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SIMULTANEOUS EXTENSIONS
OF SELBERG AND BUZANO INEQUALITIES

MASATOSHI FUJII, AKEMI MATSUMOTO, AND MASARU TOMINAGA

Abstract. We give a simultaneous extension of Selberg and Buzano inequalities:

If y1, y2 and nonzero vectors {zi; i = 1, 2, . . . , n} in a Hilbert space H satisfy the

orthogonality condition ⟨yk, zi⟩ = 0 for i = 1, 2, . . . , n and k = 1, 2, then

| ⟨x, y1⟩ ⟨x, y2⟩ |+ B (y1, y2)
∑
i

| ⟨x, zi⟩ |2∑
j | ⟨zi, zj⟩ |

≤ B (y1, y2) ∥x∥2

holds for all x ∈ H , where B (y1, y2) =
1
2 (∥y1∥ ∥y2∥+ |⟨y1, y2⟩|).

As an application, we discuss some refinements of the Heinz-Kato-Furuta in-

equality and the Bernstein inequality.

1. Introduction

Let H be a Hilbert space in the below. In [21], K. and F. Kubo sought out the

Selberg inequality which is an extension of the Bessel inequality, and they gave it

an elegant proof by using Geršgorin’s theorem.

Selberg inequality. For given nonzero vectors {zi; i = 1, 2, . . . , n} in H ,∑
i

| ⟨x, zi⟩ |2∑
j | ⟨zi, zj⟩ |

≤ ∥x∥2 (SI)

holds for all x ∈ H .

In [11], to give simultaneous extensions of Selberg and Heinz-Kato-Furuta inequal-

ities, the following lemma is prepared:

Lemma A. If y ∈ H satisfies ⟨y, zi⟩ = 0 for given nonzero vectors {zi; i =

1, 2, . . . , n} ⊂ H , then

| ⟨x, y⟩ |2 +
∑
i

| ⟨x, zi⟩ |2∑
j | ⟨zi, zj⟩ |

∥y∥2 ≤ ∥x∥2 ∥y∥2 (1.1)
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holds for all x ∈ H .

It is regarded as a simultaneous extension of Schwarz and Selberg inequalities.

On the other hand, Buzano inequality, simply (BI), says in [2] that

| ⟨x, y1⟩ ⟨x, y2⟩ | ≤
1

2
(∥y1∥ ∥y2∥+ | ⟨y1, y2⟩ |) ∥x∥2 , (BI)

holds for all x, y1, y2 ∈ H , which includes Schwarz inequality as in the case y1 = y2.

In this note, we propose an extension of Lemma A as a simultaneous extension of

Selberg and Buzano inequalities. By using this, we discuss some refinements of the

Heinz-Kato-Furuta inequality and the Bernstein inequality.

2. Simultaneous extension of Selberg and Buzano inequali-

ties

First of all, we recall the Buzano inequality and its equality condition. For conve-

nience, we denote by

B (y1, y2) :=
1

2
(∥y1∥ ∥y2∥+ | ⟨y1, y2⟩ |)

for y1, y2 ∈ H .

Lemma 2.1. Let {y1, y2} be a given pair of vectors in H . Then (BI) holds for all

x ∈ H :

| ⟨x, y1⟩ ⟨x, y2⟩ | ≤ B (y1, y2) ∥x∥2 . (BI)

Moreover, if {y1, y2} is linearly independent, then the equality in (BI) holds for

x ∈ H if and only if x = a(∥y2∥ y1 + eiθ ∥y1∥ y2) for some scalar a, where θ =

arg ⟨y1, y2⟩. Incidentally, if {y1, y2} is linearly dependent, then the equality in (BI)

holds for x ∈ H if and only if x = ay1 for some scalar a.

Proof. We first review a proof of (BI). We may assume that ∥x∥ = 1. Then we have

| ⟨y1, x⟩ ⟨x, y2⟩ | =
∣∣∣∣⟨⟨y1, x⟩ x− 1

2
y1, y2

⟩
+

1

2
⟨y1, y2⟩

∣∣∣∣
≤
∣∣∣∣⟨⟨y1, x⟩x− 1

2
y1, y2

⟩∣∣∣∣+ ∣∣∣∣12 ⟨y1, y2⟩
∣∣∣∣

≤
∥∥∥∥⟨y1, x⟩x− 1

2
y1

∥∥∥∥ ∥y2∥+ 1

2
| ⟨y1, y2⟩ |

=
1

2
∥y1∥ ∥y2∥+

1

2
| ⟨y1, y2⟩ |

= B (y1, y2) .
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Now we assume that {y1, y2} is linearly independent. Note that the equality holds

for (BI) if and only if the equalities hold in the above inequalities and that the

equality holds in the first (resp. second) inequality if and only if

arg ⟨2 ⟨y1, x⟩x− y1, y2⟩ = arg ⟨y1, y2⟩ := θ

(resp. there exists a scalar k such that

ky2 = 2 ⟨y1, x⟩x− y1).

Hence it follows that arg k = θ and

|k| ∥y2∥ = ∥2 ⟨y1, x⟩x− y1∥ = ∥y1∥

and so k = ∥y1∥
∥y2∥e

iθ.

Next, to determine the form of a vector x, we may assume that x = ay1 + by2 for

some scalars a, b. Since ky2 = 2 ⟨y1, x⟩x− y1 = 2b ⟨y1, x⟩ y2 + 2a ⟨y1, x⟩ y1 − y1 and

{y1, y2} is linearly independent, we have

2a ⟨y1, x⟩ = 1 and 2b ⟨y1, x⟩ = k,

so that b = ak. Therefore it implies that x = a(y1 + ky2), that is, x = c(∥y2∥ y1 +
eiθ ∥y1∥ y2) for some c and θ with θ = arg ⟨y1, y2⟩.

Conversely it is easily checked that if x = ∥y2∥ y1+eiθ ∥y1∥ y2 where θ = arg ⟨y1, y2⟩,
then the equality holds in (BI). As a matter of fact, we have

| ⟨y1, x⟩ ⟨x, y2⟩ | = 4B (y1, y2)
2 ∥y1∥ ∥y2∥ ,

and

∥x∥2 = 4B (y1, y2) ∥y1∥ ∥y2∥ .

The latter case where they are linearly dependent is obvious. �

Next we recall the equality condition for the Selberg inequality, see [9, Theorem

2].

