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1. INTRODUCTION

Let $M=(M, J, g)$ be a 6-dimensional almost Hermitian manifold. We denote by
$\nabla,$ $R,$ $\rho$ and $\tau$ the Riemannian connection, the curvature tensor, the Ricci tensor
and the scalar curvature of $M$ , respectively. We assume that the curvature tensor
$R$ is given by

$R(X, Y)Z=[\nabla_{X}, \nabla_{Y}]Z-\nabla_{[X,Y]}Z$ ,

$R(X, Y, Z, W)=g(R(X, Y)Z,$ $W$ )

for $X,$ $Y,$ $Z,$ $W\in \mathfrak{X}(M)$ . The holomorphic sectional curvature is defined by

$H(X)=-R(X, JX, X, JX)$

for $X\in T_{p}M(p\in M)$ with $g(X, X)=1$ . If $H(X)$ is constant $\mu(p)$ for all $ X\in$

$T_{p}M(p\in M)$ at each point $p$ of $M,$ $M$ is said to be of pointwise constant holomor-

phic sectional curvature. Further, if $\mu$ is constant whole on $M$ , then $M$ is said to be
of constant holomorphic sectional curvature. It is well known that if a 6-dimensional
nearly Kaehler manifold $M$ is of constant holomorphic sectional curvature $\mu$ , then
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either $M$ is Kaehlerian, or $M$ is of constant curvature $\mu>0([5])$ . Also, it is well

known that any 6-dimensional nearly Kaehler manifold is an Einstein one ([3],[7])

and its curvature tensor $R$ satisfies the following identity([4]):

$(*)$ $R(X, Y, Z, W)=R(JX, JY, Z, W)+R(JX, Y, JZ, W)+R(JX, Y, Z, JW)$

for $X,$ $Y,$ $Z,$ $W\in \mathfrak{X}(M)$ .

In this paper we want to prove that if a 6-dimensional almost Hermitian manifold
$M$ with pointwise constant holomorphic sectional curvature $\mu$ is Einsteinian and the

curvature tensor $R$ of $M$ satisfies the identity $(*)$ , then either $M$ is Kaehlerian, or $M$

is of constant curvature $\mu$ . In a 6-dimensional quasi-Kaehler manifold $M$ , we want

to have the same conculsion under the assumption that $M$ is locally symmetric and
$\tau\neq 0$ (or $\mu\neq 0$ ) instead of the assumption that $M$ is Einsteinian.

2. PRELIMINARIES

Let $M=(M, J,g)$ be a 6-dimensional almost Hermitian manifold. Then we have

$(\nabla_{X}J)JY=-J(\nabla_{X}J)Y$,

$g((\nabla_{X}J)Y, Z)=-g((Y, (\nabla_{X}J)Z)$ ,

$g((\nabla_{X}J)Y, Y)=0$ ,

$g((\nabla_{X}J)Y, JY)=0$ ,

for $X,$ $Y,$ $Z\in \mathfrak{X}(M)$ . The $Ricci*$-tensor $\rho^{*}$ and $the*$-scalar curvature $\tau^{*}$ are defined

respectively by

$\rho^{*}(X, Y)=g(Q^{*}X, Y)=trace(Z\leftrightarrow R(X, JZ)JY)$ ,

$\tau^{*}=traceQ^{*}$
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for all $X,$ $Y,$ $Z\in T_{p}M,$ $p\in M$ . By the definition of $\rho^{*}$ , we get easily

$\rho^{*}(X, Y)=\rho^{*}(JY, JX)$

for $X,$ $Y\in T_{p}(M),$ $p\in M$ . $M=(M, J,g)$ is said to be a $weakly*$-Einstein manifold

if $\rho^{*}=\frac{\tau^{*}}{6}g$ holds.

We shall recall the definitions of speci $a1$ kinds of almost Hermitian manifolds.

