Conjugacy classes of zero entropy automorphisms
 on free group factors

Naohito Tanaka

1. Introduction. The entropy $H(\theta)$ of a $*$-automorphism θ on a von Neumann algebra M is defined by Connes - St申rmer [4] as an extended version of classical one. The notion of entropy is conjugacy invariant, that is, $H(\theta)=H\left(\alpha^{-1} \theta \alpha\right)$ for an automorphism α of M.

Besson[2] gives an example of an uncountable family of automorphisms on the hyperfinite II_{1} factor R which have zero entropy but are not pairwize conjugate. An interesting example of II_{1}-factor which is not hyperfinite is the group von Neumann algebra $L\left(F_{n}\right)$ of the free group F_{n} on n generators ($n \geq 2$).

The purpose of this paper is to give an alternative version of Besson's result to free group factors. That is, we show :
Theorem. There exists an uncountable family of automorphisms on $L\left(F_{n}\right)$ which have entropy zero but are pairwize non conjugate.

The author would like to thank the referee for many valuable comments and pointing out a mistake in the first virsion of this paper.
2. Automorphisms of free group factors. Let G be a countable infinite group and $l^{2}(G)$ the Hilbert space of all square summable functions on G. For each g in G, let $u(g)$ be the unitary representation of G to $l^{2}(G)$ defined by

$$
(u(g) \xi)(h)=\xi\left(g^{-1} h\right) \quad\left(\xi \in l^{2}(G), h \in G\right)
$$

The von Neumann algebra on $l^{2}(G)$ generated by $\{u(g) ; g \in G\}$ is called the left von Neumann algebra of G and denoted by $L(G)$. It is well known that $L(G)$ is factor if and only if G is an ICC group, that is, every conjugacy class $C_{g}=\left\{h g h^{-1} ; h \in G\right\}$ is infinite, except the trivial $\{1\}$. Let $\{\delta(g)\}_{g \in G}$ be an othonomal basis in $l^{2}(G)$ given by

$$
(\delta(g))(h)=\left\{\begin{array}{ll}
1 & h=g \\
0 & \text { otherwise }
\end{array} \quad(g \in G)\right.
$$

The functional τ on $L(G)$ defined by

$$
\tau(x)=(x \delta(e) \mid \delta(e)) \quad(x \in R(G), e \text { is the unit of } G)
$$

is a faithful finite normal trace. For an $x \in L(G)$, put $x(g)=\tau\left(x u\left(g^{-1}\right)\right)$ then x has a unique expansion:

$$
x=\sum_{g \in G} x(g) u(g), \quad \text { in the pointwise }\|\cdot\|_{2} \text {-convergence topology }
$$

and

$$
\|x\|_{2}^{2}=\tau\left(x^{*} x\right)=\sum_{g \in G}|x(g)|^{2}
$$

We fix an integer n and let F_{n} be the free group on n generators $\left\{g_{1}, \cdots, g_{n}\right\} \quad$ ($n=$ $2,3, \cdots)$. It is obvious that F_{n} is an ICC group. Each element g in F_{n} has the expression called a reduced word. For each g in F_{n}, we shall call the sum of powers of component g_{m} in the reduced word the order of g with respect to $g_{m}(m=1,2, \cdots, n)$ and denote it by $O_{m}(g)$. For an example, let g in F_{n} be a reduced word

$$
g=g_{i_{1}}^{n_{1}} g_{i_{2}}^{n_{2}} \cdots g_{i_{k}}^{n_{k}} \quad\left(i_{j}=1,2, \cdots n, n_{j}= \pm 1, \pm 2, \cdots(j=1,2, \cdots, k)\right)
$$

then the order $O_{m}(g)$ of g is $\sum_{j=1}^{k} \delta_{\left(m, i_{j}\right)} n_{j}$. We denote by $\operatorname{Aut}\left(L\left(F_{n}\right)\right)$ the group of automorphisms of $L\left(F_{n}\right)$.

