ON SIX DIMENSIONAL ALMOST HERMITIAN MANIFOLDS WITH POINTWISE CONSTANT HOLOMORPHIC SECTIONAL CURVATURE

Un Kyu Kim
Dedicated to Professor U-Hang Ki on his 60th birthday

1. Introduction

Let $M=(M, J, g)$ be a 6 -dimensional almost Hermitian manifold. We denote by ∇, R, ρ and τ the Riemannian connection, the curvature tensor, the Ricci tensor and the scalar curvature of M, respectively. We assume that the curvature tensor R is given by

$$
\begin{aligned}
& R(X, Y) Z=\left[\nabla_{X}, \nabla_{Y}\right] Z-\nabla_{[X, Y]} Z \\
& R(X, Y, Z, W)=g(R(X, Y) Z, W)
\end{aligned}
$$

for $X, Y, Z, W \in \mathfrak{X}(M)$. The holomorphic sectional curvature is defined by

$$
H(X)=-R(X, J X, X, J X)
$$

for $X \in T_{p} M(p \in M)$ with $g(X, X)=1$. If $H(X)$ is constant $\mu(p)$ for all $X \in$ $T_{p} M(p \in M)$ at each point p of M, M is said to be of pointwise constant holomorphic sectional curvature. Further, if μ is constant whole on M, then M is said to be of constant holomorphic sectional curvature. It is well known that if a 6-dimensional nearly Kaehler manifold M is of constant holomorphic sectional curvature μ, then

[^0]either M is Kaehlerian, or M is of constant curvature $\mu>0([5])$. Also, it is well known that any 6-dimensional nearly Kaehler manifold is an Einstein one ([3],[7]) and its curvature tensor R satisfies the following identity([4]):
(*) $\quad R(X, Y, Z, W)=R(J X, J Y, Z, W)+R(J X, Y, J Z, W)+R(J X, Y, Z, J W)$
for $X, Y, Z, W \in \mathfrak{X}(M)$.
In this paper we want to prove that if a 6-dimensional almost Hermitian manifold M with pointwise constant holomorphic sectional curvature μ is Einsteinian and the curvature tensor R of M satisfies the identity (*), then either M is Kaehlerian, or M is of constant curvature μ. In a 6 -dimensional quasi-Kaehler manifold M, we want to have the same conculsion under the assumption that M is locally symmetric and $\tau \neq 0($ or $\mu \neq 0)$ instead of the assumption that M is Einsteinian.

2. Preliminaries

Let $M=(M, J, g)$ be a 6-dimensional almost Hermitian manifold. Then we have

$$
\begin{aligned}
& \left(\nabla_{X} J\right) J Y=-J\left(\nabla_{X} J\right) Y \\
& g\left(\left(\nabla_{X} J\right) Y, Z\right)=-g\left(\left(Y,\left(\nabla_{X} J\right) Z\right)\right. \\
& g\left(\left(\nabla_{X} J\right) Y, Y\right)=0 \\
& g\left(\left(\nabla_{X} J\right) Y, J Y\right)=0
\end{aligned}
$$

for $X, Y, Z \in \mathfrak{X}(M)$. The Ricci $*$-tensor ρ^{*} and the $*$-scalar curvature τ^{*} are defined respectively by

$$
\begin{aligned}
& \rho^{*}(X, Y)=g\left(Q^{*} X, Y\right)=\operatorname{trace}(Z \longmapsto R(X, J Z) J Y) \\
& \tau^{*}=\operatorname{trace} Q^{*}
\end{aligned}
$$

for all $X, Y, Z \in T_{p} M, p \in M$. By the definition of ρ^{*}, we get easily

$$
\rho^{*}(X, Y)=\rho^{*}(J Y, J X)
$$

for $X, Y \in T_{p}(M), p \in M . M=(M, J, g)$ is said to be a weakly $*$-Einstein manifold if $\rho^{*}=\frac{\tau^{*}}{6} g$ holds.

