ADJOINT FAMILIES IN TOPOLOGICAL VECTOR SPACES

SADOON I. OTHMAN
Department of Mathematics, College of Science
King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Abstract

Given a linear partial differential operator L of order m with c^{m}-coefficients and a distribution T on an open set Ω of \boldsymbol{R}^{n}, a necessary and sufficient condition is derived for the existence of a function $f \in L^{p}(\Omega), 1<$ $p<\infty$, such that $L f=T$ in the sense of distribution.

1. Introduction

Suppose B is a reflexive Banach space, E a locally convex space and $T: B \rightarrow E$ a linear map (continuous or not). We obtain a necessary and sufficient condition so that given $g \in E$, there exists $f \in B$ such that $T f=g$.

This result is applied to the problem of finding a solution of $f \in L^{p}(\Omega), \quad 1<$ $p<\infty$ and Ω open in \mathbb{R}^{n}, for the differential equation $L f=T$ where L is a partial differential operator of order m with c^{m}-coefficients and T is a distribution defined on Ω.

2. A Preliminary result in a Hilbert space

Proposition 1. Let T be a bounded linear operator on a Hilbert space H. Then given $g \in H$, there exists an $f \in H$ such that $T f=g$ if and only if $\sup _{\|u\|=1} \frac{|(g, u)|}{\|T \star u\|}$ is finite.

[^0]
Proof:

1) Suppose $T f=g$. Then for any $u \in H, \quad|(g, u)|=|(T f, u)|=\left|\left(f, T^{\star} u\right)\right| \leq$ $\|f\|\left\|T^{\star} u\right\|$.
2) Conversely, suppose $|(g, u)| \leq c\left\|T^{\star} u\right\|$ for every $u \in H$.

Consider now the linear functional λ defined on $\operatorname{Ran} T^{\star}$ as follows:

For $v=T^{\star} u, \quad \lambda(v)=(g, u)$. This definition does not depend on the particular choice of u and $|\lambda(v)| \leq c\left\|T^{\star} u\right\|=c\|v\|$.

Hence λ is a bounded linear functional on Ran T^{*} and it can be extended as a continuous linear functional on the whole of H. Let us denote this extension also by λ.

Consequently, there exists an $f \in H$ such that $\lambda(x)=(f, x)$ for every $x \in H$.
In particular, for every $u \in H, \lambda\left(T^{\star} u\right)=\left(f, T^{\star} u\right)=(T f, u)$. But $T^{\star} u \in \operatorname{Ran} T^{\star}$ and hence $\lambda\left(T^{\star} u\right)=(g, u)$.

Thus, $(T f, u)=(g, u)$ for every $u \in H$ and hence $T f=g$.

3. Adjoint family in topological vector spaces.

Definition 1: Let E_{1} and E_{2} be two topological vector spaces; E_{1}^{\prime} and E_{2}^{\prime} are their topological dual spaces. Let $T: E_{1} \rightarrow E_{2}$ and $S: E_{2}^{\prime} \rightarrow E_{1}^{\prime}$ be two linear operators (continuous or not) defined on some subspaces of E_{1} and E_{2}^{\prime} respectively, such that $(T x, y)=(x, S y)$ for $x \in \operatorname{Dom} T$ and $y \in \operatorname{Dom} S$. Then $\left(E_{1}, E_{2} ; T, S\right)$ is called an adjoint family.

Theorem 1. Let ($B, E ; T, S$) be an adjoint family where B is a reflexive Banach space and E is a topological vector space whose topological dual E^{\prime} separates points of E. (Examples: $E=l^{p}, 0<p<\infty$ or E is any locally convex space). Suppose that $\operatorname{Dom} T$ is B and $\operatorname{Dom} S$ is a $\sigma\left(E^{\prime}, E\right)$-dense subspace in E^{\prime}.

Then, given $g \in E$, there exists an $f \in B$ such that $T f=g$ if and only if $|(g, u)| \leq c\|S u\|$ for every $u \in \operatorname{Dom} S$.

When a solution to the equation $T f=g$ exists, it is unique if and only if Ran S is dense in B^{\prime}.

Proof:

1) Let $T f=g$

Then, for $u \in \operatorname{Dom} S,|(g, u)|=|(f, S u)| \leq\|f\|\|S u\|$.
2) Suppose now that $g \in E$ is given and $|(g, u)| \leq c\|S u\|$ for every $u \in \operatorname{Dom} S$.