An almost Hermitian manifold $M$ is called Kaehlerian if

$\nabla_{X}J=0$

for all $X\in \mathfrak{X}(M),$ $M$ is called nearly Kaehlerian if

$(\nabla_{X}J)Y+(\nabla_{Y}J)X=0$

for all $X,$ $Y\in \mathfrak{X}(M)$ and $M$ is called quasi-Kaehlerian if

$(\nabla_{X}J)Y+(\nabla_{JX}J)(JY)=0$

for all $X,$ $Y\in \mathfrak{X}(M)$ .
We define three linear operators $L_{i},$ $i=1,2,3$ as the following:

$(L_{1}R)(X, Y, Z, W)=\frac{1}{2}\{R(JX, JY, Z, W)+R(Y, JZ, JX, W)$

$+R(JZ, X, JY, W)\}$ ,

$(L_{2}R)(X, Y, Z, W)=\frac{1}{2}\{R(X, Y, Z, W)+R(JX, JY, Z, W)+R(JX, Y, JZ, W)$

$+R(JX, Y, Z, JW)\}$ ,

$(L_{3}R)(X, Y, Z, W)=R(JX, JY, JZ, JW)$

–187–



for all $X,$ $Y,$ $Z,$ $W\in \mathfrak{X}(M)$ . It is easy to see that curvature identity $(*)$ implies

$L_{2}R=R$ and $L_{3}R=R$ .
For $a(0,2)$ type tensor $S$ , we define $\varphi(S)$ and $\psi(S)$ by

$\varphi(S)(X, Y, Z, W)=g(X, Z)S(Y, W)+g(Y, W)S(X, Z)$

$-g(X, W)S(Y, Z)-g(Y, Z)S(X, W)$ ,

$\psi(S)(X, Y, Z, W)=2g(X, JY)S(Z, JW)+2g(Z, JW)S(X, JY)$

$+g(X, JZ)S(Y, JW)+g(Y, JW)S(X, JZ)$

$-g(X, JW)S(Y, JZ)-g(Y, JZ)S(X, JW)$ .

Tricerri and Vanhecke proved the following.

Theorem A([6]). Let $M$ be an almost Hermitian manifold with dimension 6 and

curvature tensor R. Then we have the following identity:

$(I-L_{1})(I+L_{2})(I+L_{3})R=-\frac{1}{2}(3\varphi-\psi)\{\rho(R+L_{3}R)-\rho^{*}(R+L_{3}R)\}$

$+\frac{1}{4}(\tau-\tau^{*})(3\pi_{1}-\pi_{2})$ ,

where

$\pi_{1}(X, Y)Z=g(X, Z)Y-g(Y, Z)X$ ,

$\pi_{2}(X, Y)Z=2g(JX, Y)JZ+g(JX, Z)JY-g(JY, Z)JX$ ,

$\{\rho(R+L_{3}R)\}(X, Y)=trace(Z\mapsto R(Z, X)Y-JR(JZ, JX)JY)$ ,

$\{\rho^{*}(R+L_{3}R)\}(X, Y)=trace(Z\leftrightarrow R(X, JZ)JY-JR(JX, Z)Y)$ .

On the other hand, Gray obtained the following
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Lemma $B$ ([1]). Let $M$ be a quasi-Kaehler manifold. Then

(2.1) $G(X, Y, Z, W)+G(JX, JY, JZ, JW)+G(JX, Y, JZ, W)+G(X, JY, Z, ZW)$

$=-2g((\nabla_{(\nabla_{X}J)Y-(\nabla_{Y}J)X}J)Z, W)$ ,

where $G(X, Y, Z, W)=R(X, Y, Z, W)-R(X, Y, JZ, JW)$ .

For a quasi-Kaehler manifold $M$ with the curvature identity $(*)$ , the equation

(2.1) is reduced to

(2.2) $G(X, Y, Z, W)=-\frac{1}{2}g((\nabla_{(\nabla_{X}J)Y-(\nabla_{Y}J)X}J)Z, W)$ .

