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A GEOMETRICAL STRUCTURE
IN THE FURUTA INEQUALITY, II

MAsATOSHI Fuiir*, JIAN FEI JIANG**, AND E1ZABURO KAMEI***

ABSTRACT. We discuss some geometrical structures in the Furuta inequality as a
continuation of our preceding note. We show the monotonicity of operator functions
associated with the Furuta inequality under the chaotic order. Consequently it gives
us geometrical views and helps us to explain obtained operator inequalities,

1. Introduction. In what follows, a capital letter means a (bounded linear)
operator acting on a Hilbert space H. An operator T is said to be positive, in
symbol, T' > 0, if (T'z,z) > 0 for all z € H. In particular, we denote by T > 0 if
T is positive and invertible. The positivity of operators induces the (usual) order
A > B by A— B > 0 and moreover the operator monotonicity of logt does the
weaker order A > B by log A > log B for A, B > 0. 1t is called the chaotic order,
cf. [7].

It is interesting to discuss order-preserving problems for positive operators. One
of the most typical examples is the Lowner-Heinz inequality [18, 22:

Theorem LH. If A> B >0, then A* > B* for0 < a < 1.

In 1987, Furuta [11] considered a background of Theorem LH and finally pro-
posed it as the following surprising form, which is a historical extension of the
Lowner-Heinz inequality:

P g=1 (1+2r)g=p+2r
Theorem F. (The Furuta inequality) p=
IfA> B >0, then for each r > 0 \\\\\\ !
(1) (B"APB™)Y1 > (B"BPB")1/4 \\(\\\\\
and "‘\\\
. (1,1))K
(1) (AT APAT)Va > (AT BPAT)V/a
1,0
hold for p > 0 and q > 1 with (0, _21_)/ (1.0) ?
*) (14+2r)g>p+ 2r. Figure

Related topics are discussed in [2, 3, 9, 12, 13, 14, 15, 17, 19, 20, 23, 24]; among
others,an elementary and one-page proof is given in [12] and the best possibility of
the conditions on p, g and r in the Furuta inequality is discussed in [23].
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Now the Furuta inequality can be rephrased by using operator means established
by Kubo and Ando [21]. For the sake of convenience, we define the binary operation
-a (a € R) by

AhaB — AI/Z(A—I/ZBA—I/Z)QAI/Z

for A>0and B >0. If 0 < a < 1, then it is the a-power mean f,. In fact, b, is
defined for a > 0 in [16]. The Furuta inequality (1) should be understood in our
discussion as follows: If A > B > 0 and A is invertible, then

(2 Atf#,-. BP<B<A
p—t

holds for p > 1 and t < 0, [20].

In our preceding note [9], a geometrical structure in the Furuta inequality is
discussed. It is pointed out that for A > B > 0 and s > 0, the figure deduced by the
set {B™° o AP;p > 1, € [0,1]}, which is equivalent to the set {B~* ﬂﬂ{—’ AP;p >

P+s
1,—s < q < p}, looks like a gingko leaf. In this paper, the discussion will be
continued in general setting under the weakened condition A > B. Precisely,
geometric structures of the following sets are discussed under the assumption A >
B: :
(1) {B—* h_q%a_ AP; —s < g < 2p+ s} for a fixed p > 0.
p+s

(2) {A~* h_q_ii BP; —s < ¢ < 2p + s} for a fixed p > 0.
p+s

(3) {B~* hg{_, AP; —2s — p < q < p} for a fixed s > 0.

(4) {A~s h_q_-Eg B?P; —2s — p < q < p} for a fixed s > 0.
P+s

They are basis of our results in this paper. As a matter of fact, the set (1)
stated above corresponds to the following result: For A > B, p > 0 and q € R, the
operator function

fpa(8) = B7° lats AP (s 20).

is increasing for s > —q if p > ¢, and it is decreasing for s > q¢ — 2p if p < q. The
other sets (2), (3) and (4) induce the monotonicity of the corresponding operator
functions. Consequently our result [4; Theorem 3] is discussed in a general setting.

2. Results. For our purpose, we have to cite the following fundermental in-
equality [4] which characterizes the chaotic order and is given a simple proof in [5]
recently.

Theorem C. For A,B >0, A> B if and only if

(3) (B"APB")#% > B¥ or B™2" | 5. AP >1

p+2r

for p,r > 0.

