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0. Introduction.

Let M be an m-dimensional manifold with a linear connection I. A non
zero tensor field K of type (r,s) on M is said to be recurrent if there exists a
1-form a such that VK = K ® o, where V is covariant derivative with respect
to I'. We know the recurrent condition has a close relation to holonomy group
in the sense of the following theorem (cf. [5] and [10]).

Theorem W. aeWe denote L(M) be a bundle of frames of M and TT(R™)
be a tensor bundle of type (r,s8) over R™. Let f : L(M) — TT(R™) be the
mapping which corresponds to a given tensor field K of type (r,s). Then K is
recurrent if and only if, for the holonomy bundle P(ug) through any uo € L(M),
there erists a differentiable function ¥ (u) with no zero on P(up) such that

f(u) =v(u)f(uo) for u € P(up).

As a special case, K is parallel if and only if f(u) is constant on P(up).

We consider a real hypersurface M of real dimension m = 2n — 1 in a
complex projective space P,(C), n 2 2 with Fubini-Study metric of constant
holomorphic sectional curvature 4. Then M has an almost contact metric
structure (¢,§,n, g) induced from the Kahler structure of P,(C). Many dif-
ferential geometers have studied M by using the almost contact structure, for
example [1], [2], [3], [4], [6] and [8]. It is well-known that there does not exist a
real hypersurface M of P,(C) satisfying the condition that second fundamen-
tal tensor A of M is parallel. We have the following result under the weaker
condition that the second fundamental tensor A is recurrent (cf. [7] and [9]).

Theorem 1. There are no real hypersurfaces with recurrent second fundamen-
tal tensor of P,(C) on which £ is a principal curvature vector.

On the other hand Kimura and Maeda ([4]) introduced the notion of an
n-parallel second fundamental tensor, which is defined by ¢g((VxA)Y,Z) =0
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for any tangent vector field X, Y and Z orthogonal to £. In this paper we
consider the notion that the second fundamental tensor is 7-recurrenti.e. there
exists a 1-form a such that the second fundamental tensor A of M satisfies
9((VxA)Y, Z) = a(X)g(AY, Z) for any X, Y and Z which are orthogonal to
&. We get the following:

Theorem 2. Let M be a real hypersurface of P,(C). Then the second fun-
damental tensor of M is n-recurrent and £ is a principal curvature vector if
and only if M is locally congruent to a tube of some radius r over one of the
following Kahler submanifolds:
(A;) hyperplane P,_,(C), where 0 < r < w/2,
(Az) totally geodesic P,(C) (1 S kS n—2), where0 < r < n/2,
(B) complex quadric Q,_1, where 0 < r < w /4.

The author would like to express his sincere gratitude to Professors Y. Mat-
suyama and K. Ogiue for their valuable suggestions and continuous encourage-
ment during the preparation of this paper.

1. Preliminaries.
Let M be a real hypersurface of P,(C). In a neighborhood of each point, we
choose a unit normal vector field N in P,(C). The Riemannian connections V

in P,(C) and V in M are related the following formulas for arbitrary vector
fields X and Y on M.

(1.1) VxY = VxY + g(AX,Y)N,

(1.2) VxN = -AX,

where g denotes the Riemannian metric of M induced from the Fubini-Study
metric G of P,(C) and A is the second fundamental tensor of M in P,(C). We
denote by T'M tangent vector bundle of M. An eigenvector X of the second
fundamental tensor A is called a principal curvature vector. Also an eigenvalue
A of A is called a principal curvature. In what follows, we denote by V) the
eigenspace of A associated with eigenvalue A\. We know that M has an almost
contact metric structure induced from the Kahler structure J on P,(C), that
is, we define a (1, 1)-tensor field ¢, a vector field £ and a 1-form n on M by
9(¢X,Y) =G(JX,Y) and g(§,X) = n(X) = G(JX,N). Then we have

(1.3) $2X = X +9(X)E, n(€)=1, ¢£=0.

It follows from (1.1) that

(1.4) Vx§ = ¢AX,
(1.5) (Vx8)Y =n(Y)AX — g(AX,Y)E.
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Let R and R be the curvature tensors of P, (C) and M, respectively. From the

expression of the curvature tensor R of P,(C), we have the following Gauss
and Codazzi equations:

(1.6)  R(X,Y)Z =g(Y,2)X — g(X, Z)Y
+ 9(8Y, Z)$X — g(¢X, Z)$Y — 29(¢X,Y)$Z
+ g(AY, Z)AX — g(AX, Z)AY,

17 (VxA)Y — (VyA)X =n(X)¢Y — n(Y)$X —29(¢X,Y)E.

