥yn − z0∥2

≤ βn ∥xn − z0∥2 + (1− βn)(∥zn − z0∥2 + 2αn⟨un − z0, yn − z0⟩)

≤ βn ∥xn − z0∥2 + (1− βn) ∥xn − z0∥2

− (1− βn) ∥xn − zn∥2 + 2(1− βn)λn ⟨xn − zn, A
∗(I − T )Axn⟩

− (1− βn)λ
2
n ∥A∗(I − T )Axn∥2 + 2(1− βn)αn⟨un − z0, yn − z0⟩

= ∥xn − z0∥2 − (1− βn) ∥xn − zn∥2

+ 2(1− βn)λn ⟨xn − zn, A
∗(I − T )Axn⟩ − (1− βn)λ

2
n ∥A∗(I − T )Axn∥2

+ 2(1− βn)αn⟨un − z0, yn − z0⟩,

from which it follows that

(1−βn) ∥xn − zn∥2 ≤ ∥xn − z0∥2

− ∥xn+1 − z0∥2 + 2(1− βn)λn ⟨xn − zn, A
∗(I − T )Axn⟩

− (1− βn)λ
2
n ∥A∗(I − T )Axn∥2 + 2(1− βn)αn⟨un − z0, yn − z0⟩.

Then we have that

lim
n→∞

∥xn − zn∥ = 0. (3.18)

Since ∥Szn − zn∥ ≤ ∥Szn − xn∥+ ∥xn − zn∥, we have that

lim
n→∞

∥Szn − zn∥ = 0. (3.19)

Take λ0 ∈ R with 0 < a ≤ λ0 ≤ b < 1
∥A∥2 . Put sn = (I −λn)A

∗(I −T )Axn. Using

zn = Jλn(I − λnA
∗(I − T )A)xn, we have from Lemma 2.1 that

∥Jλ0(I − λ0A
∗(I − T )A)xn − zn∥
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= ∥Jλ0(I − λ0A
∗(I − T )A)xn − Jλn(I − λnA

∗(I − T )A)xn∥
= ∥Jλ0(I − λ0A

∗(I − T )A)xn − Jλ0(I − λnA
∗(I − T )A)xn

+ Jλ0(I − λnA
∗(I − T )A)xn − Jλn(I − λnA

∗(I − T )A)xn∥ (3.20)

≤ ∥(I − λ0A
∗(I − T )A)xn − (I − λnA

∗(I − T )A)xn∥+ ∥Jλ0sn − Jλnsn∥

≤ |λ0 − λn|∥A∗(I − T )Axn∥+
|λ0 − λn|

λ0

∥Jλ0sn − sn∥.

We also have from (3.20) that

∥xn − Jλ0(I − λ0A
∗(I − T )A)xn∥ (3.21)

≤ ∥xn − zn∥+ ∥zn − Jλ0(I − λ0A
∗(I − T )A)xn∥.

We will use (3.20) and (3.21) later.

Let us show that lim supn→∞ ⟨z0 − u, xn − z0⟩ ≥ 0. Put

ℓ = lim sup
n→∞

⟨z0 − u, xn − z0⟩ .

Without loss of generality, we may assume that there exists a subsequence {xni
} of

{xn} such that ℓ = limi→∞ ⟨z0 − u, xni
− z0⟩ and {xni

} converges weakly to some

point w ∈ C. From ∥xn − zn∥ → 0, we also have that {zni
} converges weakly to

w ∈ C. On the other hand, from {λni
} ⊂ [a, b] there exists a subsequence {λnij

}
of {λni

} such that λnij
→ λ0 for some λ0 ∈ [a, b]. Without loss of generality, we

assume that zni
⇀ w and λni

→ λ0. From (3.19) we know limn→∞ ∥Szn − zn∥ = 0.

Thus we have from Lemma 2.7 that w = Sw. Since λni
→ λ0, we have from (3.20)

that

∥Jλ0(I − λ0A
∗(I − T )A)xni

− zni
∥ → 0.

Furthermore, we have from (3.21) that

∥xni
− Jλ0(I − λ0A

∗(I − T )A)xni
∥ → 0.

Since Jλ0(I − λ0A
∗(I − T )A) is nonexpansive, we have that

w = Jλ0(I − λ0A
∗(I − T )A)w.