Next we state simple lemmas; Lemma 1 was used in [14, 16] and our note [6,10].
Lemma 2 follows from the fact that {, is a mean for a € [0,1], and Lemma 3 is a
consequence of it.
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Lemma 1. For A,B > 0 and o € R, the following equalityies hold:
(1) Afa B=B 1o A.
(2) Altiap B= Alla (Alp B).
(8) Al B=B(B7! lp—1 A"1)B.
(4) Ah B=A(A"" b-o BTA.
Lemma 2. IfA>C >0, B> D >0 and o € [0, 1], then

Ata B> C s D.

Lemma 3. IfA>C >0,B >0 and a € [1,2], then
Al B<Ch B.

Proof. 1t follows from Lemma 1 (3) and Lemma 2 that
Ala B=B(B 'fa_1 AY)B<B(B™! fla-1 C"1)B=Cha B.

Under this preparation, we prove our theorems on the monotonicity of some
operator functions.

Theorem 4. For A> B, p > 0 and q € R, define an operator function by
fra(s) = B liges AP (s 20).
Then it is increasing for s > —q if p > q, and it is decreasing for s > q — 2p if
p<q.
Proof. First of all, Lemma 1 (1) and (2) imply that for 6 > 0

Foq(s+8) = B~(+0) hs%_”i: s AP
= APl _p, B~(s*9)

p+s+
— AP h__ P . —(s+9)
AP Hp=g (AP Y _pte B )

= (B~ (s+9) ﬁ,+§+ AP) hf,—‘f% AP.

Next we note that for p,s > 0
B+ g , AP

FTeTS
— B—(s+96) —(s+96) P
=B e, (B oty A7)
> B (+t9 4 , 1 by Theorem C and Lemma 2
e
= B™° by Lemma 1 (1).

Now suppose that —s < ¢ < p. Since g{g € [0,1], we have

Toa(s+8) = (B~ 4y AP) fgys AP 2 B fazs A7 = f(s),

which implies the former. On the other hand, if p < ¢ < 2p + s, then g% € [1,2],
so that Lemma 3 implies

fpqa(s+8) = (B_(8+6) up—ﬁ‘n AP) hﬁ—: AP < B~ uﬁf AP = fpq(s).

The following theorems are variational expressions of Theorem 4.
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Theorem 5. For A> B, p > 0 and q € R, define an operator function by
fp,q(s) =A"° bg% BP (s > 0).
Then it is decreasing for s > —q if p > q, and it is increasing for s > q — 2p if

P=q. ,
Proof. This follows from Theorem 4 and the fact that B~! > A~! and

Foua(8) = A~ igts BP = [(A7)™° igrs (B™)7]™ (52 0).

Theorem 6. For A> B, s > 0 and q € R, define an operator function by

9s,a(P) = B™* s AP (p 20).
Then it is increasing for p > q if ¢ > —s, and it is decreasing for p > —2s — q if
q < —s.

Proof. We first remark that
Gora(P) = B™* ligs AP = AP lipg B™° = (A™) P igep (B™))° (p>0)

by Lemma 1 (1), and —s < ¢ < p (resp. —2s — p < ¢ < —s) is equivalent to
—p < —q < s (resp. s < —q < 25+ p). Hence Theorem 4 implies the conclusion
since B~1 > A~1.

The following theorem is obtained by using Theorem 6 and the same way as in
the proof of Theorem 5:

Theorem 7. For A> B, s > 0 and q € R, define an operator function by
Guq(p) = A~ bass B? (p>0).

Then it is decreasing for p > q if ¢ > —s, and it is increasing for p > —2s — q if
qg< —s.

Concluding this section, we have two corollaries; Corollary 8 (resp. Corollary 9)
follows from Theorems 4 and 6 (resp. Theorems 5 and 7).

Corollary 8. If A> B and q € R, then
Q(S,p) =B™* ﬂﬂ-:ti AP (S’p > 0)

is increasing for both s and p with —s < q < p.
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Corollary 9. If A> B and q € R, then
B(s,p) = A~ ase B? (5,02 0)

15 decreasing for both s and p with —s < q < p.

Remark. Corollary 9 is also a variant of the result [4; Theorem 3] which is an
extension of Ando’s theorem [1], cf. [8].