3. EINSTEIN ALMOST HERMITIAN MANIFOLDS WITH POINTWISE
CONSTANT HOLOMORPHIC SECTIONAL CURVATURE

Let $M=(M, J,g)$ be a 6-dimension $a1$ almost Hermtian manifold and let the

curvature tensor $R$ of $M$ satisfies the identity $(*)$ . Then we find, from Theorem $A$ ,
$L_{2}R=R$ and $L_{3}R=R$ ,

(3.1) $6R(X, Y, Z, W)$

$=2\{2R(JX, JY, Z, W)-R(JY, JZ, X, W)-R(JZ, JX, Y, W)\}$

$+2g(X, JY)\{\rho(Z, JW)-\rho^{*}(Z, JW)\}+2g(Z, JW)\{\rho(X, JY)-\rho^{*}(X, JY)\}$

$+g(X, JZ)\{\rho(Y, JW)-\rho^{*}(Y, JW)\}+g(Y, JW)\{\rho(X, JZ)-\rho^{*}(X, JZ)\}$

$-g(X, JW)\{\rho(Y, JZ)-\rho^{*}(Y, JZ)\}-g(Y, JZ)\{\rho(X, JW)-\rho^{*}(X, JW)\}$

$-3[g(X, Z)\{\rho(Y, W)-\rho^{*}(Y, W)\}+g(Y, W)\{\rho(X, Z)-\rho^{*}(X, Z)\}$

$-g(X, W)\{\rho(Y, Z)-\rho^{*}(Y, Z)\}-g(Y, Z)\{\rho(X, W)-\rho^{*}(X, W)\}]$

$+\frac{3}{4}(\tau-\tau^{*})\{g(X, Z)g(Y, W)-g(Y, Z)g(X, W)\}$

$-\frac{1}{4}(\tau-\tau^{*})\{2g(JX, Y)g(JZ, W)+g(JX, Z)g(JY, W)-g(JY, Z)g(JX, W)\}$ .
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Moreover, we assume that $M$ is of pointwise constant holomorphic sectional

curvature $\mu$ . Then we have

(3.2) $R(X, Y, Z, W)$

$=\mu\{g(X, W)g(Y, Z)-g(X, Z)g(Y, W)+g(JX, W)g(JY, Z)$

$-g(JX, Z)g(JY, W)-2g(JX, Y)g(JZ, W)\}$

$-\{2R(JX, JY, Z, W)-R(JY, JZ,X, W)-R(JZ, JX, Y, W)\}$

(See Lemma 3.1 in [2]).

From (3.1) and (3.2) we obtain

(3.3) $8R(X, Y, Z, W)$

$=2g(X, JY)\{\rho(Z, JW)-\rho^{*}(Z, JW)\}+2g(Z, JW)\{\rho(X, JY)-\rho^{*}(X, JY)\}$

$+g(X, JZ)\{\rho(Y, JW)-\rho^{*}(Y, JW)\}+g(Y, JW)\{\rho(X, JZ)-\rho^{*}(X, JZ)\}$

$-g(X, JW)\{\rho(Y, JZ)-\rho^{*}(Y, JZ)\}-g(Y, JZ)\{\rho(X, JW)-\rho^{*}(X, JW)\}$

$-3[g(X, Z)\{\rho(Y, W)-\rho^{*}(Y, W)\}+g(Y, W)\{\rho(X, Z)-\rho^{*}(X, Z)\}$

$-g(X, W)\{\rho(Y, Z)-\rho^{*}(Y, Z)\}-g(Y, Z)\{\rho(X, W)-\rho^{*}(X, W)\}]$

$+\{\frac{3}{4}(\tau-\tau^{*})-2\mu\}\{g(X, Z)g(Y, W)-g(Y, Z)g(X, W)\}$

$-\{\frac{1}{4}(\tau-\tau^{*})+2\mu\}\{2g(JX, Y)g(JZ, W)+g(JX, Z)g(JY, W)$

$-g(JY, Z)g(JX, W)\}$ .