Put

$$
\Gamma=\left\{\gamma=\left(\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}\right) ; \gamma_{i} \in \mathbb{T}(i=1,2, \cdots, n)\right\}
$$

where \mathbb{T} be the unit circle in the complex plane. For $\gamma \in \Gamma$, the $\alpha_{\gamma} \in \operatorname{Aut}\left(L\left(F_{n}\right)\right)$ is defined by:

$$
\begin{equation*}
\alpha_{\gamma}(x)=\sum_{g \in F_{n}} x(g) \prod_{m=1}^{n} \gamma_{m}^{O_{m}(g)} u(g) \quad\left(x \in L\left(F_{n}\right)\right) \tag{*}
\end{equation*}
$$

Such automorphisms are treated in [1,3,5]. The following Lemma is well known in the specialists but we denote a proof of it for the sake of completeness.

Lemma 1. If a sequence $\left\{\gamma_{i}\right\} \subset \Gamma$ converges to $\gamma \in \Gamma$, then $\alpha_{\gamma_{i}}$ converges to α_{γ} (in the sense of point wise $\|\cdot\|_{2}$ convergence).

Proof. Put $\gamma_{i}=\left(\gamma_{i_{1}}, \gamma_{i_{2}}, \cdots, \gamma_{i_{n}}\right), \gamma=\left(\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}\right)$. We denote $\alpha_{\gamma_{i}}$ (resp. α_{γ}) by α_{i} (resp. α).

Let $x \in L\left(F_{n}\right)$. To simplify, we assume $\|x\|_{2}=1$. For a given $\epsilon>0$, there exists a finite set $K \subset F_{n}$ such that $\left\|x-\sum_{g \in K} x(g) u(g)\right\|_{2}<\epsilon / 3$. Let

$$
M=\max _{g \in K, 1 \leq m \leq n}\left|O_{m}(g)\right| .
$$

Since $\left\{\gamma_{i}\right\} \subset \Gamma$ converges to $\gamma \in \Gamma$, we have an integer r which satisfies that if $i>r$ then $M \cdot n \cdot\left|\gamma_{i}-\gamma\right|<\frac{\epsilon}{3}$. Put

$$
y=\sum_{g \in K} x(g) u(g) .
$$

Then

$$
\begin{aligned}
\left\|\alpha_{i}(y)-\alpha(y)\right\|_{2}^{2} & \leq \sum_{g \in K}|x(g)|^{2}\left|\prod_{m=1}^{n} \gamma_{i_{m}}^{O_{m}(g)}-\prod_{m=1}^{n} \gamma_{m}^{O_{m}(g)}\right|^{2} \\
& \leq\|x\|_{2}^{2}\left|\prod_{m=1}^{n} \gamma_{i_{m}}^{O_{m}(g)}-\prod_{m=1}^{n} \gamma_{m}^{O_{m}(g)}\right|^{2} \\
& \leq M^{2} n^{2}\left|\gamma_{i}-\gamma\right|^{2}<\left(\frac{\epsilon}{3}\right)^{2} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left\|\alpha_{i}(x)-\alpha(x)\right\|_{2} & \leq\left\|\alpha_{i}(x)-\alpha_{i}(y)\right\|+\left\|\alpha_{i}(y)-\alpha(y)\right\|_{2}+\|\alpha(y)-\alpha(x)\|_{2} \\
& =2\left\|x-x_{0}\right\|_{2}+\left\|\alpha_{i}\left(x_{0}\right)-\alpha\left(x_{0}\right)\right\|_{2} \\
& <\epsilon
\end{aligned}
$$

Two α_{1} and $\alpha_{2} \in \operatorname{Aut}\left(L\left(F_{n}\right)\right)$ are said to be conjugate when $\theta^{-1} \alpha_{1} \theta=\alpha_{2}$ for some $\theta \in$ $\operatorname{Aut}\left(L\left(F_{n}\right)\right)$. Put $\gamma_{i}=\left(\gamma_{i 1}, \gamma_{i 2}, \cdots, \gamma_{i n}\right) \in \Gamma$ with $\gamma_{i j} \in \mathbb{T}(i=1,2, j=1,2, \cdots, n)$. Let $\theta \in \operatorname{Aut}\left(L\left(F_{n}\right)\right)$ satisfy $\theta^{-1} \alpha_{\gamma_{1}} \theta=\alpha_{\gamma_{2}}$.