Lemma 2.2. Let {zi; i = 1, 2, . . . , n} be a given family of nonzero vectors in H

which are not mutually orthogonal. Then the equality∑
i

| ⟨x, zi⟩ |2∑
j | ⟨zi, zj⟩ |

= ∥x∥2

holds for x ∈ H if and only if x =
∑

i aizi for some scalars a1, · · · , an such that

⟨aizi, ajzj⟩ ≥ 0 and |ai| = |aj| for all i, j.

Now we propose a simultaneous extension of Selberg and Buzano inequalities.
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Theorem 2.3. If y1, y2 ∈ H satisfy ⟨yk, zi⟩ = 0 for k = 1, 2 and given nonzero

vectors {zi; i = 1, 2, . . . , n} ⊂ H , then

| ⟨x, y1⟩ ⟨x, y2⟩ |+ B (y1, y2)
∑
i

| ⟨x, zi⟩ |2∑
j | ⟨zi, zj⟩ |

≤ B (y1, y2) ∥x∥2 (2.1)

holds for all x ∈ H .

Moreover, the equality holds in the above if and only if x = x1⊕x2 where x1 (resp.

x2) is in the subspace spanned by y1, y2 (resp. z1, . . . , zn) and satisfies the equality

condition in (BI) (resp.(SI)) as in Lemma 2.1 (resp. Lemma 2.2).

Proof. We put ai =
⟨x,zi⟩∑
j |⟨zi,zj⟩|

and u = x −
∑

i
⟨x,zi⟩∑
j |⟨zi,zj⟩|

zi = x −
∑

i aizi. Then we

have

∥u∥2 =

∥∥∥∥∥x−
∑
i

aizi

∥∥∥∥∥
2

= ∥x∥2 − 2Re
∑
i

āi ⟨x, zi⟩+

∥∥∥∥∥∑
i

aizi

∥∥∥∥∥
2

≤ ∥x∥2 − 2
∑
i

| ⟨x, zi⟩ |2∑
j | ⟨zi, zj⟩ |

+
∑
i,j

|ai||aj|| ⟨zi, zj⟩ |

≤ ∥x∥2 − 2
∑
i

| ⟨x, zi⟩ |2∑
j | ⟨zi, zj⟩ |

+
∑
i

|ai|2
∑
j

| ⟨zi, zj⟩ |

= ∥x∥2 −
∑
i

| ⟨x, zi⟩ |2∑
j | ⟨zi, zj⟩ |

,

because the second inequality in the above is ensured by∑
i

|ai|2
∑
j

| ⟨zi, zj⟩ | −
∑
i,j

|ai||aj|| ⟨zi, zj⟩ | =
1

2

∑
i,j

(|ai| − |aj|)2 |⟨zi, zj⟩| ≥ 0.

Multiplying B (y1, y2) on both sides, it follows from the Buzano inequality that

B (y1, y2)

(
∥x∥2 −

∑
i

| ⟨x, zi⟩ |2∑
j | ⟨zi, zj⟩ |

)
≥ B (y1, y2) ∥u∥2

≥ | ⟨u, y1⟩ ⟨u, y2⟩ | = | ⟨x, y1⟩ ⟨x, y2⟩ |,

and hence we have the desired inequality.

The equality condition is easily obtained by Lemmas 2.1 and 2.2. �

3. Generalizations of Theorem 2.3

Now Furuta [18, Theorem 2] showed the following extension of the Selberg inequality:

Let T be an operator on H with the kernel ker(T ). For given zi ̸∈ ker(T ∗) for
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i = 1, 2, . . . , n, ∑
i

| ⟨Tx, zi⟩ |∑
j | ⟨|T ∗|2(1−α)zi, zj⟩ |

≤ ∥|T |αx∥2 (3.1)

holds for all x ∈ H and α ∈ [0, 1].

Corollary 3.1. Let T = U |T | be the polar decomposition of an operator T on H ,

zi ̸∈ ker(T ∗) for i = 1, 2, . . . , n and α ∈ [0, 1]. If y1, y2 ∈ H satisfy ⟨U |T |1−αyk, zi⟩ =
0 for i = 1, 2, . . . , n and k = 1, 2, then

| ⟨|T |αx, y1⟩ ⟨|T |αx, y2⟩ |+ B (y1, y2)
∑
i

| ⟨Tx, zi⟩ |2∑
j | ⟨|T ∗|2(1−α)zi, zj⟩ |

≤ B (y1, y2) ∥|T |αx∥2

(3.2)

holds for all x ∈ H .

Proof. We apply Theorem 2.3 by replacing x, zi to |T |αx, |T |1−αU∗zi, respectively.

Incidentally the orthogonality condition is satisfied. �

Next we propose another refinement of (3.1):

Corollary 3.2. Let T = U |T | be the polar decomposition of an operator T on H .

Suppose that zi ̸∈ ker(T ∗) for i = 1, 2, . . . , n and α, β ≥ 0 with α + β ≥ 1 ≥ α. If

y1, y2 ∈ H satisfy
⟨
|T ∗|β+1−αyk, zi

⟩
= 0 for i = 1, 2, . . . , n and k = 1, 2, then

|
⟨
T |T |α+β−1x, y1

⟩ ⟨
T |T |α+β−1x, y2

⟩
|+ B

(
|T ∗|βy1, |T ∗|βy2

)∑
i

| ⟨Tx, zi⟩ |2∑
j | ⟨|T ∗|2(1−α)zi, zj⟩ |

≤ B
(
|T ∗|βy1, |T ∗|βy2

)
∥|T |αx∥2

holds for all x ∈ H . In particular, if
⟨
|T ∗|2(1−α)yk, zi

⟩
= 0 for α ∈ [0, 1], i =

1, 2, . . . , n and k = 1, 2, then

| ⟨Tx, y1⟩ ⟨Tx, y2⟩ |+ B
(
|T ∗|(1−α)y1, |T ∗|1−αy2

)∑
i

| ⟨Tx, zi⟩ |2∑
j | ⟨|T ∗|2(1−α)zi, zj⟩ |

≤ B
(
|T ∗|1−αy1, |T ∗|1−αy2

)
∥|T |αx∥2

holds for all x ∈ H .

Proof. We apply Theorem 2.3 by replacing x, zi, yk to |T |αx, |T |1−αU∗zi, U
∗|T ∗|βyk.

Incidentally the orthogonality condition is satisfied by⟨
|T ∗|βyk, |T ∗|1−αzi

⟩
=
⟨
|T ∗|β+1−αyk, zi

⟩
= 0.