This means that 0 ∈ B−10 ∩ A−1F (T ). Thus we have

w ∈ F (S) ∩B−10 ∩ A−1F (T ).

Then we have

ℓ = lim
i→∞

⟨z0 − u, xni
− z0⟩ = ⟨z0 − u,w − z0⟩ ≥ 0. (3.22)

Since yn − z0 = αn(un − z0) + (1− αn)(Szn − z0), we have

∥yn − z0∥2 ≤ (1− αn)
2 ∥Szn − z0∥2 + 2αn ⟨un − z0, yn − z0⟩ .
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Thus we have from (3.1) that

∥yn − z0∥2 ≤ (1− αn)
2 ∥xn − z0∥2 + 2αn ⟨un − z0, yn − z0⟩ .

Consequently we have that

∥xn+1 − z0∥2 ≤ βn ∥xn − z0∥2 + (1− βn) ∥yn − z0∥2

≤ βn ∥xn − z0∥2 + (1− βn)
(
(1− αn)

2 ∥xn − z0∥2 + 2αn ⟨un − z0, yn − z0⟩
)

=
(
βn + (1− βn)(1− αn)

2
)
∥xn − z0∥2 + 2(1− βn)αn ⟨un − z0, yn − z0⟩

≤ (βn + (1− βn)(1− αn)) ∥xn − z0∥2 + 2(1− βn)αn ⟨un − z0, yn − z0⟩

= (1− (1− βn)αn) ∥xn − z0∥2 + 2(1− βn)αn ⟨un − z0, yn − z0⟩

= (1− (1− βn)αn) ∥xn − z0∥2 + 2(1− βn)αn ⟨un − u, yn − z0⟩
+ 2(1− βn)αn ⟨u− z0, yn − z0⟩ .

By this inequality and Lemma 2.2, we obtain that xn → z0, where

z0 = PF (S)∩B−10∩A−1F (T )u.

Case 2: Suppose that there exists a subsequence {Γni
} ⊂ {Γn} such that Γni

<

Γni+1 for all i ∈ N. In this case, we define τ : N → N by

τ(n) = max{k ≤ n : Γk < Γk+1}.

Then we have from Lemma 2.3 that Γτ(n) ≤ Γτ(n)+1. Thus we have from (3.8) that

for all n ∈ N,

βτ(n)(1−βτ(n))∥Szτ(n) − xτ(n)∥2

≤ (1− βτ(n))
22ατ(n)∥Szτ(n) − xτ(n)∥∥uτ(n) − Szτ(n)∥

+ (1− βτ(n))
2α2

τ(n)∥uτ(n) − Szτ(n)∥2 (3.23)

+ 2(1− βτ(n))ατ(n)⟨uτ(n), xτ(n) − z0⟩
− 2(1− βτ(n))ατ(n)⟨Szτ(n), xτ(n) − z0⟩.

Using limn→∞ αn = 0 and 0 < c ≤ βn ≤ d < 1, we have that

lim
n→∞

∥Szτ(n) − xτ(n)∥ = 0. (3.24)

As in the proof of Case 1 we have that

lim
n→∞

∥xτ(n)+1 − xτ(n)∥ = 0 (3.25)

and

lim
n→∞

∥yτ(n) − Szτ(n)∥ = 0. (3.26)

Since ∥yτ(n) − xτ(n)∥ ≤ ∥yτ(n) − Szτ(n)∥+ ∥Szτ(n) − xτ(n)∥, we have that

lim
n→∞

∥yτ(n) − xτ(n)∥ = 0. (3.27)
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For z0 = PB−10∩F (S)∩A−1F (T )u, we show that lim supn→∞
⟨
z0 − u, yτ(n) − z0

⟩
≥ 0.

Put

ℓ = lim sup
n→∞

⟨
z0 − u, yτ(n) − z0

⟩
.

Without loss of generality, there exists a subsequence {yτ(ni)} of {yτ(n)} such that

ℓ = limi→∞
⟨
u− z0, yτ(ni) − z0

⟩
and {yτ(ni)} converges weakly to some point w ∈ C.

From ∥yτ(ni) − xτ(ni)∥ → 0, we also have that {xτ(ni)} converges weakly to w ∈ C.

