ADJOINT FAMILIES IN TOPOLOGICAL VECTOR SPACES

SADOON I. OTHMAN

Department of Mathematics, College of Science King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

ABSTRACT. Given a linear partial differential operator L of order m with c^m -coefficients and a distribution T on an open set Ω of \mathbb{R}^n , a necessary and sufficient condition is derived for the existence of a function $f \in L^p(\Omega)$, 1 , such that <math>Lf = T in the sense of distribution.

1. Introduction

Suppose B is a reflexive Banach space, E a locally convex space and $T: B \to E$ a linear map (continuous or not). We obtain a necessary and sufficient condition so that given $g \in E$, there exists $f \in B$ such that Tf = g.

This result is applied to the problem of finding a solution of $f \in L^p(\Omega)$, $1 and <math>\Omega$ open in \mathbb{R}^n , for the differential equation Lf = T where L is a partial differential operator of order m with c^m -coefficients and T is a distribution defined on Ω .

2. A Preliminary result in a Hilbert space

Proposition 1. Let T be a bounded linear operator on a Hilbert space H. Then given $g \in H$, there exists an $f \in H$ such that Tf = g if and only if $\sup_{\|u\|=1} \frac{|(g,u)|}{\|T^*u\|}$ is finite.

AMS Subject Classification: Primary 47F05, Secondary 47N20 Keywords and phrases: Locally convex spaces, Distributions.

Proof:

1) Suppose Tf = g. Then for any $u \in H$, $|(g,u)| = |(Tf,u)| = |(f,T^*u)| \le ||f|| ||T^*u||$.

2) Conversely, suppose $|(g, u)| \le c ||T^*u||$ for every $u \in H$.

Consider now the linear functional λ defined on Ran T^* as follows:

For $v = T^*u$, $\lambda(v) = (g, u)$. This definition does not depend on the particular choice of u and $|\lambda(v)| \leq c ||T^*u|| = c ||v||$.

Hence λ is a bounded linear functional on Ran T^* and it can be extended as a continuous linear functional on the whole of H. Let us denote this extension also by λ .

Consequently, there exists an $f \in H$ such that $\lambda(x) = (f, x)$ for every $x \in H$.

In particular, for every $u \in H$, $\lambda(T^*u) = (f, T^*u) = (Tf, u)$. But $T^*u \in \text{Ran } T^*$ and hence $\lambda(T^*u) = (g, u)$.

Thus, (Tf, u) = (g, u) for every $u \in H$ and hence Tf = g.

3. Adjoint family in topological vector spaces.

Definition 1: Let E_1 and E_2 be two topological vector spaces; E'_1 and E'_2 are their topological dual spaces. Let $T: E_1 \to E_2$ and $S: E'_2 \to E'_1$ be two linear operators (continuous or not) defined on some subspaces of E_1 and E'_2 respectively, such that (Tx, y) = (x, Sy) for $x \in \text{Dom } T$ and $y \in \text{Dom } S$. Then $(E_1, E_2; T, S)$ is called an adjoint family.

Theorem 1. Let (B, E; T, S) be an adjoint family where B is a reflexive Banach space and E is a topological vector space whose topological dual E' separates points of E. (Examples: $E = l^p, 0 or E is any locally convex space). Suppose$ $that Dom T is B and Dom S is a <math>\sigma(E', E)$ -dense subspace in E'. Then, given $g \in E$, there exists an $f \in B$ such that Tf = g if and only if $|(g, u)| \leq c ||Su||$ for every $u \in \text{Dom } S$.

When a solution to the equation Tf = g exists, it is unique if and only if Ran S is dense in B'.

Proof:

1) Let Tf = g

Then, for $u \in \text{Dom } S$, $|(g, u)| = |(f, Su)| \le ||f|| ||Su||$.

2) Suppose now that $g \in E$ is given and $|(g,u)| \leq c ||Su||$ for every $u \in \text{Dom } S$.