3. Geometrical structure. In this section, we investigate the geometrical

view of our results. By regarding B~° | ats AP as (1 — a)b™* + aaP for a = %‘5,
p+s
we have a line {(q, (1 — a)b™* + aaP); ¢} through both points (—s,b~*) and (p, a?).
Similarly we can regard A~*° u_q_ii B? as a line through both points (—s,a™%) and
rt+s

(p, b?). From the viewpoint of this, we can draw the following figure corresponding
to Theorem 4. Suppose that 0 < b < 1 < a and put fg(s) = fp,q(s) for a fixed p.
Then one can see fq,(s) < fq,(s +6) for —s < q; < p and fg,(s+ 6) < f,(s) for
P < g2 < 2p + s in the figure.

Figure 1. Corresponding to Theorem 4.
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Figure 2. Corresponding to Theorem 3.
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Figure 3. Corresponding to Theorem 6.
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Figure 4. Corresponding to Theorem 7.
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4. Some interesting corollaries and counterexamples. In this section,
we mention some corollaries of results in §2, which are based on the corresponding
figures in the preceding section.

Corollary 10. If A> B, p>0 andt <0, then
. Blfjge AP>Aforp2q>t
p—t
and
B! ha—t AP < A7 for2p>q 2> p.
p—t
In particular, if A> B, then fort <0
(1) B e AP > A for p>1
(2) B* bzt AP < A for 1>p>1
(3) B hze—e AP < A?P for p > 0.
Proof. Taking s = 0 in Theorem 4, we have fp4(0) = A%. Ift < q < p, then for
t<o0
Aq = fp,q(O) —<— fp)q(_t) = Bt ﬂ%z_:. Ap‘

Ifp<qg<2p,thenfort<0
AT = fpq(0) 2 fpq(—t) = B Hazy AP,
The reminder is easily checked.

The following corollary is an equivalent expression to Corollary 10 because A >
B if and only if B~ > A~1.
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Corollary 11. If A> B, p>0 andt <0, then
A §a= BP < BT forp>q>t
1=
and
Atlhg=s BP > B? for2p>q2>p.
1=

In particular, if A> B, then fort <0
(1) A* §1=4 BP < B for p>1

(2) A* izt BP 2B for 1>2p2>3
(8) At bee-s BP > B?P for p > 0.

Remark. (1) in Corollary 11 is just the left hand side of the Furuta inequality (2)
in the first section, in which the assumption is weakened from the usual order to
the chaotic order, cf. also [4].

It is known in [23] that the Furuta inequality (1) is not true for ¢ > 0 and
p < 1, by which we have counterexamples to Theorems 5, 6 and Corollary 10. For
simplicity, A and B are said to be well-ordered if either A > B or A < B holds.

Counterexample 1. We take p = 1 and ¢ = 5 in Theorem 5; we consider the
function

fus(s) = A= biggs B (s 20).

Then it is increasing for s > 3 by the theorem, but it is not monotone for 0 < s < 3.
As a matter of fact, we have

f1,500)=14s B=B°
and by Lemma 1 (3)
fis(1) = A7 b3 B=B(B™' i, A)B = B¥(B}AB%)?B1.

Clearly they are well-ordered if and only if so are B and (B2 AB%)2. In addition,
if A> B >0 and A # B, then

B* < (Bt AB%)?
must be true by Theorem LH, but it is not true in general by Tanahashi’s consider-
ation stated above [23]. This contradiction shows that the function is not monotone
in0<s<3.

Counterexample 2. Next we consider the function

9aq(P) =B T2 AP (p20)
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by putting s = g in Theorem 6. Then g(p) = g4,4(p) is increasing for p > ¢(> 0).
On the other hand, g(p) is not monotone for p € [0, ¢]. Since

9(0) = B? and g(q) = A%,
they are not well-ordered for ¢ > 1 in general even if A > B > 0.

Counterexample 3. Finally we discuss a counterexample related to Corollary 10
(2) (and (1));

Bthk_:ApsA for <p<l
2=

DN | =

On the other hand, take p € [0, %) Then we choose £ < 0 such that p < —1-2ﬂ < %
and put ¢ = %. Since q € (0, 1), there exist A and B such that A > B > 0 and

(A5B-tA%)s £ ATF
by Tanahashi’s result again. Namely we have
Bt hi: AP = A35(ASBtAS)stA% £ A
p—t

by Lemma 1 (3).
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