In a 6-dimension$a1$ almost Hermitian manifold with pointwise constant holomor-
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phic sectional curvature $\mu$ and with curvature identity $(*)$ , we have ([4])

(3.4) $\rho(X, Y)+3\rho^{*}(X, Y)=8\mu g(X, Y)$ ,

$\rho(X, Y)=\rho(JX, JY)$ ,

$\rho^{*}(X, Y)=\rho^{*}(Y, X)$ ,

$\rho^{*}(X, Y)=\rho^{*}(JX, JY)$ ,

$\tau+3\tau^{*}=48\mu$ .

From (3.3) and (3.4), we find

(3.5) $R(X, Y, Z, W)$

$=\frac{1}{6}\{2g(X, JY)\rho(Z, JW)+2\rho(X, JY)g(Z, JW)+g(X, JZ)\rho(Y, JW)$

$+\rho(X, JZ)g(Y, JW)-g(X, JW)\rho(Y, JZ)-\rho(X, JW)g(Y, JZ)\}$

$-\frac{1}{2}\{g(X, Z)\rho(Y, W)+g(Y, W)\rho(X, Z)-g(X, W)\rho(Y, Z)-g(Y, Z)\rho(X, W)\}$

$+\frac{\tau+2\mu}{8}\{g(X, Z)g(Y, W)-g(Y, Z)g(X, W)\}$

$-\frac{\tau+10\mu}{24}\{2g(JX, Y)g(JZ, W)+g(JX, Z)g(JY, W)-g(JY, Z)g(JX, W)\}$ .

Now, we assume that $M$ is Einsteinian (or equivalently, weakly $*$-Einsteinian).

Then we have

(3.6) $\rho(X, Y)=\frac{\tau}{6}g(X, Y)$

–191–



Substituting (3.6) into (3.5) and using (3.4), we obtain

(3.7) $R(X, Y, Z, W)$

$=(\frac{\tau}{72}-\frac{5}{12}\mu)\{2g(JX, Y)g(JZ, W)+g(JX, Z)g(JY, W)$

$-g(JY, Z)g(JX, W)\}$

$+(-\frac{\tau}{24}+\frac{\mu}{4})\{g(X,Z)g(Y, W)-g(X, W)g(Y, Z)\}$ .

On the other hand, Tricerri and Vanhecke proved the following

Theorem $C([6])$ . Let $M$ be a connected almost Hermitian manifold with real di-

mension $2n\geq 6$ and Riemannian curvature tensor $R$ of the following form:
$R=f_{1}\pi_{1}+f_{2}\pi_{2}$

where $f_{1}$ and $f_{2}$ are $C^{\infty}$ functions on $M$ such that $f_{2}$ is not identical zero. Then $M$

is a complex space form($i.e$ . a Kaehler manifold with constant holomorphic sectional

cuvature).

In the proof of Theorem $C$ , Tricerri and Vanhecke showed that the functions $f_{1}$

and $f_{2}$ are both constant. Thererfore we can conclude that $\frac{\tau}{72}-\frac{5}{12}\mu$ is constant

provided that $M$ is connected. So $\mu$ is constant on $M$ .

If $\frac{\tau}{72}-\frac{5}{12}\mu=0$ , then we have from (3.7)

$R(X, Y, Z, W)=\mu\{g(X, W)g(Y, Z)-g(X, Z)g(Y, W)\}$

which shows that $M$ is a manifold of constant sectional curvature $\mu$ .

If $\frac{\tau}{72}-\frac{5}{12}\mu\neq 0$ , then $M$ is $a$ complex space form from Theorem C.