�
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Corollary 3.3. Let T = U |T | be the polar decomposition of an operator T on H .

Suppose that zi ̸∈ ker(T ) for i = 1, 2, . . . , n and α, β ≥ 0 with α + β ≥ 1. If

y1, y2 ∈ H satisfy
⟨
T |T |α+β−1zi, yk

⟩
= 0 for i = 1, 2, . . . , n and k = 1, 2, then

|
⟨
T |T |α+β−1x, y1

⟩ ⟨
T |T |α+β−1x, y2

⟩
|+ B

(
|T ∗|βy1, |T ∗|βy2

)∑
i

| ⟨|T |2αx, zi⟩ |2∑
j | ⟨|T |2αzi, zj⟩ |

≤ B
(
|T ∗|βy1, |T ∗|βy2

)
∥|T |αx∥2

holds for all x ∈ H .

Proof. We apply Theorem 2.3 by replacing x, zi, yk to U |T |αx, U |T |αzi, |T ∗|βyk. In-
cidentally the orthogonality condition is satisfied, and so the conclusion is obtained.

�

4. Extensions via Heinz-Kato-Furuta inequality

In [18], Furuta extended the Heinz-Kato inequality, which is called the Heinz-Kato-

Furuta inequality:

The Heiz-Kato-Furuta inequality. Let A and B be positive operators on H .

If T satisfies T ∗T ≤ A2 and TT ∗ ≤ B2, then

|
⟨
T |T |α+β−1x, y

⟩
| ≤ ∥Aαx∥

∥∥Bβy
∥∥

holds for all x, y ∈ H and α, β ∈ [0, 1] with α+ β ≥ 1. In addition, if A and B are

invertible, then α + β ≥ 1 is unnecessary.

Afterwards, several authors have generalized it, e.g. [11], [12], [13], [19].

In this section, we apply the results in the preceding section to extend the Heinz-

Kato-Furuta inequality.

To do this, the point is the following lemma:

Lemma 4.1. If TT ∗ ≤ B2 for some B ≥ 0, then for β ∈ [0, 1]

B
(
|T ∗|βy1, |T ∗|βy2

)
≤
∥∥Bβy1

∥∥∥∥Bβy2
∥∥

holds for all y1, y2 ∈ H .

Proof. Note that the Löwner-Heinz inequality [23] ensures that

|T ∗|2β ≤ B2β for β ∈ [0, 1],

so that
∥∥|T ∗|βy

∥∥ ≤
∥∥Bβy

∥∥ for all y ∈ H . Hence we have

B
(
|T ∗|βy1, |T ∗|βy2

)
≤
∥∥|T ∗|βy1

∥∥ ∥∥|T ∗|βy2
∥∥ ≤

∥∥Bβy1
∥∥∥∥Bβy2

∥∥ .
�
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First of all, the following inequality follows from Corollary 3.1 and the Löwner-

Heinz inequality.

Corollary 4.2. Let T = U |T | be the polar decomposition of an operator T on H ,

zi ̸∈ ker(T ∗) for i = 1, 2, . . . , n and α ∈ [0, 1]. If T ∗T ≤ A2 for some positive operator

A, and y1, y2 ∈ H satisfy ⟨U |T |1−αyk, zi⟩ = 0 for i = 1, 2, . . . , n and k = 1, 2, then

| ⟨|T |αx, y1⟩ ⟨|T |αx, y2⟩ |+ B (y1, y2)
∑
i

| ⟨Tx, zi⟩ |2∑
j | ⟨|T ∗|2(1−α)zi, zj⟩ |

≤ B (y1, y2) ∥Aαx∥2

(4.1)

holds for all x ∈ H .

Now the following inequalities follow from Corollary 3.2 and Lemma 4.1.

Corollary 4.3. Let T = U |T | be the polar decomposition of an operator T on

H . Suppose that zi ̸∈ ker(T ∗) for i = 1, 2, . . . , n and α, β ∈ [0, 1] with α + β ≥
1. If T ∗T ≤ A2 and TT ∗ ≤ B2 for some A,B ≥ 0, and y1, y2 ∈ H satisfy⟨
|T ∗|β+1−αyk, zi

⟩
= 0 for i = 1, 2, . . . , n and k = 1, 2, then

|
⟨
T |T |α+β−1x, y1

⟩ ⟨
T |T |α+β−1x, y2

⟩
|+ B

(
|T ∗|βy1, |T ∗|βy2

)∑
i

| ⟨Tx, zi⟩ |2∑
j | ⟨|T ∗|2(1−α)zi, zj⟩ |

≤
∥∥Bβy1

∥∥∥∥Bβy2
∥∥ ∥Aαx∥2

holds for all x ∈ H . In particular, if
⟨
|T ∗|2(1−α)yk, zi

⟩
= 0 for α ∈ [0, 1], i =

1, 2, . . . , n and k = 1, 2, then

| ⟨Tx, y1⟩ ⟨Tx, y2⟩ |+ B
(
|T ∗|(1−α)y1, |T ∗|1−αy2

)∑
i

| ⟨Tx, zi⟩ |2∑
j | ⟨|T ∗|2(1−α)zi, zj⟩ |

≤
∥∥B1−αy1

∥∥∥∥B1−αy2
∥∥ ∥Aαx∥2

holds for all x ∈ H .

Next the following inequality follows from Corollary 3.3 and Lemma 4.1.

Corollary 4.4. Let T = U |T | be the polar decomposition of an operator T on H .

Suppose that zi ̸∈ ker(T ∗) for i = 1, 2, . . . , n and α, β ≥ 0 with α+ β ≥ 1. If T ∗T ≤
A2 and TT ∗ ≤ B2 for some A,B ≥ 0, and y1, y2 ∈ H satisfy

⟨
T |T |α+β−1zi, yk

⟩
= 0

for i = 1, 2, . . . , n and k = 1, 2, then

|
⟨
T |T |α+β−1x, y1

⟩ ⟨
T |T |α+β−1x, y2

⟩
|+ B

(
|T ∗|βy1, |T ∗|βy2

)∑
i

| ⟨|T |2αx, zi⟩ |2∑
j | ⟨|T |2αzi, zj⟩ |

≤
∥∥Bβy1

∥∥ ∥∥Bβy2
∥∥ ∥Aαx∥2

holds for all x ∈ H .
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5. Extensions of Heinz-Kato-Furuta and Bernstein inequal-

ities.