We shall recall the definitions of special kinds of almost Hermitian manifolds. An almost Hermitian manifold M is called Kaehlerian if

$$
\nabla_{X} J=0
$$

for all $X \in \mathfrak{X}(M), M$ is called nearly Kaehlerian if

$$
\left(\nabla_{X} J\right) Y+\left(\nabla_{Y} J\right) X=0
$$

for all $X, Y \in \mathfrak{X}(M)$ and M is called quasi-Kaehlerian if

$$
\left(\nabla_{X} J\right) Y+\left(\nabla_{J X} J\right)(J Y)=0
$$

for all $X, Y \in \mathfrak{X}(M)$.
We define three linear operators $L_{i}, i=1,2,3$ as the following:

$$
\begin{aligned}
&\left(L_{1} R\right)(X, Y, Z, W)= \frac{1}{2}\{ \\
& R(J X, J Y, Z, W)+R(Y, J Z, J X, W) \\
&+R(J Z, X, J Y, W)\} \\
&\left(L_{2} R\right)(X, Y, Z, W)=\frac{1}{2}\{R(X, Y, Z, W)+R(J X, J Y, Z, W)+R(J X, Y, J Z, W) \\
&+R(J X, Y, Z, J W)\} \\
&\left(L_{3} R\right)(X, Y, Z, W)= R(J X, J Y, J Z, J W)
\end{aligned}
$$

for all $X, Y, Z, W \in \mathfrak{X}(M)$. It is easy to see that curvature identity $(*)$ implies $L_{2} R=R$ and $L_{3} R=R$.

For a $(0,2)$ type tensor S, we define $\varphi(S)$ and $\psi(S)$ by

$$
\begin{aligned}
\varphi(S)(X, Y, Z, W)= & g(X, Z) S(Y, W)+g(Y, W) S(X, Z) \\
& -g(X, W) S(Y, Z)-g(Y, Z) S(X, W) \\
\psi(S)(X, Y, Z, W)= & 2 g(X, J Y) S(Z, J W)+2 g(Z, J W) S(X, J Y) \\
& +g(X, J Z) S(Y, J W)+g(Y, J W) S(X, J Z) \\
& -g(X, J W) S(Y, J Z)-g(Y, J Z) S(X, J W)
\end{aligned}
$$

Tricerri and Vanhecke proved the following.
Theorem A([6]). Let M be an almost Hermitian manifold with dimension 6 and curvature tensor R. Then we have the following identity:

$$
\begin{aligned}
\left(I-L_{1}\right)\left(I+L_{2}\right)\left(I+L_{3}\right) R=- & \frac{1}{2}(3 \varphi-\psi)\left\{\rho\left(R+L_{3} R\right)-\rho^{*}\left(R+L_{3} R\right)\right\} \\
& +\frac{1}{4}\left(\tau-\tau^{*}\right)\left(3 \pi_{1}-\pi_{2}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \pi_{1}(X, Y) Z=g(X, Z) Y-g(Y, Z) X \\
& \pi_{2}(X, Y) Z=2 g(J X, Y) J Z+g(J X, Z) J Y-g(J Y, Z) J X \\
& \left\{\rho\left(R+L_{3} R\right)\right\}(X, Y)=\operatorname{trace}(Z \longmapsto R(Z, X) Y-J R(J Z, J X) J Y) \\
& \left\{\rho^{*}\left(R+L_{3} R\right)\right\}(X, Y)=\operatorname{trace}(Z \longmapsto R(X, J Z) J Y-J R(J X, Z) Y)
\end{aligned}
$$

On the other hand, Gray obtained the following

Lemma B([1]). Let M be a quasi-Kaehler manifold. Then

$$
\begin{gather*}
G(X, Y, Z, W)+G(J X, J Y, J Z, J W)+G(J X, Y, J Z, W)+G(X, J Y, Z, Z W) \tag{2.1}\\
=-2 g\left(\left(\nabla_{\left(\nabla_{\boldsymbol{x}} J\right) Y-\left(\nabla_{Y} J\right) X} J\right) Z, W\right)
\end{gather*}
$$

where $G(X, Y, Z, W)=R(X, Y, Z, W)-R(X, Y, J Z, J W)$.
For a quasi-Kaehler manifold M with the curvature identity (*), the equation (2.1) is reduced to

$$
\begin{equation*}
G(X, Y, Z, W)=-\frac{1}{2} g\left(\left(\nabla_{\left(\nabla_{X} J\right) Y-\left(\nabla_{Y} J\right) X} J\right) Z, W\right) \tag{2.2}
\end{equation*}
$$