As in the proof of Case 1 we have that w ∈ B−10∩F (S)∩A−1F (T ). Then we have

ℓ = lim
i→∞

⟨z0 − u, yτ(ni) − z0⟩ = ⟨z0 − u,w − z0⟩ ≥ 0.

As in the proof of Case 1, we also have that∥∥yτ(n) − z0
∥∥2 ≤ (1− ατ(n))

2
∥∥xτ(n) − z0

∥∥2
+ 2ατ(n)

⟨
uτ(n) − z0, yτ(n) − z0

⟩
and then

∥xτ(n)+1 − z0∥2 ≤ βτ(n)

∥∥xτ(n) − z0
∥∥2

+ (1− βτ(n))
∥∥yτ(n) − z0

∥∥2

≤
(
1− (1− βτ(n))ατ(n)

) ∥∥xτ(n) − z0
∥∥2

+ 2(1− βτ(n))ατ(n)

⟨
uτ(n) − z0, yτ(n) − z0

⟩
.

From Γτ(n) ≤ Γτ(n)+1, we have that

(1− βτ(n))ατ(n)

∥∥xτ(n) − z0
∥∥2 ≤ 2(1− βτ(n))ατ(n)⟨uτ(n) − z0, yτ(n) − z0⟩.

Since (1− βτ(n))ατ(n) > 0, we have that∥∥xτ(n) − z0
∥∥2 ≤ 2⟨uτ(n) − z0, yτ(n) − z0⟩

= 2⟨uτ(n) − u, yτ(n) − z0⟩+ 2⟨u− z0, yτ(n) − z0⟩.

Thus we have that

lim sup
n→∞

∥∥xτ(n) − z0
∥∥2 ≤ 0

and hence ∥xτ(n) − z0∥ → 0. From (3.25), we also have that xτ(n) − xτ(n)+1 → 0.

Thus ∥xτ(n)+1 − z0∥ → 0 as n → ∞. Using Lemma 2.3 again, we obtain that

∥xn − z0∥ ≤ ∥xτ(n)+1 − z0∥ → 0

as n → ∞. This completes the proof. □
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4. Applications

Let H be a Hilbert space and let f be a proper, lower semicontinuous and convex

function of H into (−∞,∞]. Then the subdifferential ∂f of f is defined as follows:

∂f(x) = {z ∈ H : f(x) + ⟨z, y − x⟩ ≤ f(y), ∀y ∈ H}

for all x ∈ H. By Rockafellar [18], it is shown that ∂f is maximal monotone. Let C

be a non-empty, closed and convex subset of H and let iC be the indicator function

of C, i.e.,

iC(x) =

{
0, if x ∈ C,

∞, if x ̸∈ C.

Then iC : H → (−∞,∞] is a proper, lower semicontinuous and convex function on

H and hence ∂iC is a maximal monotone operator. Thus we can define the resolvent

Jλ of ∂iC for λ > 0 as follows:

Jλx = (I + λ∂iC)
−1x, ∀x ∈ H, λ > 0.

On the other hand, for any u ∈ C, we also define the normal cone NC(u) of C at u

as follows:

NC(u) = {z ∈ H : ⟨z, y − u⟩ ≤ 0, ∀y ∈ C}.

Then we have that for any x ∈ C

∂iC(x) = {z ∈ H : iC(x) + ⟨z, y − x⟩ ≤ iC(y), ∀y ∈ H}
= {z ∈ H : ⟨z, y − x⟩ ≤ 0, ∀y ∈ C}
= NC(x).

Thus we have that

u = Jλx ⇔ (I + λ∂iC)
−1x = u ⇔ x ∈ u+ λ∂iC(u)

⇔ x ∈ u+ λNC(u) ⇔ x− u ∈ λNC(u)

⇔ ⟨x− u, y − u⟩ ≤ 0, ∀y ∈ C

⇔ PC(x) = u.

Putting B = ∂iC in Theorem 3.1, we have Jλ = PC . Thus we obtain the following

theorem from Theorem 3.1.