Let

$$
\theta\left(u\left(g_{i}\right)\right)=\sum_{g \in F_{n}} x_{i}(g) u(g),
$$

be the Fourier expansion of $\theta\left(u\left(g_{i}\right)\right)$. Then,

$$
\begin{gathered}
\alpha_{\gamma_{1}} \cdot \theta\left(u\left(g_{i}\right)\right)=\sum_{g \in F_{n}} x_{i}(g) \prod_{m=1}^{n} \gamma_{1 m}^{o_{m}(g)} u(g) \\
=\theta \cdot \alpha_{\gamma_{2}}\left(u\left(g_{i}\right)\right)=\theta\left(\gamma_{2 i} u\left(g_{i}\right)\right)=\sum_{g \in F_{n}} \gamma_{2 i} x_{i}(g) u(g) \quad(i=1,2, \cdots, n) .
\end{gathered}
$$

It follows that

$$
x_{i}(g) \prod_{m=1}^{n} \gamma_{1 m}^{O_{m}(g)}=x_{i}(g) \gamma_{2 i} \quad\left(i=1,2, \cdots, n, g \in F_{n}\right) .
$$

Since $\theta\left(u\left(g_{i}\right)\right)$ is unitary,

$$
\sum_{g \in F_{n}}\left|x_{i}(g)\right|^{2}=1 \quad(i=1,2, \cdots, n)
$$

Hence, for each $i(i=1,2, \cdots, n)$, there exists h_{i} in F_{n} such that $x_{i}\left(h_{i}\right) \neq 0$, so that

$$
\begin{equation*}
\prod_{m=1}^{n} \gamma_{1_{m}}^{O_{m}\left(h_{i}\right)}=\gamma_{2_{i}} \quad(i=1,2, \cdots, n) \tag{*1}
\end{equation*}
$$

From now, we restrict our interest to the case of $n=2$.
Put $\gamma=\left(1, \gamma_{1}\right), \gamma^{\prime}=\left(1, \gamma_{1}^{\prime}\right)$ with $\gamma_{1}, \gamma_{1}^{\prime} \in \mathbb{T}$. Suppose that α_{γ} is conjugate to $\alpha_{\gamma^{\prime}}$ and that γ_{1} is a primitive nth root of 1 .

By assumption, there exist an automorphism θ such that $\theta^{-1} \alpha_{\gamma} \theta=\alpha_{\gamma^{\prime}}$. Clearly, $\alpha_{\gamma}^{n}=i d$ by the definition of α_{γ} (id is the identity automorphism of $L\left(F_{n}\right)$). Therefore,

$$
\alpha_{\gamma^{\prime}}^{n}=\left(\theta^{-1} \alpha_{\gamma} \theta\right)^{n}=\theta^{-1} \alpha_{\gamma}^{n} \theta=i d .
$$

Furthermore, if $\alpha_{\gamma^{\prime}}^{m}=i d$ for some integer m, then $\left(\theta^{-1} \alpha_{\gamma} \theta\right)^{m}=\theta^{-1} \alpha_{\gamma}^{m} \theta=i d$. Hence, $\alpha_{\gamma}^{m}=\theta \mathrm{I} \theta^{-1}=\mathrm{I}$. Hence, the γ_{1} is a primitive nth root of 1 if and only if γ_{1}^{\prime} is a primitive nth root of 1 . the γ_{1} is an irrational if and only if γ_{1}^{\prime} is an irrational.