In [12, Theorem 2], we proposed the following improvement of the Heinz-Kato-

Furuta inequality and gave conditions under which the equality holds:

Theorem A. Let T be an operator on H . If A and B are positive operators on

H such that T ∗T ≤ A2 and TT ∗ ≤ B2, then for each x ∈ H∣∣⟨T |T |α+β−1x, y
⟩∣∣2 + |⟨|T |2αx, z⟩|2

∥∥|T ∗|βy
∥∥2

∥|T |αz∥2
≤ ∥Aαx∥2

∥∥Bβy
∥∥2 (5.1)

for all α, β ∈ [0, 1] with α + β ≥ 1 and y, z ∈ H such that y ̸= 0, T |T |α+β−1z ̸= 0

and
⟨
T |T |α+β−1z, y

⟩
= 0. In the case α, β > 0, the equality in (5.1) holds if and

only if A2αx = |T |2αx, B2βy = |T ∗|2βy, and |T |α+β−1T ∗y and |T |2α(x − ⟨|T |2αx,z⟩
∥|T |αz∥2 z)

are linearly dependent.

It is obvious that (5.1) is just Lin’s result [22] in the case of α + β = 1.

Next we recall the Bernstein inequality [1, p.319].

The Bernstein inequality. Let S be a selfadjoint operator on H . If e is a unit

eigenvector corresponding to an eigenvalue λ of S, then

|⟨x, e⟩|2 ≤ ∥x∥2 ∥Sx∥2 − ⟨x, Sx⟩2

∥(S − λ)x∥2
(5.2)

for all x ∈ H for which Sx ̸= λx.

It was extended to nonnormal operators, precisely dominant operators by Furuta

[16] and moreover operators with normal eigenvalues [5]. Afterwards we pointed

out that eigenvalues and its corresponding eigenvectors of adjoint operators are

essential in this discussion [14], and Bessel type inequality [10, Theorem 1] showed

the following:

Theorem B. Let S be an operator on H and ei be a unit eigenvector corresponding

to an eigenvalue λ̄i of S
∗ for i = 1, 2, . . . , n. Then for each x ∈ H with

∏n
i=1(S −

λi)x ̸= 0 ∑
i

|⟨ui−1, ei⟩|2 ≤ ∥x∥2 − |⟨x,
∏n

i=1(S − λi)x⟩|2

∥
∏n

i=1(S − λi)x∥2
(5.3)

for ui = ui−1 − ⟨ui−1, ei⟩ ei with u0 = x for i = 1, . . . , n.

In particular, if {e1, e2, . . . , en} is an orthonormal set, then∑
i

|⟨x, ei⟩|2 ≤ ∥x∥2 − |⟨x,
∏n

i=1(S − λi)x⟩|2

∥
∏n

i=1(S − λi)x∥2
. (5.4)
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In this section, we give a simultaneous extension of Theorems A and B. For this,

the following result is really important.

Theorem 5.1. Let T be an operator on H . Then for each x, y1, y2 ∈ H∣∣⟨T |T |α+β−1x, y1
⟩ ⟨

T |T |α+β−1x, y2
⟩∣∣+ B

(
|T ∗|βy1, |T ∗|βy2

)∑
i

|⟨|T |2αui−1, zi⟩|2

∥|T |αzi∥2

≤ B
(
|T ∗|βy1, |T ∗|βy2

)
∥|T |αx∥2

(5.5)

for all α, β ≥ 0 with α+β ≥ 1 and z1, . . . , zn ̸∈ kerT such that
⟨
T |T |α+β−1zi, yk

⟩
= 0,

where ui = ui−1 − ⟨|T |2αui−1,zi⟩
∥|T |αzi∥2

zi with u0 = x for i = 1, 2, . . . , n and k = 1, 2.

In the case α, β > 0, if {|T ∗|βy1, |T ∗|βy2} is linearly independent, then the equal-

ity in (5.5) holds for x ∈ H if and only if U |T |αun = a(
∥∥|T ∗|βy2

∥∥ |T ∗|βy1 +

eiθ
∥∥|T ∗|βy1

∥∥ |T ∗|βy2) for some scalar a, where θ = arg
⟨
|T ∗|βy1, |T ∗|βy2

⟩
. Inciden-

tally, if {|T ∗|βy1, |T ∗|βy2} is linearly dependent, then the equality in (5.5) holds for

x ∈ H if and only if U |T |αun = a|T ∗|βy1 for some scalar a.

Proof. Noting that U |T |α+β = U |T |βU∗U |T |α = |T ∗|βU |T |α even if either α = 0 or

β = 0, we have⟨
U |T |αun, |T ∗|βyk

⟩
=
⟨
U |T |αun−1, |T ∗|βyk

⟩
− ⟨|T |2αun−1, zn⟩

∥|T |αzn∥2
⟨
U |T |αzn, |T ∗|βyk

⟩
=
⟨
U |T |αun−1, |T ∗|βyk

⟩
= · · · =

⟨
U |T |αx, |T ∗|βyk

⟩
=
⟨
T |T |α+β−1x, yk

⟩
,

and

∥|T |αun∥2 = ∥|T |αun−1∥2−
| ⟨|T |2αun−1, zn⟩ |2

∥|T |αzn∥2
= · · · = ∥|T |αx∥2−

∑
i

| ⟨|T |2αui−1, zi⟩ |2

∥|T |αzi∥2

by the definition of ui and
⟨
T |T |α+β−1yk, zi

⟩
= 0. Hence it follows from Lemma 2.1

that∣∣⟨T |T |α+β−1x, y1
⟩ ⟨

T |T |α+β−1x, y2
⟩∣∣ = ∣∣⟨U |T |αun, |T ∗|βy1

⟩ ⟨
U |T |αun, |T ∗|βy2

⟩∣∣
≤ B

(
|T ∗|βy1, |T ∗|βy2

)
∥U |T |αun∥2 = B

(
|T ∗|βy1, |T ∗|βy2

)
∥|T |αun∥2

= B
(
|T ∗|βy1, |T ∗|βy2

)
∥|T |αx∥2 − B

(
|T ∗|βy1, |T ∗|βy2

)∑
i

|⟨|T |2αui−1, zi⟩|2

∥|T |αzi∥2
,

so we obtain the desired inequality (5.5). The equality condition is confirmed by its

of Lemma 2.1. �

As a consequence, we have the following refinement of Heinz-Kato-Furuta inequal-

ity by Lemma 4.1 and the Löwner-Heinz inequality:
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Theorem 5.2. Let T be an operator on H . If A and B are positive operators on