Theorem 4.1. Let H1 and H2 be Hilbert spaces and let C be a non-empty, closed

and convex subset of H1. Let S be an (α, β, γ, δ, ε, ζ, η)-widely more generalized

hybrid mapping from C into C which satisfies the conditions (1) or (2):

(1) α + β + γ + δ ≥ 0, α+ β > 0 and ζ + η ≥ 0;

(2) α + β + γ + δ ≥ 0, α+ γ > 0 and ε+ η ≥ 0.
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Let T : H2 → H2 be a nonexpansive mapping. Let A : H1 → H2 be a bounded linear

operator. Suppose that F (S)∩A−1F (T ) ̸= ∅. Let {un} be a sequence in C such that

un → u. Let x1 = x ∈ C and let {xn} ⊂ C be a sequence generated by

xn+1 = βnxn + (1− βn)(αnun + (1− αn)SPC(I − λnA
∗(I − T )A)xn)

for all n ∈ N, where {λn} ⊂ (0,∞), {βn} ⊂ (0, 1) and {αn} ⊂ (0, 1) satisfy

0 < a ≤ λn ≤ b <
1

∥A∥2
, 0 < c ≤ βn ≤ d < 1,

lim
n→∞

αn = 0 and
∞∑
n=1

αn = ∞.

Then the sequence {xn} converges strongly to a point z0 ∈ F (S) ∩ A−1F (T ), where

z0 = PF (S)∩A−1F (T )u.

Proof. Set B = ∂iC in Theorem 3.1. Then we have that Jλ = PC for all λ > 0. Thus

we have the desired result from Theorem 3.1. □

Replacing a widely more generalized hybrid mapping in Theorem 3.1 by a gener-

alized hybrid mapping, we have the following theorem.

Theorem 4.2. Let H1 and H2 be Hilbert spaces and let C be a non-empty closed

convex subset of H1. Let B : H1 → 2H1 be a maximal monotone mapping such that

D(B) ⊂ C and let Jλ = (I + λB)−1 be the resolvent of B for λ > 0. Let S be a

generalized hybrid mapping from C into C. Let T : H2 → H2 be a nonexpansive

mapping. Let A : H1 → H2 be a bounded linear operator. Suppose that B−10∩F (S)∩
A−1F (T ) ̸= ∅. Let {un} be a sequence in C such that un → u. Let x1 = x ∈ C and

let {xn} ⊂ C be a sequence generated by

xn+1 = βnxn + (1− βn)(αnun + (1− αn)SJλn(I − λnA
∗(I − T )A)xn)

for all n ∈ N, where {λn} ⊂ (0,∞), {βn} ⊂ (0, 1) and {αn} ⊂ (0, 1) satisfy

0 < a ≤ λn ≤ b <
1

∥A∥2
, 0 < c ≤ βn ≤ d < 1,

lim
n→∞

αn = 0 and
∞∑
n=1

αn = ∞.

Then the sequence {xn} converges strongly to a point z0 ∈ B−10∩F (S)∩A−1F (T ),

where z0 = PB−10∩F (S)∩A−1F (T )u.

Proof. Since S : C → C is generalized hybrid, there exist s, t ∈ R such that

s∥Sx− Sy∥2 + (1− s)∥x− Sy∥2 ≤ t∥Sx− y∥2 + (1− t)∥x− y∥2
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for all x, y ∈ C. This implies that

s∥Sx− Sy∥2 + (1− s)∥x− Sy∥2 − t∥Sx− y∥2 − (1− t)∥x− y∥2 ≤ 0.

Since (1) α+β+γ+δ = s+(1−s)−(1−t)−t = 0, α+β = s−(1−s) = 1 and ε+η = 0

in Theorem 3.1 are satisfied, we have the desired result from Theorem 3.1. □

We also get the following theorem from Theorem 4.2.

Theorem 4.3. Let H1 and H2 be Hilbert spaces and let C be a non-empty closed

convex subset of H1. Let S : C → C be a nonexpansive mapping and let T : H2 → H2

be a nonexpansive mapping. Let A : H1 → H2 be a bounded linear operator. Suppose

that F (S) ∩ A−1F (T ) ̸= ∅. Let {un} be a sequence in C such that un → u. Let

x1 = x ∈ C and let {xn} be a sequence in C generated by

xn+1 = βnxn + (1− βn)(αnun + (1− αn)PC(I − λnA
∗(I − T )A)xn)

for all n ∈ N, where {λn} ⊂ (0,∞), {βn} ⊂ (0, 1) and {αn} ⊂ (0, 1) satisfy

0 < a ≤ λn ≤ b <
1

∥A∥2
, 0 < c ≤ βn ≤ d < 1,

lim
n→∞

αn = 0 and

∞∑
n=1

αn = ∞.