Thus we have the following
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Theorem 1. Let $M$ be a six dimensional connected almost Hermitian manifold with
pointwise constant holomorphic sectional curvature $\mu$ and with curvature identity
$(*)$ . If $M$ is Einsteinian or $weakly*$ -Einsteinian, then $M$ is one of the following:

$(a)$ a manifold of constant sectional curvature $\mu$

$(b)$ a complex space form.

Since a 6-dimensional nearl$y$ Kaehlerian manifold is Einsteinian and $h$as the
curvature property $(*)$ , we have the following

Corollary 2([5]). If $M$ is a 6-dimensional connected nearly Kaehlerian manifold
with pointwise constant holomorphic sectional curvature, then $M$ is one of the fol-
lowing:

$(a)$ a manifold of constant sectional curvature

$(b)$ a complex space form.

4. LOCALLY SYMMETRIC ALMOST HERMITIAN MANIFOLDS
WITH POINTWISE CONSTANT HOLOMORPHIC SECTIONAL CURVATURE

Let $M$ be a 6-dimensional almost Hermitain manifold with pointwise constant
holomorphic sectional curvature $\mu$ and let its curvature tensor $R$ satisfies the identity
$(*)$ . Since dim $M=6$ , it is possible to choose two unit vectors $X$ and $W$ which
define orthogonal holomorphic planes {X, $JX$ } and $\{W, JW\}$ .

We assume that $M$ is locally symmetric and $\tau\neq 0$ (or $\mu\neq 0$). Then we obtain,
by the help of (3.5),

(4.1) $W(f)JW+3hg((\nabla_{W}J)X, JW)JX+\frac{1}{2}[\rho((\nabla_{W}J)X, JW)JX$

$+\rho(X, W)(\nabla_{W}J)X+g((\nabla_{W}J)X, JW)Q(JX)]=0$ ,
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where {X, $JX$ } and $\{W, JW\}$ are arbitrary orthogonal holomorphic planes, $f=$

$\frac{1}{8}(\tau+2\mu),$ $h=-\frac{\tau+10\mu}{24}$ and $Q$ is the Ricci tensor of type $(1,1)$ .

Moreover, we assume that $M$ is a quasi Kaehler manifold. Then $\mu$ is globally

constant on $M$ ([4]) and hence $W(f)=0$ . Thus (4.1) can be rewritten as

(4.2) $6hg((\nabla_{W}J)X, JW)JX+\rho((\nabla WJ)X, JW)JX$

$+\rho(X, W)(\nabla_{W}J)X+g((\nabla WJ)X, JW)Q(JX)=0$ .

From (4.2), we obtain

(4.3) $\rho(X, W)g((\nabla_{W}J)X, JW)=0$ ,

(4.4) $\rho(X, W)g(JX, (\nabla_{W}J)W)=0$ ,

(4.5)
$6hg((\nabla_{W}J)X, JW)+\rho((\nabla_{W}J)X, JW)=-g((\nabla WJ)X, JW)\rho(X, X)$ ,

(4.6)
$6hg((\nabla_{W}J)W, JX)+\rho((\nabla WJ)W, JX)=-g((\nabla WJ)W, JX)\rho(X, X)$ .

Substituting (4.5) into (4.2), we have

(4.7) $-g((\nabla_{W}J)X, JW)\rho(X, X)JX$

$+\rho(X, W)(\nabla WJ)X+g((\nabla WJ)X, JW)Q(JX)=0$ .

Multiplying (4.7) with $\rho(X, W)$ and taking account of (4.3), we obtain

(4.8) $\rho(X, W)(\nabla_{W}J)X=0$ ,

which and (4.7) imply
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(4.9) $g((\nabla_{W}J)X, JW)Q(JX)=g((\nabla WJ)X, JW)\rho(X, X)JX$ .

Substituting (4.9) into (4.2), we find

(4.10) $[6h+\rho(X,X)]g((\nabla_{W}J)X, JW)=-\rho((\nabla WJ)X, JW)$ ,

(4.11) $[6h+\rho(X,X)]g((\nabla_{W}J)W, JX)=-\rho((\nabla_{W}J)W, JX)$ .