Let $F=\left\{v \in B^{\prime}\right.$, where $v=S u$ for some $\left.u \in E^{\prime}\right\}$.
Then, as in the proof of Proposition 1, we note that the linear functional $L(v)=$ (g, u) defined on F extends as a bounded linear functional L on the whole of B^{\prime} (using Hahn-Banach theorem, see Schaefer [1]).

Thus $L \in B^{\prime \prime}=B$ since B is reflexive. Identify L with an $f \in B$ to write $L(x)=(f, x)$ for every $x \in B^{\prime}$.

But, if $u \in \operatorname{Dom} S, L(S u)=(g, u)$ since $S u \in F$.
Thus, for every $u \in \operatorname{Dom} S,(g, u)=(f, S u)=(T f, u)$. Since $T f-g \in E$ vanishes on a dense set of $E^{\prime},(T f-g, y)=0$ for every $y \in E^{\prime}$ and since E^{\prime} separates points of $E, T f-g=0$ in E.

Uniqueness: Let us suppose now that $T f=g$ has a solution $f \in B$ for a given $g \in E$. We'll show that the solution is unique if and only if $\operatorname{Ran} S$ is dense in B^{\prime}.

1) Suppose Ran S is not dense in B^{\prime}.

Then, by Hahn-Banach theorem, there exists $h \in B, \quad h \neq 0$ and $h(\operatorname{Ran} S)=$ 0 , i.e. $(h, S u)=0$ for $u \in \operatorname{Dom} S$. This means that $(T h, u)=0$ and then as shown earlier $T h=0$.

Hence, $T(f+h)=T f=g$ which means that the solution is not unique.
2) Conversely, suppose $\operatorname{Ran} S$ is dense in B^{\prime}.

Suppose $T f_{1}=g=T f_{2}$.
Then $\left(T\left(f_{1}-f_{2}\right), u\right)=0$ for every $u \in \operatorname{Dom} S$. i.e. $\left(f_{1}-f_{2}, S u\right)=0$. Since Ran S is dense in B^{\prime}, this implies that $f_{1}-f_{2}=0$ in B.

4. An application

Let Ω be an open set in $\boldsymbol{R}^{n}, n \geq 1$. Let $L=\sum_{|k| \leq m} a_{k}(x) \partial^{k}$ be a linear partial differential operator of order m, with $a_{k}(x) \in c^{m}(\Omega)$.

Let $\mathcal{D}(\Omega)$ be the family of c^{∞}-functions with compact support in Ω and $\mathcal{D}^{\prime}(\Omega)$ the space of distributions in $\Omega . \mathcal{D}(\Omega)$ is a locally convex space (see Treves [2]).

Let $L^{\star} u=\sum_{|k| \leq m}(-1)^{|k|} \partial^{k}\left(a_{k}(x) u\right)$ be the adjoint operator; this satisfies the condition $(L T, \varphi)=\left(T, L^{\star} \varphi\right)$ for $T \in \mathcal{D}^{\prime}(\Omega)$ and $\varphi \in \mathcal{D}(\Omega)$.

For the reflexive Banach space $L^{p}(\Omega), \quad 1<p<\infty$, denote the norm by $\|\cdot\|_{p}$ and let $\frac{1}{p}+\frac{1}{q}=1$.

Recall that for $f \in L^{p}(\Omega), L f \in \mathcal{D}^{\prime}(\Omega)$ and that two distributions T and S are said to be equal if and only if $(T, \varphi)=(S, \varphi)$ for every $\varphi \in \mathcal{D}(\Omega)$.

With these notations, the following theorem is an immediate consequence of Theorem 1.

Theorem 2: Let L be a linear partial differential operator of order m with c^{m} coefficients defined on an open set Ω in \mathbb{R}^{n}. Then given $T \in \mathcal{D}^{\prime}(\Omega)$ there exists an $f \in L^{p}(\Omega), 1<p<\infty$, such that $L f=T$ if and only if $|T(\varphi)| \leq\left\|L^{\star} \varphi\right\|_{q}$ for every $\varphi \in \mathcal{D}(\Omega)$.

When such a solution exists, it is unique if and only if $L^{\star}(\mathcal{D}(\Omega))$ is dense in $L^{q}(\Omega)$.

References

[1] H.H. Schaefer: Topological Vector Spaces. Springer-Verlag, Berlin, 1980.
[2] F. Treves: Basic Linear Partial Differential Equations. Academic Press, New York, 1975.

Received February 6, 1995

[^0]: AMS Subject Classification: Primary 47F05, Secondary 47N20
 Keywords and phrases: Locally convex spaces, Distributions.