3. Einstein almost Hermitian manifolds with pointwise CONSTANT HOLOMORPHIC SECTIONAL CURVATURE

Let $M=(M, J, g)$ be a 6 -dimensional almost Hermtian manifold and let the curvature tensor R of M satisfies the identity (*). Then we find, from Theorem A, $L_{2} R=R$ and $L_{3} R=R$,

$$
\begin{align*}
& 6 R(X, Y, Z, W) \tag{3.1}\\
& =2\{2 R(J X, J Y, Z, W)-R(J Y, J Z, X, W)-R(J Z, J X, Y, W)\} \\
& +2 g(X, J Y)\left\{\rho(Z, J W)-\rho^{*}(Z, J W)\right\}+2 g(Z, J W)\left\{\rho(X, J Y)-\rho^{*}(X, J Y)\right\} \\
& +g(X, J Z)\left\{\rho(Y, J W)-\rho^{*}(Y, J W)\right\}+g(Y, J W)\left\{\rho(X, J Z)-\rho^{*}(X, J Z)\right\} \\
& -g(X, J W)\left\{\rho(Y, J Z)-\rho^{*}(Y, J Z)\right\}-g(Y, J Z)\left\{\rho(X, J W)-\rho^{*}(X, J W)\right\} \\
& -3\left[g(X, Z)\left\{\rho(Y, W)-\rho^{*}(Y, W)\right\}+g(Y, W)\left\{\rho(X, Z)-\rho^{*}(X, Z)\right\}\right. \\
& \left.\quad-g(X, W)\left\{\rho(Y, Z)-\rho^{*}(Y, Z)\right\}-g(Y, Z)\left\{\rho(X, W)-\rho^{*}(X, W)\right\}\right] \\
& +\frac{3}{4}\left(\tau-\tau^{*}\right)\{g(X, Z) g(Y, W)-g(Y, Z) g(X, W)\} \\
& -\frac{1}{4}\left(\tau-\tau^{*}\right)\{2 g(J X, Y) g(J Z, W)+g(J X, Z) g(J Y, W)-g(J Y, Z) g(J X, W)\} .
\end{align*}
$$

Moreover, we assume that M is of pointwise constant holomorphic sectional curvature μ. Then we have

$$
\begin{align*}
& R(X, Y, Z, W) \tag{3.2}\\
& \begin{aligned}
&=\mu\{g(X, W) g(Y, Z)-g(X, Z) g(Y, W)+g(J X, W) g(J Y, Z) \\
&\quad-g(J X, Z) g(J Y, W)-2 g(J X, Y) g(J Z, W)\} \\
&-\{2 R(J X, J Y, Z, W)-R(J Y, J Z, X, W)-R(J Z, J X, Y, W)\}
\end{aligned}
\end{align*}
$$

(See Lemma 3.1 in [2]).
From (3.1) and (3.2) we obtain

$$
\begin{align*}
& 8 R(X, Y, Z, W) \tag{3.3}\\
& =2 g(X, J Y)\left\{\rho(Z, J W)-\rho^{*}(Z, J W)\right\}+2 g(Z, J W)\left\{\rho(X, J Y)-\rho^{*}(X, J Y)\right\} \\
& +g(X, J Z)\left\{\rho(Y, J W)-\rho^{*}(Y, J W)\right\}+g(Y, J W)\left\{\rho(X, J Z)-\rho^{*}(X, J Z)\right\} \\
& -g(X, J W)\left\{\rho(Y, J Z)-\rho^{*}(Y, J Z)\right\}-g(Y, J Z)\left\{\rho(X, J W)-\rho^{*}(X, J W)\right\} \\
& -3\left[g(X, Z)\left\{\rho(Y, W)-\rho^{*}(Y, W)\right\}+g(Y, W)\left\{\rho(X, Z)-\rho^{*}(X, Z)\right\}\right. \\
& \left.\quad-g(X, W)\left\{\rho(Y, Z)-\rho^{*}(Y, Z)\right\}-g(Y, Z)\left\{\rho(X, W)-\rho^{*}(X, W)\right\}\right] \\
& +\left\{\frac{3}{4}\left(\tau-\tau^{*}\right)-2 \mu\right\}\{g(X, Z) g(Y, W)-g(Y, Z) g(X, W)\} \\
& -\left\{\frac{1}{4}\left(\tau-\tau^{*}\right)+2 \mu\right\}\{2 g(J X, Y) g(J Z, W)+g(J X, Z) g(J Y, W) \\
& \\
& \quad-g(J Y, Z) g(J X, W)\} .
\end{align*}
$$

In a 6-dimensional almost Hermitian manifold with pointwise constant holomor-
phic sectional curvature μ and with curvature identity ($*$), we have ([4])

$$
\begin{align*}
& \rho(X, Y)+3 \rho^{*}(X, Y)=8 \mu g(X, Y) \tag{3.4}\\
& \rho(X, Y)=\rho(J X, J Y) \\
& \rho^{*}(X, Y)=\rho^{*}(Y, X) \\
& \rho^{*}(X, Y)=\rho^{*}(J X, J Y) \\
& \tau+3 \tau^{*}=48 \mu
\end{align*}
$$