If we interchange $X$ and $W$ respectively in (4.11), then we obtain

$[6h+\rho(W, W)]g((\nabla_{X}J)X, JW)=-\rho((\nabla_{X}J)X, JW)$ ,

which implies, using $\rho(JW, JW)=\rho(W, W)$ and the fact that $\{W, JW\}$ and

$\{JW, J^{2}W\}$ determine the same holomorphic plane,

(4.12) $[6h+\rho(W, W)]g((\nabla_{X}J)X, W)=-\rho((\nabla_{X}J)X, W)$ .

Now, suppose that $M$ is not nearly Kaehleian. Then there exists a unit vector

field $X$ in an open neighborhood $U$ of $p\in M$ such that $(\nabla_{X}J)X\neq 0$ . We put

$X=e_{1}$ , $JX=e_{2}$ , $(\nabla_{X}J)X/\Vert(\nabla_{X}J)X||=e_{3}$ , $Je_{3}=e_{4}$ .

Then $\{e_{1}, e_{2}\}$ and $\{e_{3}, e_{4}\}$ are orthogon$a1$ holomorphic planes. If we put $W=e_{3}$

in (4.12), then we obtain

(4.13) $\rho(e_{3}, e_{3})=\rho(e_{4}, e_{4})=-3h$ .

Next we choose another holomorphic plane $\{e_{5}, e_{6}=Je_{5}\}$ which is orthogonal

to $\{e_{1}, e_{2}\}$ and $\{e_{3}, e_{4}\}$ respectively.
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Since $\{\overline{e}_{1}=\frac{e_{1}+e_{3}}{\sqrt{2}},$ $J\overline{e}_{1}\}$ and $\{\overline{e}_{3}=\frac{e_{1}-e_{3}}{\sqrt{2}},$ $J\overline{e}_{3}\}$ are also orthogonal holo-

morphic planes, we obtain, using (4.8),

$\rho(\overline{e}_{1},\overline{e}_{3})(\nabla_{\overline{c}_{1}}J)\overline{e}_{3}=0$ ,

$\rho(\overline{e}_{3},\overline{e}_{1})(\nabla_{\overline{e}_{S}}J)\overline{e}_{1}=0$ .

From these equations, we find

$[\rho(e_{1}, e_{1})-\rho(e_{3}, e_{3})][(\nabla_{e_{1}}J)e_{1}-(\nabla_{e_{3}}J)e_{3}]=0$ ,

which implies, by the help of $g((\nabla_{\epsilon_{\theta}}J)e_{3}, e_{3})=0$ ,

(4.14) $\rho(e_{1}, e_{1})=\rho(e_{3}, e_{3})$ .

Similarly, for two pairs of orthogonal holomorphic planes $\{\frac{e_{1}+e_{5}}{\sqrt{2}},$ $J\frac{e_{1}+e_{5}}{\sqrt{2}}\}$ ,

$\{\frac{e_{1}-e_{5}}{\sqrt{2}},$ $J\frac{e_{1}-e_{5}}{\sqrt{2}}\}$ and $\{\frac{e_{3}+e_{5}}{\sqrt{2}},$ $J\frac{e_{3}+e_{5}}{\sqrt{2}}\},$ $\{\frac{e_{3}-e_{5}}{\sqrt{2}},$ $J\frac{e_{3}-e_{5}}{\sqrt{2}}\}$ , we obtain

$[\rho(e_{5}, e_{5})-\rho(e_{1}, e_{1})][(\nabla_{e_{1}}J)e_{1}-(\nabla_{e_{5}}J)e_{5}]=0$ ,

$[\rho(e_{5}, e_{5})-\rho(e_{3}, e_{3})][(\nabla_{e_{3}}J)e_{3}-(\nabla_{e_{f}}J)e_{5}]=0$ .