Let $F = \{v \in B', \text{ where } v = Su \text{ for some } u \in E'\}.$

Then, as in the proof of Proposition 1, we note that the linear functional L(v) = (g, u) defined on F extends as a bounded linear functional L on the whole of B' (using Hahn-Banach theorem, see Schaefer [1]).

Thus $L \in B'' = B$ since B is reflexive. Identify L with an $f \in B$ to write L(x) = (f, x) for every $x \in B'$.

But, if $u \in \text{Dom } S$, L(Su) = (g, u) since $Su \in F$.

Thus, for every $u \in \text{Dom } S$, (g, u) = (f, Su) = (Tf, u). Since $Tf - g \in E$ vanishes on a dense set of E', (Tf - g, y) = 0 for every $y \in E'$ and since E' separates points of E, Tf - g = 0 in E.

Uniqueness: Let us suppose now that Tf = g has a solution $f \in B$ for a given $g \in E$. We'll show that the solution is unique if and only if Ran S is dense in B'.

1) Suppose Ran S is not dense in B'.

Then, by Hahn-Banach theorem, there exists $h \in B$, $h \neq 0$ and h (Ran S) = 0, i.e. (h, Su) = 0 for $u \in \text{Dom } S$. This means that (Th, u) = 0 and then as shown earlier Th = 0.

Hence, T(f+h) = Tf = g which means that the solution is not unique.

2) Conversely, suppose Ran S is dense in B'.

Suppose $Tf_1 = g = Tf_2$.

Then $(T(f_1 - f_2), u) = 0$ for every $u \in \text{Dom } S$. i.e. $(f_1 - f_2, Su) = 0$. Since Ran S is dense in B', this implies that $f_1 - f_2 = 0$ in B.

4. An application

Let Ω be an open set in \mathbb{R}^n , $n \geq 1$. Let $L = \sum_{|k| \leq m} a_k(x) \partial^k$ be a linear partial differential operator of order m, with $a_k(x) \in c^m(\Omega)$.

Let $\mathcal{D}(\Omega)$ be the family of c^{∞} -functions with compact support in Ω and $\mathcal{D}'(\Omega)$ the space of distributions in Ω . $\mathcal{D}(\Omega)$ is a locally convex space (see Treves [2]).

Let $L^*u = \sum_{|k| \le m} (-1)^{|k|} \partial^k (a_k(x)u)$ be the adjoint operator; this satisfies the condition $(LT, \varphi) = (T, L^*\varphi)$ for $T \in \mathcal{D}'(\Omega)$ and $\varphi \in \mathcal{D}(\Omega)$.

For the reflexive Banach space $L^p(\Omega)$, $1 , denote the norm by <math>\|\cdot\|_p$ and let $\frac{1}{p} + \frac{1}{q} = 1$.

Recall that for $f \in L^{p}(\Omega)$, $Lf \in \mathcal{D}'(\Omega)$ and that two distributions T and S are said to be equal if and only if $(T, \varphi) = (S, \varphi)$ for every $\varphi \in \mathcal{D}(\Omega)$.

With these notations, the following theorem is an immediate consequence of Theorem 1.

Theorem 2: Let L be a linear partial differential operator of order m with c^m coefficients defined on an open set Ω in \mathbb{R}^n . Then given $T \in \mathcal{D}'(\Omega)$ there exists an $f \in L^p(\Omega), \ 1 , such that <math>Lf = T$ if and only if $|T(\varphi)| \leq ||L^*\varphi||_q$ for every $\varphi \in \mathcal{D}(\Omega)$. When such a solution exists, it is unique if and only if $L^*(\mathcal{D}(\Omega))$ is dense in $L^q(\Omega)$.

References

[1] H.H. Schaefer: Topological Vector Spaces. Springer-Verlag, Berlin, 1980.

[2] F. Treves: Basic Linear Partial Differential Equations. Academic Press, New York, 1975.

Received February 6, 1995