From (3.3) and (3.4), we find
(3.5) $\quad R(X, Y, Z, W)$

$$
\begin{aligned}
& =\frac{1}{6}\{2 g(X, J Y) \rho(Z, J W)+2 \rho(X, J Y) g(Z, J W)+g(X, J Z) \rho(Y, J W) \\
& +\rho(X, J Z) g(Y, J W)-g(X, J W) \rho(Y, J Z)-\rho(X, J W) g(Y, J Z)\} \\
& -\frac{1}{2}\{g(X, Z) \rho(Y, W)+g(Y, W) \rho(X, Z)-g(X, W) \rho(Y, Z)-g(Y, Z) \rho(X, W)\} \\
& +\frac{\tau+2 \mu}{8}\{g(X, Z) g(Y, W)-g(Y, Z) g(X, W)\} \\
& -\frac{\tau+10 \mu}{24}\{2 g(J X, Y) g(J Z, W)+g(J X, Z) g(J Y, W)-g(J Y, Z) g(J X, W)\}
\end{aligned}
$$

Now, we assume that M is Einsteinian (or equivalently, weakly *-Einsteinian). Then we have

$$
\begin{equation*}
\rho(X, Y)=\frac{\tau}{6} g(X, Y) \tag{3.6}
\end{equation*}
$$

Substituting (3.6) into (3.5) and using (3.4), we obtain

$$
\begin{align*}
& R(X, Y, Z, W) \tag{3.7}\\
& \begin{aligned}
&=\left(\frac{\tau}{72}-\frac{5}{12} \mu\right)\{2 g(J X, Y) g(J Z, W)+g(J X, Z) g(J Y, W) \\
&\quad-g(J Y, Z) g(J X, W)\}
\end{aligned} \\
& +\left(-\frac{\tau}{24}+\frac{\mu}{4}\right)\{g(X, Z) g(Y, W)-g(X, W) g(Y, Z)\}
\end{align*}
$$

On the other hand, Tricerri and Vanhecke proved the following
Theorem $\mathbf{C}([6])$. Let M be a connected almost Hermitian manifold with real dimension $2 n \geq 6$ and Riemannian curvature tensor R of the following form:

$$
R=f_{1} \pi_{1}+f_{2} \pi_{2}
$$

where f_{1} and f_{2} are C^{∞} functions on M such that f_{2} is not identical zero. Then M is a complex space form(i.e. a Kaehler manifold with constant holomorphic sectional cuvature).

In the proof of Theorem C, Tricerri and Vanhecke showed that the functions f_{1} and f_{2} are both constant. Thererfore we can conclude that $\frac{\tau}{72}-\frac{5}{12} \mu$ is constant provided that M is connected. So μ is constant on M.

If $\frac{\tau}{72}-\frac{5}{12} \mu=0$, then we have from (3.7)

$$
R(X, Y, Z, W)=\mu\{g(X, W) g(Y, Z)-g(X, Z) g(Y, W)\}
$$

which shows that M is a manifold of constant sectional curvature μ. If $\frac{\tau}{72}-\frac{5}{12} \mu \neq 0$, then M is a complex space form from Theorem C.
Thus we have the following

Theorem 1. Let M be a six dimensional connected almost Hermitian manifold with pointwise constant holomorphic sectional curvature μ and with curvature identity (*). If M is Einsteinian or weakly *-Einsteinian, then M is one of the following:
(a) a manifold of constant sectional curvature μ
(b) a complex space form.

Since a 6-dimensional nearly* Kaehlerian manifold is Einsteinian and has the curvature property (*), we have the following

Corollary 2 ([5]). If M is a 6-dimensional connected nearly Kaehlerian manifold with pointwise constant holomorphic sectional curvature, then M is one of the following:
(a) a manifold of constant sectional curvature
(b) a complex space form.
4. Locally symmetric almost Hermitian manifolds WITH POINTWISE CONSTANT HOLOMORPHIC SECTIONAL CURVATURE

Let M be a 6-dimensional almost Hermitain manifold with pointwise constant holomorphic sectional curvature μ and let its curvature tensor R satisfies the identity (*). Since $\operatorname{dim} M=6$, it is possible to choose two unit vectors X and W which define orthogonal holomorphic planes $\{X, J X\}$ and $\{W, J W\}$.