From these equations, we find, by the help of (4.14),

$[\rho(e_{5}, e_{5})-\rho(e_{1}, e_{1})][(\nabla_{e_{1}}J)e_{1}-(\nabla_{e_{3}}J)e_{3}]=0$ ,

which shows that $\rho(e_{5}, e_{5})=\rho(e_{1}, e_{1})$ .

Thus we obtain, using (4.13) and (4.14),
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(4.15) $\rho(e_{i}, e_{i})=-3h(1\leq i\leq 6)$ .

Since $\sum_{i=1}^{6}\rho(e_{i}, e_{i})=\tau$ and $h=-\frac{\tau+10\mu}{24}$ , we have, by the help of (4.15),

(4.16) $\tau=30\mu$ .

Since $\tau$ and $\mu$ are constants on $M$ , the relation (4.16) holds whole on $M$ .

If we put $W=e_{5}$ and $W=e_{6}$ respectively in (4.12), then we obtain

(4.17) $\rho(e_{3}, e_{5})=\rho(e_{3}, e_{6})=p(e_{4}, e_{5})=\rho(e_{4}, e_{6})=0$ .

Since the Ricci tensor of $M$ is parallel, it is easy to check

(4.18) $\rho(Y, (\nabla_{W}J)Y)=0$ , $\rho(JY, (\nabla_{W}J)Y)=0$ ,

$\rho(Z, (\nabla_{W}J)Y)+\rho((\nabla_{W}J)Z, Y)=0$ .

From (4.18) and (3.4), we obtain

(4.19) $\rho(e_{1}, e_{2})=\rho(e_{3}, e_{4})=\rho(e_{5}, e_{6})=\rho(e_{1}, e_{3})$

$=\rho(e_{1}, e_{4})=\rho(e_{2}, e_{3})=\rho(e_{2}, e_{4})=0$ .

Suppose that $\rho(e_{1}, e_{5})\neq 0$ on an open neighborhood $U^{\prime}(\subset U)$ of $p$ . Then we

have, using (4.8),

(4.20) $(\nabla_{e_{1}}J)e_{5}=(\nabla_{e_{5}}J)e_{1}=0$

on $U$ ‘. Thus (2.2) and (4.20) imply

(4.21) $R(e_{1}, e_{5}, e_{1}, e_{5})=R(e_{1}, e_{5}, e_{2}, e_{6})$ .
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From (3.5) and (4.21), we find

$\rho(e_{1}, e_{1})=\frac{\tau}{8}+\frac{\mu}{2}$ ,

which implies $\tau=0$ by the help of (4.15) and (4.16). This contradicts to the

hypothesis. Therefore we have $\rho(e_{1}, e_{5})=0$ . Similarly, we have $\rho(e_{1}, e_{6})=0$ . From

these results, (4.15), (4.17) and (4.19), we can conclude that $Q=\lambda I$ for some

function $\lambda$ on $U$ .
Now suppose that there exists a point $q\in M$ such that $(\nabla_{W}J)W=0$ for any

vector field $W$ at $q$ . We take arbitrary orthogonal holomorphic planes {X, $JX$ } and

$\{Y, JY\}$ , and assume that $\rho(X, Y)\neq 0$ at $q$ . Then we have $(\nabla_{X}J)Y=(\nabla_{Y}J)X=0$

from (4.8) and hence we obtain, by the help of (2.2),

(4.22) $R(X, Y, Z, W)-R(X, Y, JZ, JW)=0$

for any vector fields $Z$ and $W$ at $q$ . If we put $Z=X$ and $W=Y$ in (4.22) and use

(3.5), then we find

(4.23) $\rho(X, X)+\rho(Y, Y)=\frac{\tau}{4}+\mu$ .