H such that T ∗T ≤ A2 and TT ∗ ≤ B2, then for each x, y1, y2 ∈ H∣∣⟨T |T |α+β−1x, y1
⟩ ⟨

T |T |α+β−1x, y2
⟩∣∣+ B

(
|T ∗|βy1, |T ∗|βy2

)∑
i

|⟨|T |2αui−1, zi⟩|2

∥|T |αzi∥2

≤
∥∥Bβy1

∥∥∥∥Bβy2
∥∥ ∥Aαx∥2

(5.6)

for all α, β ∈ [0, 1] with α+β ≥ 1 and z1, . . . , zn ̸∈ kerT such that
⟨
T |T |α+β−1zi, yk

⟩
=

0, where ui = ui−1 −
⟨|T |2αui−1,zi⟩

∥|T |αzi∥2
zi with u0 = x for i = 1, 2, . . . , n and k = 1, 2.

In the case α, β > 0, the equality in (5.6) holds if and only if A2αx = |T |2αx,
B2βyk = |T ∗|2βyk and the equality condition of (5.5) hold.

Remark 5.3. If we put n = 1 and y := y1 = y2 in Theorem 5.2, then we obtain

Theorem A. Moreover if n = 1 the equality condition of (5.6) ensures one of (5.1)

by [12, Lemma]. On the other hand, let S, λi and ei for i = 1, 2, . . . , n be as in

Theorem B. Moreover if we put T = I (the identity operator), and replace zi
∥zi∥ and

y(:= y1 = y2) to ei and
∏n

j=1(S − λj)x respectively in Theorem 5.1, then we obtain

Theorem B by the following inequality∣∣∣∣∣
⟨
x,

n∏
i=1

(S − λi)x

⟩∣∣∣∣∣
2

+
∑
i

|⟨ui−1, ei⟩|2
∥∥∥∥∥

n∏
i=1

(S − λi)x

∥∥∥∥∥
2

≤ ∥x∥2
∥∥∥∥∥

n∏
i=1

(S − λi)x

∥∥∥∥∥
2

,

so Theorem 5.2 is a simultaneous extension of Theorems A and B. Furthermore we

can see that the equality condition of Theorem B (5.3) holds if and only if
∏n

i=1(S−
λi)x and un are proportional.

Next we obtain the following corollary by Theorem 5.1. For this we recall that λ

is a normal eigenvalue of T if there exists a nonzero vector e ∈ H such that Te = λe

and T ∗e = λe.

Corollary 5.4. Let T be an operator on H and let ei be an eigenvector correspond-

ing to a nonzero normal eigenvalue λi of T for i = 1, 2, . . . , n. If yk ∈ H satisfies

T ∗yk ̸= 0 and ⟨ei, yk⟩ = 0 for i = 1, 2, . . . , n and j = 1, 2, then for each β ≥ 0∑
i

|λi|2 |⟨ui−1, ei⟩|2 ≤ ∥Tx∥2 −
∣∣⟨T |T |βx, T ∗y1

⟩ ⟨
T |T |βx, T ∗y2

⟩∣∣
B (|T ∗|βT ∗y1, |T ∗|βT ∗y2)

(5.7)

for all x ∈ H , where ui = ui−1 − ⟨ui−1, ei⟩ ei with u0 = x for i = 1, 2, . . . , n. In

the case β > 0, if {|T ∗|βT ∗y1, |T ∗|βT ∗y2} is linearly independent, then the equality

in (5.7) holds for x ∈ H if and only if U |T |αun = a(
∥∥|T ∗|βT ∗y2

∥∥ |T ∗|βT ∗y1 +

eiθ
∥∥|T ∗|βT ∗y1

∥∥ |T ∗|βT ∗y2) for some scalar a, where θ = arg
⟨
|T ∗|βT ∗y1, |T ∗|βT ∗y2

⟩
.

Incidentally, if {|T ∗|βT ∗y1, |T ∗|βT ∗y2} is linearly dependent, then the equality in

(5.7) holds for x ∈ H if and only if U |T |αun = a|T ∗|βT ∗y1 for some scalar a.
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In particular, if {e1, e2, . . . , en} is an orthonormal set, then∑
i

|λi|2 |⟨x, ei⟩|2 ≤ ∥Tx∥2 −
∣∣⟨T |T |βx, T ∗y1

⟩ ⟨
T |T |βx, T ∗y2

⟩∣∣
B (|T ∗|βT ∗y1, |T ∗|βT ∗y2)

. (5.8)

The equality condition for (5.8) is the same as that of (5.7), where un = x−Qx for

Q = Proj[e1, . . . , en].

Proof. We put α = 1, zi = ei and replace yk to T ∗yk in Theorem 5.1. Since⟨
T |T |βei, T ∗yk

⟩
= 0 by ⟨ei, yk⟩ = 0 for i = 1, 2, . . . , n and k = 1, 2, the assump-

tion of Theorem 5.1 is satisfied and so it follows that

|
⟨
T |T |βx, T ∗y1

⟩ ⟨
T |T |βx, T ∗y2

⟩
|+ B

(
|T ∗|βT ∗y1, |T ∗|βT ∗y2

)∑
i

|λi|2| ⟨ui−1, ei⟩ |2

≤ B
(
|T ∗|βT ∗y1, |T ∗|βT ∗y2

)
∥Tx∥2 .

Hence we have the desired inequality (5.7).

If {ei, e2, . . . , en} is an orthonormal set, then the definition of ui gives ⟨ui−1, ei⟩ =
⟨ui−2, ei⟩ = · · · = ⟨u0, ei⟩ = ⟨x, ei⟩ for each i = 1, 2, . . . , n, so the inequality (5.8)

holds. �

6. Application of Furuta inequality

The main tool in this section is the Furuta inequality [15]. We now cite it for

convenience:

The Furuta inequality.

If A ≥ B ≥ 0, then for each r ≥ 0,

(i) (BrApBr)
1
q ≥ (BrBpBr)

1
q

and

(ii) (ArApAr)
1
q ≥ (ArBpAr)

1
q

hold for p ≥ 0 and q ≥ 1 with

(1 + 2r)q ≥ p+ 2r.

6
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Figure

We refer [20] and [3] for mean theoretic proofs of it, and [17] for a one-page proof.

The best possibility of the domain drawn in the Figure is proved by Tanahashi [24].