We assume that M is locally symmetric and $\tau \neq 0$ (or $\mu \neq 0$). Then we obtain, by the help of (3.5),

$$
\begin{align*}
& W(f) J W+3 h_{g}\left(\left(\nabla_{W} J\right) X, J W\right) J X+\frac{1}{2}\left[\rho\left(\left(\nabla_{W} J\right) X, J W\right) J X\right. \tag{4.1}\\
& \left.+\rho(X, W)\left(\nabla_{W} J\right) X+g\left(\left(\nabla_{W} J\right) X, J W\right) Q(J X)\right]=0
\end{align*}
$$

where $\{X, J X\}$ and $\{W, J W\}$ are arbitrary orthogonal holomorphic planes, $f=$ $\frac{1}{8}(\tau+2 \mu), h=-\frac{\tau+10 \mu}{24}$ and Q is the Ricci tensor of type $(1,1)$.

Moreover, we assume that M is a quasi Kaehler manifold. Then μ is globally constant on $M([4])$ and hence $W(f)=0$. Thus (4.1) can be rewritten as

$$
\begin{align*}
& 6 h g\left(\left(\nabla_{W} J\right) X, J W\right) J X+\rho\left(\left(\nabla_{W} J\right) X, J W\right) J X \tag{4.2}\\
& +\rho(X, W)\left(\nabla_{W} J\right) X+g\left(\left(\nabla_{W} J\right) X, J W\right) Q(J X)=0 .
\end{align*}
$$

From (4.2), we obtain

$$
\begin{gather*}
\rho(X, W) g\left(\left(\nabla_{W} J\right) X, J W\right)=0 \tag{4.3}\\
\rho(X, W) g\left(J X,\left(\nabla_{W} J\right) W\right)=0 \tag{4.4}\\
6 h g\left(\left(\nabla_{W} J\right) X, J W\right)+\rho\left(\left(\nabla_{W} J\right) X, J W\right)=-g\left(\left(\nabla_{W} J\right) X, J W\right) \rho(X, X), \tag{4.5}\\
6 h g\left(\left(\nabla_{W} J\right) W, J X\right)+\rho\left(\left(\nabla_{W} J\right) W, J X\right)=-g\left(\left(\nabla_{W} J\right) W, J X\right) \rho(X, X) \tag{4.6}
\end{gather*}
$$

Substituting (4.5) into (4.2), we have

$$
\begin{align*}
& -g\left(\left(\nabla_{W} J\right) X, J W\right) \rho(X, X) J X \tag{4.7}\\
& +\rho(X, W)\left(\nabla_{W} J\right) X+g\left(\left(\nabla_{W} J\right) X, J W\right) Q(J X)=0
\end{align*}
$$

Multiplying (4.7) with $\rho(X, W)$ and taking account of (4.3), we obtain

$$
\begin{equation*}
\rho(X, W)\left(\nabla_{W} J\right) X=0 \tag{4.8}
\end{equation*}
$$

which and (4.7) imply

$$
\begin{equation*}
g\left(\left(\nabla_{W} J\right) X, J W\right) Q(J X)=g\left(\left(\nabla_{W} J\right) X, J W\right) \rho(X, X) J X . \tag{4.9}
\end{equation*}
$$

Substituting (4.9) into (4.2), we find

$$
\begin{align*}
& {[6 h+\rho(X, X)] g\left(\left(\nabla_{W} J\right) X, J W\right)=-\rho\left(\left(\nabla_{W} J\right) X, J W\right),} \tag{4.10}\\
& {[6 h+\rho(X, X)] g\left(\left(\nabla_{W} J\right) W, J X\right)=-\rho\left(\left(\nabla_{W} J\right) W, J X\right) .} \tag{4.1.}
\end{align*}
$$

If we interchange X and W respectively in (4.11), then we obtain

$$
[6 h+\rho(W, W)] g\left(\left(\nabla_{X} J\right) X, J W\right)=-\rho\left(\left(\nabla_{X} J\right) X, J W\right),
$$

which implies, using $\rho(J W, J W)=\rho(W, W)$ and the fact that $\{W, J W\}$ and $\left\{J W, J^{2} W\right\}$ determine the same holomorphic plane,

$$
\begin{equation*}
[6 h+\rho(W, W)] g\left(\left(\nabla_{X} J\right) X, W\right)=-\rho\left(\left(\nabla_{X} J\right) X, W\right) . \tag{4.1.1}
\end{equation*}
$$