If we take another holomorphic plane $\{Z, JZ\}$ which is orthogonal to {X, $JX$ }

and $\{Y, JY\}$ respectively, then we find from (4.22) and (3.5),

(4.24) $\rho(X, JZ)g(Y, JW)-\rho(X, Z)g(Y, W)$

$-g(X, JW)\rho(Y, JZ)+g(X, W)\rho(Y, Z)=0$

for all $W$ . If we put $W=X,$ $Y$ in (4.24) respectively, we have

(4.25) $\rho(Y, Z)=\rho(X, Z)=0$ .
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For the orthogonal holomorphic planes $\{\frac{X+Z}{\sqrt{2}},$ $J\frac{X+Z}{\sqrt{2}}\}$ and $\{\frac{X-Z}{\sqrt{2}},$ $J\frac{X-Z}{\sqrt{2}}\}$ .

we obtain from (4.8)

$[\rho(X,X)-\rho(Z, Z)][(\nabla_{Z}J)X-(\nabla_{X}J)Z]=0$ .

If $\rho(X,X)\neq\rho(Z, Z)$ at $q$ , then we have $(\nabla_{X}J)Z=(\nabla_{Z}J)X$ at $q$ . Since $(\nabla_{X}J)Z+$

$(\nabla zJ)X=0$ at $q$ , we have $(\nabla_{X}J)Z=(\nabla_{Z}J)X=0$ at $q$ . By the same arguments
as in the preceding paragraph, we have $\rho(X, Y)=0$ . This contradicts to the
hypothesis. Hence $\rho(X, X)=\rho(Z, Z)$ . Similarly, we obtain $\rho(Y, Y)=\rho(Z, Z)$ .
Therefore we find, by the help of (4.23),

$\tau=12\mu$ ,

which and (4.16) imply $\tau=0$ . This is impossible. Hence we can conclude that
$\rho(X, Y)=0$ for any orthogonal holomorphic planes {X, $JX$ } and $\{Y, JY\}$ . Hence
$\rho(X, Y)=\rho(X, Z)=\rho(Y, Z)=\cdots=\rho(X, JZ)=\rho(JY, JZ)=0$ for the orthogonal
holomorphic planes {X, $JX$ }, $\{Y, JY\}$ and $\{Z, JZ\}$ .

For the orthogonal holomorphic planes $\{\frac{X+Y}{\sqrt{2}},$ $J\frac{X+Y}{\sqrt{2}}\}$ and $\{\frac{X-Y}{\sqrt{2}},$ $J\frac{X-Y}{\sqrt{2}}\}$ ,

we have $\rho(\frac{X+Y}{\sqrt{2}},$ $J\frac{X-Y}{\sqrt{2}})=0$ . Hence we have $\rho(X, X)=\rho(Y)Y)$ . Similarly,

we obtain $\rho(X, X)=\rho(Z, Z)$ . Hence we get

$\rho(X, X)=\rho(Y, Y)=\rho(Z, Z)=\rho(JX, JX)=\rho(JY, JY)=\rho(JZ, JZ)$ .

Therefore, we have $Q=\lambda I$ at $q$ .
Summing up, we have $Q=\lambda I$ whole on $M$ and hence $M$ is Einsteinian. From

theorem 1 and the hypothesis that $M$ is not nearly Kaehlerian, we can conclude
that $M$ is of constant sectional curvature $\mu$ .

On the other hand, if $M$ is nearly Kaehlerian, then $M$ is a mainifold of constant
sectional curvature or a complex space form by virtue of corollary 2. Thus we have
the following
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Theorem 3. Let $M$ be a 6-dimensional connected quasi-Kaehler manifold with

pointwise constant holomorphic sectional curvature $\mu$ and let the curvature tensor

$R$ of $M$ satisfies the identity $(*)$ . If $M$ is locally symmetric and $\tau\neq 0$ (or $\mu\neq 0$),

then it is one of the following:

$(a)$ a manifold of constant sectional curvature

$(b)$ a complex space form.
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