Then the sequence {xn} converges strongly to a point z0 of F (S) ∩A−1F (T ), where

z0 = PF (S)∩A−1F (T )u.

Let C be a non-empty, closed and convex subset of a real Hilbert space H, and

let f : C × C → R be a bifunction. Then we consider the following equilibrium

problem: Find z ∈ C such that

f(z, y) ≥ 0, ∀y ∈ C. (4.1)

The set of such z ∈ C is denoted by EP (f), i.e.,

EP (f) = {z ∈ C : f(z, y) ≥ 0, ∀y ∈ C}.

For solving the equilibrium problem, let us assume that the bifunction f satisfies

the following conditions:

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;

(A3) for all x, y, z ∈ C,

lim sup
t→0

f(tz + (1− t)x, y) ≤ f(x, y);

(A4) f(x, ·) is convex and lower semicontinuous for all x ∈ C.

We know the following lemmas; see, for instance, [4] and [8].
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Lemma 4.1 ([4]). Let C be a non-empty closed convex subset of H, let f be a

bifunction from C × C to R satisfying (A1)-(A4) and let r > 0 and x ∈ H. Then,

there exists z ∈ C such that

f(z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0

for all y ∈ C.

Lemma 4.2 ([8]). For r > 0 and x ∈ H, define the resolvent Tr : H → C of f for

r > 0 as follows:

Trx =

{
z ∈ C : f(z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

}
.

Then, the following hold:

(i) Tr is single-valued;

(ii) Tr is firmly nonexpansive, i.e., for all x, y ∈ H,

∥Trx− Try∥2 ≤ ⟨Trx− Try, x− y⟩;

(iii) F (Tr) = EP (f);

(iv) EP (f) is closed and convex.

Takahashi, Takahashi and Toyoda [21] showed the following. See [1] for a more

general result.

Lemma 4.3 ([21]). Let C be a non-nempty, closed and convex subset of a Hibert

space H and let f : C ×C → R be a bifunction satisfying the conditions (A1)-(A4).

Define Af as follows:

Af (x) =

{
{z ∈ H : f(x, y) ≥ ⟨y − x, z⟩, ∀y ∈ C}, if x ∈ C,

∅, if x ̸∈ C.

Then EP (f) = A−1
f (0) and Af is maximal monotone with the domain of Af in C.

Furthermore,

Tr(x) = (I + rAf )
−1(x), ∀r > 0.

We obtain the following theorem from Theorem 3.1.

Theorem 4.4. Let H1 and H2 be Hilbert spaces and let C be a non-empty closed

convex subset of H1. Let f : C×C → R satisfy the conditions (A1)-(A4) and let Tλn

be the resolvent of Af for λn > 0 in Lemma 4.3. Let S be an (α, β, γ, δ, ε, ζ, η)-widely

more generalized hybrid mapping from C into C which satisfies the conditions (1)

or (2):

(1) α + β + γ + δ ≥ 0, α+ β > 0 and ζ + η ≥ 0;

(2) α + β + γ + δ ≥ 0, α+ γ > 0 and ε+ η ≥ 0.
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Let T : H2 → H2 be a nonexpansive mapping. Let A : H1 → H2 be a bounded linear

operator. Suppose that EP (f)∩F (S)∩A−1F (T ) ̸= ∅. Let {un} be a sequence in C

such that un → u. Let x1 = x ∈ C and let {xn} ⊂ C be a sequence generated by

xn+1 = βnxn + (1− βn)(αnun + (1− αn)STλn(I − λnA
∗(I − T )A)xn)

for all n ∈ N, where {λn} ⊂ (0,∞), {βn} ⊂ (0, 1) and {αn} ⊂ (0, 1) satisfy

0 < a ≤ λn ≤ b <
1

∥A∥2
, 0 < c ≤ βn ≤ d < 1,

lim
n→∞

αn = 0 and
∞∑
n=1

αn = ∞.

Then the sequence {xn} converges strongly to a point z0 ∈ EP (f)∩F (S)∩A−1F (T ),

where z0 = PEP (f)∩F (S)∩A−1F (T )u.

Proof. Define Af for the bifunction f and set B = Af in Theorem 3.1. Thus we

have the desired result from Theorem 3.1. □
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