Now, suppose that M is not nearly Kaehleian. Then there exists a unit vector field X in an open neighborhood U of $p \in M$ such that $\left(\nabla_{X} J\right) X \neq 0$. We put

$$
X=e_{1}, \quad J X=e_{2}, \quad\left(\nabla_{X} J\right) X /\left\|\left(\nabla_{X} J\right) X\right\|=e_{3}, \quad J e_{3}=e_{4} .
$$

Then $\left\{e_{1}, e_{2}\right\}$ and $\left\{e_{3}, e_{4}\right\}$ are orthogonal holomorphic planes. If we put $W=e_{3}$ in (4.12), then we obtain

$$
\begin{equation*}
\rho\left(e_{3}, e_{3}\right)=\rho\left(e_{4}, e_{4}\right)=-3 h . \tag{4.1}
\end{equation*}
$$

Next we choose another holomorphic plane $\left\{e_{5}, e_{6}=J e_{5}\right\}$ which is orthogonal to $\left\{e_{1}, e_{2}\right\}$ and $\left\{e_{3}, e_{4}\right\}$ respectively.

Since $\left\{\bar{e}_{1}=\frac{e_{1}+e_{3}}{\sqrt{2}}, J \bar{e}_{1}\right\}$ and $\left\{\bar{e}_{3}=\frac{e_{1}-e_{3}}{\sqrt{2}}, J \bar{e}_{3}\right\}$ are also orthogonal holomorphic planes, we obtain, using (4.8),

$$
\begin{aligned}
& \rho\left(\bar{e}_{1}, \bar{e}_{3}\right)\left(\nabla_{\bar{e}_{1}} J\right) \bar{e}_{3}=0, \\
& \rho\left(\bar{e}_{3}, \bar{e}_{1}\right)\left(\nabla_{\bar{e}_{3}} J\right) \bar{e}_{1}=0 .
\end{aligned}
$$

From these equations, we find

$$
\left[\rho\left(e_{1}, e_{1}\right)-\rho\left(e_{3}, e_{3}\right)\right]\left[\left(\nabla_{e_{1}} J\right) e_{1}-\left(\nabla_{e_{3}} J\right) e_{3}\right]=0,
$$

which implies, by the help of $g\left(\left(\nabla_{e_{3}} J\right) e_{3}, e_{3}\right)=0$,

$$
\begin{equation*}
\rho\left(e_{1}, e_{1}\right)=\rho\left(e_{3}, e_{3}\right) . \tag{4.14}
\end{equation*}
$$

Similarly, for two pairs of orthogonal holomorphic planes $\left\{\frac{e_{1}+e_{5}}{\sqrt{2}}, J \frac{e_{1}+e_{5}}{\sqrt{2}}\right\}$, $\left\{\frac{e_{1}-e_{5}}{\sqrt{2}}, J \frac{e_{1}-e_{5}}{\sqrt{2}}\right\}$ and $\left\{\frac{e_{3}+e_{5}}{\sqrt{2}}, J \frac{e_{3}+e_{5}}{\sqrt{2}}\right\},\left\{\frac{e_{3}-e_{5}}{\sqrt{2}}, J \frac{e_{3}-e_{5}}{\sqrt{2}}\right\}$, we obtain

$$
\begin{aligned}
& {\left[\rho\left(e_{5}, e_{5}\right)-\rho\left(e_{1}, e_{1}\right)\right]\left[\left(\nabla_{e_{1}} J\right) e_{1}-\left(\nabla_{e_{5}} J\right) e_{5}\right]=0,} \\
& {\left[\rho\left(e_{5}, e_{5}\right)-\rho\left(e_{3}, e_{3}\right)\right]\left[\left(\nabla_{e_{3}} J\right) e_{3}-\left(\nabla_{e_{5}} J\right) e_{5}\right]=0 .}
\end{aligned}
$$

From these equations, we find, by the help of (4.14),

$$
\left[\rho\left(e_{5}, e_{5}\right)-\rho\left(e_{1}, e_{1}\right)\right]\left[\left(\nabla_{e_{1}} J\right) e_{1}-\left(\nabla_{e_{3}} J\right) e_{3}\right]=0,
$$

which shows that $\rho\left(e_{5}, e_{5}\right)=\rho\left(e_{1}, e_{1}\right)$.
Thus we obtain, using (4.13) and (4.14),

$$
\begin{equation*}
\rho\left(e_{i}, e_{i}\right)=-3 h(1 \leq i \leq 6) \tag{4.15}
\end{equation*}
$$