Now we prepare without proof the following in order to prove our results.

Lemma 1.1. ([6]) If £ is a principal curvature vector, then the corresponding
principal curvature a is locally constant.

Lemma 1.2. ([6]) Assume that € is a principal curvature vector and the cor-
responding principal curvature is a. If AX = AX for X L £, then we have
AdX = ((aX +2)/(2) — a))$X.

Lemma 1.3. ([4]) We assume that £ is a principal curvature vector. If AX =
AX for X L &, then we have £\ = 0, that is, A is locally constant along the
direction §. .

Lemma 1.4. ([4]) Let M be a real hypersurface of P,(C). Then the following
are equivalent:

(i) The holomorphic distribution T°M (= {X € T,M : X L £} forz € M)
is integrable.
(ii) g((pA+ AP)X,Y) =0 for any X,Y € T°M.

Theorem T. ([8])Let M be a homogeneous real hypersurface of P,(C). Then
M is a tube of some radius r over one of the following Kdhler submanifolds:
(A1) hyperplane P,_1(C), where 0 < r < w/2,
(A2) totally geodesic P,(C) (1 £ kS n—2), where0 < r < w/2,
(B) complezx quadric Q,—1, where 0 <r < w/4,
(C) Pi(C) x Pn_1)/2(C), where 0 < r < w/4, and n(2 5) is odd,
(D) complex Grassmann G25(C), where 0 <r < w/4 andn =9,
(E) Hermitian symmetric space SO(10)/U(5), where 0 < r < =« /4 and
n = 15.

Theorem C-R. ([1]) Let M be a real hypersurface of P,(C). Then M has at
most two distinct principal curvatures and £ is a principal curvature vector if
and only if M 1is locally congruent to a homogeneous real hypersurface of type

(A1). |

Remark. They showed this theorem without the condition that £ is a principal
curvature vector in case of dimension n 2 3.
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Theorem K1. ([3]) Let M be a real hypersurface of P,(C). Then M has
constant principal curvatures and £ is a principal curvature vector if and only
if M is locally congruent to a homogeneous real hypersurface.

2. The recurrent real hypersurfaces of P,(C).
We prepare the lemma to prove Theorem 1.

Lemma 2.1. Let M be a real hypersurface of P,(C) with recurrent second
fundamental tensor A. If all principal curvatures of M are constant then the
second fundamental tensor of M is parallel.

Proof. We choose a unit principal curvature vector Y with a principal curva-
ture A\. Then we have

9((VxA)Y,Y) = g(Vx(AY),Y) — g(AVxY,Y)
=X\

for any X € TM. On the other hand, from the assumption we obtain

9((VxA)Y,Y) = a(X)g(AYY)
= a(X)A.
Since all principal curvatures of M are constant we get a(X)A = 0 for any
X € TM. So the second fundamental tensor A of M is parallel. O

Proof of Theorem 1. We may assume that A{ = af, then by Lemma 1.1. the
principal curvature a of £ is locally constant. From (1.4) we calculate the
following:

(VxA) = Vx(A§) — AVx¢
=aVx€— AVx¢
=apAX — APpAX
for arbitrary tangent vector field X on M. On the other hand, by the assump-

tion that the second fundamental tensor A of M is recurrent, there exists a
1-form a and we have

(VxA) = a(X)A¢
= a(X)af
for any X € TM. Consequently we get
apAX — APpAX — a(X)a& =0.

We choose X as a principal curvature vector of M such that AX = AX and
X is orthogonal to £, by Lemma 1.2. we have the following:

al + 2
2\ —a

(aX — A )¢X + a(X)at = 0.
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Using (1.3), ¢X is orthogonal to £ , so

a/\+2_

A=A =
@ 2\ —a

0.

Since a is constant, we know that M has at most three distinct constant
principal curvatures. By Lemma 2.1. the second fundamental tensor A of M is
parallel but it is well-known that there does not exists such a real hypersurface
in P,(C). O
3. The n-recurrent real hypersurfaces of P,(C). '

In [4], Kimura and Maeda introduced the notion of an #-parallel, which

is defined by g((VxA)Y,Z) = 0 for any tangent vector field X, Y and Z
orthogonal to &.

Theorem K-M1. Let M be a real hypersurface of P,(C). Then the second
fundamental tensor of M is n-parallel and £ is a principal curvature vector if
and only if M is locally congruent to a tube of some radius r over one of the
following Kdhler submanifolds:
(A1) hyperplane P,_1(C), where 0 < r < /2,
(Az) totally geodesic P,(C) (1S k<n—2), where0 < r < 7/2,
(B) complex quadric Qn_1, where 0 < r < 7 /4.