The Heinz-Kato-Furuta inequality has been extended by the use of the Furuta

inequality in [19]. To give further extensions of the Heinz-Kato-Furuta inequality,

we apply the Furuta inequality, too.
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First, we have the following extension of Corollary 3.2 by the Furuta inequality:

Theorem 6.1. Let A and B be positive operators on H and T an operator such

that T ∗T ≤ A2. Then for each r, s ≥ 0

|
⟨
T |T |(1+r)α+(1+s)β−1x, y1

⟩ ⟨
T |T |(1+r)α+(1+s)β−1x, y2

⟩
|

+ B
(
|T ∗|(1+s)βy1, |T ∗|(1+s)βy2

)∑
i

| ⟨Tx, zi⟩ |2∑
j ⟨|T ∗|2(1−α−rα)zi, zj⟩

≤ B
(
|T ∗|(1+s)βy1, |T ∗|(1+s)βy2

) ⟨
(|T |rA2p|T |r)

(1+r)α
p+r x, x

⟩ (6.1)

for all p, q ≥ 1, α, β ∈ [0, 1] with (1+r)α+(1+s)β ≥ 1 ≥ (1+r)α and x, yk, zi ∈ H

such that zi ̸∈ ker(T ∗) and
⟨
|T ∗|(1+s)β+1−(1+r)αyk, zi

⟩
= 0 for i = 1, 2, . . . , n and

k = 1, 2.

Proof. By replacing α (resp. β) to α1 = (1 + r)α (resp. β1 = (1 + s)β) in Corollary

3.2, we have

|
⟨
T |T |α1+β1−1x, y1

⟩ ⟨
T |T |α1+β1−1x, y2

⟩
|

+ B
(
|T ∗|β1y1, |T ∗|β1y2

)∑
i

| ⟨Tx, zi⟩ |2∑
j | ⟨|T ∗|2(1−α1)zi, zj⟩ |

≤ B
(
|T ∗|β1y1, |T ∗|β1y2

) ⟨
|T |2α1x, x

⟩
for all x ∈ H . Next we replace A, B, r and q to A2, |T |2, r

2
and p+r

(1+r)α
, respectively

in the Furuta inequality. Then we have

|T |2α1 = |T |2(1+r)α ≤ (|T |rA2p|T |r)
(1+r)α
p+r .

Connecting this with the above inequality, we obtain the inequality (6.1). �

Similarly we have the following further extensions by Corollary 3.3:

Theorem 6.2. Let A and B be positive operators on H and T an operator such

that T ∗T ≤ A2. Then for each r, s ≥ 0

|
⟨
T |T |(1+r)α+(1+s)β−1x, y1

⟩ ⟨
T |T |(1+r)α+(1+s)β−1x, y2

⟩
|

+ B
(
|T ∗|(1+s)βy1, |T ∗|(1+s)βy2

)∑
i

|
⟨
|T |2(1+r)αx, zi

⟩
|2∑

j | ⟨|T |2(1+r)αzi, zj⟩ |

≤ B
(
|T ∗|(1+s)βy1, |T ∗|(1+s)βy2

) ⟨
(|T |rA2p|T |r)

(1+r)α
p+r x, x

⟩ (6.2)

for all p, q ≥ 1, α, β ∈ [0, 1] with (1 + r)α + (1 + s)β ≥ 1 and x, yk, zi ∈ H such

that zi ̸∈ ker(T ) and
⟨
T |T |(1+r)α+(1+s)β−1zi, yk

⟩
= 0 for i = 1, 2, . . . , n and k = 1, 2.
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Proof. By replacing α (resp. β) to α1 = (1 + r)α (resp. β1 = (1 + s)β) in Corollary

3.3, we have

|
⟨
T |T |α1+β1−1x, y1

⟩ ⟨
T |T |α1+β1−1x, y2

⟩
|

+ B
(
|T ∗|β1y1, |T ∗|β1y2

)∑
i

| ⟨|T |2α1x, zi⟩ |2∑
j | ⟨|T |2α1zi, zj⟩ |

≤ B
(
|T ∗|β1y1, |T ∗|β1y2

) ⟨
|T |2α1x, x

⟩
.

By the use of the Furuta inequality for |T |2 ≤ A2, we have

|T |2α1 = |T |2(1+r)α ≤ (|T |rA2p|T |r)
(1+r)α
p+r .

Combining them, we obtain the inequality (6.2). �

Theorem 5.1 also gives us improvement of the Heinz-Kato-Furuta inequality via

the Furuta inequality with the same proof as the preceding theorem.

Theorem 6.3. Let T be an operator on H . If A and B are positive operators on

H such that T ∗T ≤ A2 and TT ∗ ≤ B2, then for each x, y1, y2 ∈ H∣∣⟨T |T |(1+r)α+(1+s)β−1x, y1
⟩ ⟨

T |T |(1+r)α+(1+s)β−1x, y2
⟩∣∣

+ B
(
|T ∗|(1+s)βy1, |T ∗|(1+s)βy2

)∑
i

∣∣⟨|T |2(1+r)αui−1, zi
⟩∣∣2

∥|T |(1+r)αzi∥2

≤ B
(
|T ∗|(1+s)βy1, |T ∗|(1+s)βy2

) ⟨
(|T |rA2p|T |r)

(1+r)α
p+r x, x

⟩ (6.3)

for all p, q ≥ 1, r, s > 0, α, β ∈ [0, 1] with (1 + r)α + (1 + s)β ≥ 1 and z1, · · · , zn ̸∈
kerT such that

⟨
T |T |(1+r)α+(1+s)β−1zi, yk

⟩
= 0, where ui = ui−1 −

⟨|T |2(1+r)αui−1,zi⟩
∥|T |(1+r)αzi∥2 zi

with u0 = x for i = 1, 2, · · · , n and k = 1, 2.

In the case α, β > 0, if {|T ∗|(1+s)βy1, |T ∗|(1+s)βy2} is linearly independent, then

the equality in (6.3) holds for x ∈ H if and only if |T |2(1+r)αx = (|T |rA2p|T |r)
(1+r)α
p+r x

and U |T |(1+r)αun = a(
∥∥|T ∗|(1+s)βy2

∥∥ |T ∗|(1+s)βy1 + eiθ
∥∥|T ∗|(1+s)βy1

∥∥ |T ∗|(1+s)βy2)

for some scalar a, where θ = arg
⟨
|T ∗|(1+s)βy1, |T ∗|(1+s)βy2

⟩
. Incidentally, if

{|T ∗|(1+s)βy1, |T ∗|(1+s)βy2} is linearly dependent, then the equality in (6.3) holds

for x ∈ H if and only if |T |2(1+r)αx = (|T |rA2p|T |r)
(1+r)α
p+r x and U |T |(1+r)αun =

a|T ∗|(1+s)βy1 for some scalar a.