Since $\sum_{i=1}^{6} \rho\left(e_{i}, e_{i}\right)=\tau$ and $h=-\frac{\tau+10 \mu}{24}$, we have, by the help of (4.15),

$$
\begin{equation*}
\tau=30 \mu \tag{4.16}
\end{equation*}
$$

Since τ and μ are constants on M, the relation (4.16) holds whole on M. If we put $W=e_{5}$ and $W=e_{6}$ respectively in (4.12), then we obtain

$$
\begin{equation*}
\rho\left(e_{3}, e_{5}\right)=\rho\left(e_{3}, e_{6}\right)=\rho\left(e_{4}, e_{5}\right)=\rho\left(e_{4}, e_{6}\right)=0 \tag{4.17}
\end{equation*}
$$

Since the Ricci tensor of M is parallel, it is easy to check

$$
\begin{gather*}
\rho\left(Y,\left(\nabla_{W} J\right) Y\right)=0, \quad \rho\left(J Y,\left(\nabla_{W} J\right) Y\right)=0 \tag{4.18}\\
\rho\left(Z,\left(\nabla_{W} J\right) Y\right)+\rho\left(\left(\nabla_{W} J\right) Z, Y\right)=0
\end{gather*}
$$

From (4.18) and (3.4), we obtain

$$
\begin{align*}
& \rho\left(e_{1}, e_{2}\right)=\rho\left(e_{3}, e_{4}\right)=\rho\left(e_{5}, e_{6}\right)=\rho\left(e_{1}, e_{3}\right) \tag{4.19}\\
& \quad=\rho\left(e_{1}, e_{4}\right)=\rho\left(e_{2}, e_{3}\right)=\rho\left(e_{2}, e_{4}\right)=0
\end{align*}
$$

Suppose that $\rho\left(e_{1}, e_{5}\right) \neq 0$ on an open neighborhood $U^{\prime}(\subset U)$ of p. Then we have, using (4.8),

$$
\begin{equation*}
\left(\nabla_{e_{1}} J\right) e_{5}=\left(\nabla_{e_{5}} J\right) e_{1}=0 \tag{4.20}
\end{equation*}
$$

on U^{\prime}. Thus (2.2) and (4.20) imply

$$
\begin{equation*}
R\left(e_{1}, e_{5}, e_{1}, e_{5}\right)=R\left(e_{1}, e_{5}, e_{2}, e_{6}\right) \tag{4.21}
\end{equation*}
$$

From (3.5) and (4.21), we find

$$
\rho\left(e_{1}, e_{1}\right)=\frac{\tau}{8}+\frac{\mu}{2},
$$

which implies $\tau=0$ by the help of (4.15) and (4.16). This contradicts to the hypothesis. Therefore we have $\rho\left(e_{1}, e_{5}\right)=0$. Similarly, we have $\rho\left(e_{1}, e_{6}\right)=0$. From these results, $(4.15),(4.17)$ and (4.19), we can conclude that $Q=\lambda I$ for some function λ on U.

Now suppose that there exists a point $q \in M$ such that $\left(\nabla_{W} J\right) W=0$ for any vector field W at q. We take arbitrary orthogonal holomorphic planes $\{X, J X\}$ and $\{Y, J Y\}$, and assume that $\rho(X, Y) \neq 0$ at q. Then we have $\left(\nabla_{X} J\right) Y=\left(\nabla_{Y} J\right) X=0$ from (4.8) and hence we obtain, by the help of (2.2),

$$
\begin{equation*}
R(X, Y, Z, W)-R(X, Y, J Z, J W)=0 \tag{4.22}
\end{equation*}
$$

for any vector fields Z and W at q. If we put $Z=X$ and $W=Y$ in (4.22) and use (3.5), then we find

$$
\begin{equation*}
\rho(X, X)+\rho(Y, Y)=\frac{\tau}{4}+\mu \tag{4.23}
\end{equation*}
$$

If we take another holomorphic plane $\{Z, J Z\}$ which is orthogonal to $\{X, J X\}$ and $\{Y, J Y\}$ respectively, then we find from (4.22) and (3.5),

$$
\begin{align*}
& \rho(X, J Z) g(Y, J W)-\rho(X, Z) g(Y, W) \tag{4.24}\\
& \quad-g(X, J W) \rho(Y, J Z)+g(X, W) \rho(Y, Z)=0
\end{align*}
$$

for all W. If we put $W=X, Y$ in (4.24) respectively, we have

$$
\begin{equation*}
\rho(Y, Z)=\rho(X, Z)=0 \tag{4.25}
\end{equation*}
$$

For the orthogonal holomorphic planes $\left\{\frac{X+Z}{\sqrt{2}}, J \frac{X+Z}{\sqrt{2}}\right\}$ and $\left\{\frac{X-Z}{\sqrt{2}}, J \frac{X-Z}{\sqrt{2}}\right\}$, we obtain from (4.8)

$$
[\rho(X, X)-\rho(Z, Z)]\left[\left(\nabla_{Z} J\right) X-\left(\nabla_{X} J\right) Z\right]=0 .
$$