Let γ_{1} be irrational. From (*1), there exist a integers j, k such that

$$
\gamma_{1}^{j}=\gamma_{1}^{\prime}, \quad \gamma_{1}^{\prime k}=\gamma_{1}
$$

Hence,

$$
\gamma_{1}^{j k}=\gamma_{1}^{\prime k}=\gamma_{1} .
$$

Then $\gamma_{1}^{j k-1}=1$. Hence, we give $j=1$ and $k=1$, or $j=-1$ and $k=-1$.
Conversely, we suppose that γ_{1} and γ_{1}^{\prime} are irrational and $\gamma_{1}=\gamma_{1}^{\prime m}(m=1$ or -1$)$. We define an autmorphism θ by

$$
\theta\left(u\left(g_{1}\right)\right)=u\left(g_{1}\right), \quad \theta\left(u\left(g_{2}\right)\right)=u\left(g_{2}\right)^{m}
$$

This automorphism θ satisfies $\theta^{-1} \alpha_{\gamma} \theta=\alpha_{\gamma^{\prime}}$. Then α_{γ} and α_{γ}^{\prime} are conjugate.
Lemma 2. Put $\gamma=\left(1, \gamma_{1}\right)$, $\gamma^{\prime}=\left(1, \gamma_{1}^{\prime}\right)$ with $\gamma_{1}, \gamma_{1}^{\prime} \in \mathbb{T}$ and γ_{1} is a irrational.Then α_{γ} and $\alpha_{\gamma^{\prime}}$ are conjugate if and only if $\gamma_{1}=\gamma_{1}^{\prime}$ or $\gamma_{1}^{-1}=\gamma_{1}^{\prime}$.

Proof. Trivial from preceding aurgument.
3. Proof of Theorem. For the sake of simplicity, we show the case of $n=2$. Another case is proved by a similar method. Let α be an action of \mathbb{T}^{2} on $\operatorname{Aut}\left(L\left(F_{n}\right)\right)$ defined by (*). Then α is continuous by Lemma 1. Hence the autmorphism group $\alpha_{\mathbb{T}^{2}}$ is compact. Besson in [2:Proposition 1.7] proved that an automorphism θ of a finite von Neumann algebra M has entropy zero if θ is contained in a compact group of automorphisms for the topology of pointwise 2-norm convergence on $\operatorname{Aut}(M)$. Therefore $H\left(\alpha_{\gamma}\right)=0$ for all $\gamma \in \mathbb{T}^{2}$. A family of uncountable non conjugate automorphisms of $L\left(F_{2}\right)$ is given by case of Lemma 2.

Remark. J. Phillips gave an example of outer conjugacy classes of automorphisms of $L\left(F_{n}\right)$. His automorphisms have all entropy zero. However his technique to distinguish the automorphisms is not effect for $L\left(F_{n}\right)(n<+\infty)$. Because they are classfied by $\gamma=\left(1, \gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}, \cdots\right)\left(\gamma_{i} \in \mathbb{T}\right)$ for a group $\left\{1, \gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}, \cdots\right\}$.

References

[1] C. A. Akemann and P. A. Ostrand, Computing norms in group C^{*}-algebras, preprint.
[2] O. Besson, On the entropy in II_{1} von Neumann algebras, Ergod.Th.\&Dynam.Sys. 1(1981), 419-429.
[3] M. Choda, Some relations of II_{1}-factors on free groups, Math. Japonica 22(1977), 383-394.
[4] A. Connes and E. St申rmer, Entropy for automorphisms of II_{1} von Neumann algebras, Acta Math. 134, 289-306.
[5] J. Phillips, Automorphisms of full II_{1} factors, with applications to factors of type III, Duke Math.J. 43(1976), 375-385.

Department of Mathematics Osaka Kyouiku Univercity Asahigaoka, Kashiwara, 582
Japan