We remark that the condition (1 + r)α + (1 + s)β ≥ 1 in above is unnecessary if

T is either positive or invertible.

— 57 —



7. Heinz-Kato-Furuta inequality under the chaotic order

From the operator monotonicity of the logarithmic function, we introduced the

chaotic order among positive invertible operators by A ≫ B if logA ≥ logB in

[4], and obtained a characterization of the chaotic order in terms of Furuta’s type

operator inequality [6], [7] and [8]. Furthermore based on this, in [13, Theorem

4] we gave a chaotic order version of Theorem A by the Furuta inequality. We

show a variant of Theorem 5.2 by chaotic order. For this, we use the following

characterization of the chaotic order which is an extension of Ando’s theorem [4],

[6], [7], [8] and [25] for a polished proof.

Theorem C. For positive invertible operators A and B, A ≫ B if and only if

(BrApBr)
1
q ≥ (BrBpBr)

1
q

holds for q ≥ 1, p, r ≥ 0 with 2rq ≥ p+ 2r.

Now in [11, Theorem 4] we showed the following theorem as a simultaneous ex-

tension of the Heinz-Kato-Furuta inequality and the Selberg inequality:

Theorem D. Let T be an operator on H . Then for each x, y ∈ H∣∣⟨T |T |α+β−1x, y
⟩∣∣2 +∑

i

|⟨|T |2αx, zi⟩|2
∥∥|T ∗|βy

∥∥2∑
i |⟨|T |2αzi, zj⟩|

≤
⟨
|T |2αx, x

⟩ ⟨
|T ∗|2βy, y

⟩
(7.1)

for all α, β ≥ 0 with α + β ≥ 1 and zi ̸∈ kerT such that
⟨
T |T |α+β−1zi, y

⟩
= 0 for

i = 1, 2, . . . , n.

Moreover Theorem D was extended in [11, Theorem 8] by applying the Furuta

inequality. We now show the chaotic version of Corollary 3.2 by applying Theorem

C:

Theorem 7.1. Let T be an invertible operator on H . If A and B are positive

invertible operators on H such that A2 ≫ T ∗T , then for each x, y1, y2 ∈ H∣∣⟨T |T |rα+sβ−1x, y1
⟩ ⟨

T |T |rα+sβ−1x, y2
⟩∣∣

+ B
(
|T ∗|sβy1, |T ∗|sβy2

)∑
i

|⟨Tx, zi⟩|2∑
j |⟨|T ∗|2(1−rα)zi, zj⟩|

≤ B
(
|T ∗|sβy1, |T ∗|sβy2

) ⟨
(|T |rA2p|T |r)

rα
p+rx, x

⟩
.

(7.2)

for all p, q ≥ 0, r, s ≥ 0, α, β ∈ [0, 1] with rα + sβ ≥ 1 ≥ rα and zi ̸∈ kerT ∗ such

that
⟨
T |T |sβ+1−rαzi, yk

⟩
= 0 for i = 1, 2, . . . , n and k = 1, 2.

Proof. By replacing α and β to rα and sβ respectively in Corollary 3.2, we have∣∣⟨T |T |rα+sβ−1x, y1
⟩ ⟨

T |T |rα+sβ−1x, y2
⟩∣∣
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+ B
(
|T ∗|sβy1, |T ∗|sβy2

)∑
i

|⟨Tx, zi⟩|2∑
j |⟨|T ∗|2(1−rα)zi, zj⟩|

≤ B
(
|T ∗|sβy1, |T ∗|sβy2

) ⟨
|T |2rαx, x

⟩
.

Moreover we replace A, B, r and q to A2, |T |2, r
2
and p+r

rα
, respectively in Theorem

C. Then we have

|T |2rα ≤ (|T |rA2p|T |r)
rα
p+r .

Combining inequalities above, we obtain the desired inequality (7.2). �

By the same method as Theorem 7.1, we shall show the following theorem as an

extension of Corollary 3.3 under the chaotic order:

Theorem 7.2. Let T be an invertible operator on H . If A and B are positive

invertible operators on H such that A2 ≫ T ∗T , then for each x, y1, y2 ∈ H∣∣⟨T |T |rα+sβ−1x, y1
⟩ ⟨

T |T |rα+sβ−1x, y2
⟩∣∣

+ B
(
|T ∗|sβy1, |T ∗|sβy2

)∑
i

|⟨|T |2rαx, zi⟩|2∑
j |⟨|T |2rαzi, zj⟩|

≤ B
(
|T ∗|sβy1, |T ∗|sβy2

) ⟨
(|T |rA2p|T |r)

rα
p+rx, x

⟩ (7.3)

for all p, q ≥ 0, r, s ≥ 0, α, β ∈ [0, 1] with rα + sβ ≥ 1 and zi ̸∈ kerT such that⟨
T |T |rα+sβ−1zi, yk

⟩
= 0 for i = 1, 2, . . . , n and k = 1, 2.

Proof. By replacing α and β to rα and sβ respectively in Corollary 3.3, we have∣∣⟨T |T |rα+sβ−1x, y1
⟩ ⟨

T |T |rα+sβ−1x, y2
⟩∣∣

+ B
(
|T ∗|sβy1, |T ∗|sβy2

)∑
i

|⟨|T |2rαx, zi⟩|2∑
j |⟨|T |2rαzi, zj⟩|

≤ B
(
|T ∗|sβy1, |T ∗|sβy2

) ⟨
|T |2rαx, x

⟩
.

Hence we have the desired inequality from Theorem C. �

The following is a chaotic version of Theorem 5.1:

Theorem 7.3. Let T be an invertible operator on H . If A and B are positive

invertible operators on H such that A2 ≫ T ∗T and B2 ≫ TT ∗, then for each

x, y ∈ H ∣∣⟨T |T |rα+sβ−1x, y1
⟩ ⟨

T |T |rα+sβ−1x, y2
⟩∣∣

+ B
(
|T ∗|sβy1, |T ∗|sβy2

)∑
i

|⟨|T |2rαui−1, zi⟩|2

∥|T |rαzi∥2

≤ B
(
|T ∗|sβy1, |T ∗|sβy2

) ⟨
(|T |rA2p|T |r)

rα
p+rx, x

⟩
.