If $\rho(X, X) \neq \rho(Z, Z)$ at q, then we have $\left(\nabla_{X} J\right) Z=\left(\nabla_{Z} J\right) X$ at q. Since $\left(\nabla_{X} J\right) Z+$ $\left(\nabla_{Z} J\right) X=0$ at q, we have $\left(\nabla_{X} J\right) Z=\left(\nabla_{Z} J\right) X=0$ at q. By the same arguments as in the preceding paragraph, we have $\rho(X, Y)=0$. This contradicts to the hypothesis. Hence $\rho(X, X)=\rho(Z, Z)$. Similarly, we obtain $\rho(Y, Y)=\rho(Z, Z)$. Therefore we find, by the help of (4.23),

$$
\tau=12 \mu
$$

which and (4.16) imply $\tau=0$. This is impossible. Hence we can conclude that $\rho(X, Y)=0$ for any orthogonal holomorphic planes $\{X, J X\}$ and $\{Y, J Y\}$. Hence $\rho(X, Y)=\rho(X, Z)=\rho(Y, Z)=\cdots=\rho(X, J Z)=\rho(J Y, J Z)=0$ for the orthogonal holomorphic planes $\{X, J X\},\{Y, J Y\}$ and $\{Z, J Z\}$.

For the orthogonal holomorphic planes $\left\{\frac{X+Y}{\sqrt{2}}, J \frac{X+Y}{\sqrt{2}}\right\}$ and $\left\{\frac{X-Y}{\sqrt{2}}, J \frac{X-Y}{\sqrt{2}}\right\}$,
we have $\rho\left(\frac{X+Y}{\sqrt{2}}, J \frac{X-Y}{\sqrt{2}}\right)=0$. Hence we have $\rho(X, X)=\rho(Y, Y)$. Similarly, we obtain $\rho(X, X)=\rho(Z, Z)$. Hence we get

$$
\rho(X, X)=\rho(Y, Y)=\rho(Z, Z)=\rho(J X, J X)=\rho(J Y, J Y)=\rho(J Z, J Z) .
$$

Therefore, we have $Q=\lambda I$ at q.
Summing up, we have $Q=\lambda I$ whole on M and hence M is Einsteinian. From theorem 1 and the hypothesis that M is not nearly Kaehlerian, we can conclude that M is of constant sectional curvature μ.

On the other hand, if M is nearly Kaehlerian, then M is a mainifold of constant sectional curvature or a complex space form by virtue of corollary 2 . Thus we have the following

Theorem 3. Let M be a 6-dimensional connected quasi-Kaehler manifold with pointwise constant holomorphic sectional curvature μ and let the curvature tensor R of M satisfies the identity (*). If M is locally symmetric and $\tau \neq 0$ (or $\mu \neq 0$), then it is one of the following:
(a) a manifold of constant sectional curvature
(b) a complex space form.

References

[1]. A. Gray, Curvature identities for Hermitian and almost Hermitian manifolds, Tôhoku Math. J. 28 (1976), 601-612.
[2]. A. Gray and L. Vanhecke, Almost Hermitian manifolds with constant holomorphic sectional curvature, Časopis pro pesstování matematiky, roč 104 (1979), 170-179.
[3]. M. Matsumoto, On 6-dimensional almost Tachibana spaces, Tensor, N.S. 23 (1972), 250-252.
[4]. T. Sato, On some almost Hermitian manifolds with constant holomorphic sectional curvature, Kyungpook Math. Jour. 29 (1989), 11-25.
[5]. S. Tanno, Constancy of holomorphic sectional curvature in almost Hermitian manifolds, Kōdai Math. Sem. Rep. 25 (1973), 190-201.
[6]. F. Tricerri and L. Vanhecke, Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc. 267 (1981), 365-398.
[7]. K. Yano and M. Kon, Structures on manifolds, World Scientific Publishing Co., 1984. (Singapore)

Department of Mathematics Education
Sung Kyun Kwan University
Seoul 110-745, Korea

Received April 17, 1995, Revised July 31, 1995

[^0]: This paper was supported by BSRI-94-1419