(7.4)
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for all p, q ≥ 0, r, s ≥ 0, α, β ∈ [0, 1] with rα + sβ ≥ 1 and z1, · · · , zn ̸∈ kerT

such that
⟨
T |T |rα+sβ−1zi, yk

⟩
= 0, where ui = ui−1 −

⟨|T |2rαui−1,zi⟩
∥|T |rαzi∥2

zi with u0 = x for

i = 1, 2, . . . , n and k = 1, 2.

Proof. We replace α and β to rα and sβ, respectively in Theorem 5.1. Then we

have∣∣⟨T |T |rα+sβ−1x, y1
⟩ ⟨

T |T |rα+sβ−1x, y2
⟩∣∣+ B

(
|T ∗|sβy1, |T ∗|sβy2

)∑
i

|⟨|T |2rαui−1, zi⟩|2

∥|T |rαzi∥2

≤ B
(
|T ∗|sβy1, |T ∗|sβy2

) ⟨
|T |2rαx, x

⟩
.

Hence we have the desired inequality from Theorem C. �

Next we interpolate between Theorems 6.1 and 7.1 by the use of Furuta’s type

operator inequality which interpolates the Furuta inequality and Theorem C.

Theorem 7.4. Let T be an operator on H . If A and B are positive operators on H

such that |T |δ ≤ Aδ and |T ∗|δ ≤ Bδ for some δ ∈ [0, 1], then for each x, y1, y2 ∈ H∣∣⟨T |T |(δ+r)α+(δ+s)β−1x, y1
⟩ ⟨

T |T |(δ+r)α+(δ+s)β−1x, y2
⟩∣∣

+ B
(
|T ∗|(δ+s)βy1, |T ∗|(δ+s)βy2

)∑
i

|⟨Tx, zi⟩|2∑
j |⟨|T ∗|2(1−(δ+r)α)zi, zj⟩|

≤ B
(
|T ∗|(δ+s)βy1, |T ∗|(δ+s)βy2

) ⟨
(|T |rA2p|T |r)

(δ+r)α
p+r x, x

⟩
.

(7.5)

for all p ≥ δ, q ≥ 1, r, s ≥ 0, α, β ∈ [0, 1] with (δ+r)α+(δ+s)β ≥ 1 ≥ (δ+r)α and

zi ̸∈ kerT ∗ such that
⟨
T |T |(δ+s)β+1−(δ+r)αzi, yk

⟩
= 0 for i = 1, 2, . . . , n and k = 1, 2.

Proof. By replacing α (resp. β) to (δ + r)α (resp. (δ + s)β) in Corollary 3.2, we

have

|
⟨
T |T |(δ+r)α+(δ+s)β−1x, y1

⟩ ⟨
T |T |(δ+r)α+(δ+s)β−1x, y2

⟩
|

+ B
(
|T ∗|(δ+s)βy1, |T ∗|(δ+s)βy2

)∑
i

| ⟨Tx, zi⟩ |2∑
j | ⟨|T ∗|2(1−(δ+r)α)zi, zj⟩ |

≤ B
(
|T ∗|(δ+s)βy1, |T ∗|(δ+s)βy2

) ⟨
|T |2(δ+r)αx, x

⟩
for all x ∈ H .

Moreover it is known in [7] that

|T |2(δ+r)α ≤ (|T |rA2p|T |r)
(δ+r)α
p+r .

Combining above inequalities, we obtain the desired inequality (7.5). �

Now we have the following theorem interpolating between Theorems 6.2 and 7.2.
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Theorem 7.5. Let T be an operator on H . If A and B are positive operators on H

such that |T |δ ≤ Aδ and |T ∗|δ ≤ Bδ for some δ ∈ [0, 1], then for each x, y1, y2 ∈ H∣∣⟨T |T |(δ+r)α+(δ+s)β−1x, y1
⟩ ⟨

T |T |(δ+r)α+(δ+s)β−1x, y2
⟩∣∣

+ B
(
|T ∗|(δ+s)βy1, |T ∗|(δ+s)βy2

)∑
i

∣∣⟨|T |2(δ+r)αx, zi
⟩∣∣2∑

j |⟨|T |2(δ+r)αzi, zj⟩|

≤ B
(
|T ∗|(δ+s)βy1, |T ∗|(δ+s)βy2

) ⟨
(|T |rA2p|T |r)

(δ+r)α
p+r x, x

⟩ (7.6)

for all p ≥ δ, q ≥ 1, r, s > 0, α, β ∈ [0, 1] with (δ+ r)α+(δ+s)β ≥ 1 and zi ̸∈ kerT

such that
⟨
T |T |(δ+r)α+(δ+s)β−1zi, yk

⟩
= 0 for i = 1, 2, . . . , n and k = 1, 2.

In addition, we show the following theorem interpolating between Theorems 6.3

and 7.3:

Theorem 7.6. Let T be an operator on H . If A and B are positive operators on H

such that |T |δ ≤ Aδ and |T ∗|δ ≤ Bδ for some δ ∈ [0, 1], then for each x, y1, y2 ∈ H∣∣⟨T |T |(δ+r)α+(δ+s)β−1x, y1
⟩ ⟨

T |T |(δ+r)α+(δ+s)β−1x, y2
⟩∣∣

+ B
(
|T ∗|(δ+s)βy1, |T ∗|(δ+s)βy2

)∑
i

∣∣⟨|T |2(δ+r)αui−1, zi
⟩∣∣2

∥|T |(δ+r)αzi∥2

≤ B
(
|T ∗|(δ+s)βy1, |T ∗|(δ+s)βy2

) ⟨
(|T |rA2p|T |r)

(δ+r)α
p+r x, x

⟩ (7.7)

for all p ≥ δ, q ≥ 1, r, s ≥ 0, α, β ∈ [0, 1] with (δ+r)α+(δ+s)β ≥ 1 and z1, · · · , zn ̸∈
kerT such that

⟨
T |T |(δ+r)α+(δ+s)β−1zi, yk

⟩
= 0, where ui = ui−1 −

⟨|T |2(δ+r)αui−1,zi⟩
∥|T |(δ+r)αzi∥2 zi

with u0 = x for i = 1, 2, . . . , n and k = 1, 2.
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