Let M be a real hypersurface of P,(C) with p-recurrent second funda-
mental tensor, that is, there exists an 1-form a such that g((VxA)Y,2) =
«(X)g(AY, Z) for any tangent vector fields X,Y and Z which are orthogonal
to £. In what follows if M has n-recurrent second fundamental tensor then we
call it M is 7-recurrent. It is easily seen that if the second fundamental tensor
A of M is n-parallel then M is n-recurrent. By Theorem K-M1 we know that
the homogeneous real hypersurfaces of type (A4;), (42) and (B) is n-recurrent.
We show that if £ is principal curvature vector then (4,), (42) and (B) are the
only n-recurrent real hypersurfaces of P,(C). Now we define the holomorphic
distribution T°M by TOM = {X € T. M : X L ¢}.

Proof of Theorem 2. Let Y be a unit principal curvature vector orthogonal to
¢ with principal curvature p, we calculate the following:

9((VxA)Y,Y) = g(Vx(AY) — AVxY,Y)
= Xpu.

By hypothesis that the second fundamental tensor A is 7-recurrent we have

9(VxA)Y,Y) = a(X)g(AY,Y)
= a(X)u

Therefore we obtain

(3.1) Xp=a(X)u
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for arbitrary X € T°M. On the other hand using (1.3) and Codazzi equation
(1.7) we note that

(3.2) d((VxA)Y — (VyA)X,Z) =0

for arbitrary tangent vector fields X,Y and Z € T°M. By hypothesis there is
a 1-form « such that

g((VxA)Y — (VyA)X, Z) = a(X)g(AY, Z) — a(Y)g(AX, Z)

for any X,Y and Z € T°M. Therefore by (3.2) there is a function b on M, we
have

a(X)AY — a(Y)AX = b¢.
If we choose X € V) and Y € V,,, XA # pu, such that X,Y 1 £ then we have
(3.3) a(X)uY — a(Y)AX =0.

If we can’t choose these principal curvature vectors X,Y, i.e. in the case
T°M = V), then by Theorem C-R we know that M is a homogeneous real
hypersurface of type (A;). Consequently we may assume A # u then we have

(3.4) a(X)p=0 and a(Y)A=0
for any X € V) and Y € V,,. Using (3.1) we obtain
(3.5) Xp=0

for any X € T°M orthogonal to Y € V,,.
If all principal curvatures of M are nonzero, then by (3.4) we conclude that

(3.6) Yu=0

for any Y € V..

We remark that we are not able to choose two distinct principal curvatures
A#0and g #0,ie. T°M = Vi—0 ® V,20. By Lemma 1.1 and Lemma 1.2.
we conclude that pu is constant.

Now we decompose holomorphic distribution that T°M = Vy—o ® V20 ©
-+ @V, 20. Then we have a choice of two distinct principal curvatures u; # 0

and p; # 0, (3 # 7). By (3.4) we obtain
a(Y;)=0

for any principal curvature vector Y; € T° M such that it has nonzero principal
curvature p;, (1 £ 1 < k). Using (3.1) we have

(3.6)" Yip; = 0.
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Therefore by Lemma 1.3., (3.5), (3.6) and (3.6), we know that all principal
curvatures of 7° M is constant. Together with Lemma 1.1. we conclude that all
principal curvatures are constant. So by Theorem K1 M is locally congruent
to homogeneous real hypersurface in P,(C). So the rest of proof is to show the
second fundamental tensor A of M, which is congruent to a homogeneous real
hypersurface of type (C),(D) and (F), is not n-recurrent. Suppose that the
second fundamental tensor of M is n-recurrent. Here we review the following:
Our real hypersurface M has five distinct constant principal curvatures (say
A1,A2,23,As and a), so that TM = V), & V), ® V), ® V5, ® {{}r. Let
z = cot (0 < 6 < w/4). Then we may write ([8])

1 14z z—1 1
AL =z, /\2=—;, z\3=1_w, 4= and a=gz-——

Since all principal curvatures are nonzero, using (3.4) we obtain
a(X)=0

for any X € T9°M. Therefore the second fundamental tensor of M is n-parallel.
By Theorem K-M1, the homogeneous real hypersurfaces of type (C), (D) and
(F) are not n-recurrent. [J

We know the example of non-homogeneous real hypersurface in P,(C).
Kimura and Maeda constructed a ruled real hypersurface of P,(C). Let v(t)
(t € I) be an arbitrary regular curve in P,(C). Then for every t(€ I) there
exists a totally geodesic submanifold P,_,(C) (in P,(C)) which is orthogonal
to the plane 7; spanned by {v/(t), J4'(t)}. Here we denote by P(t_)l(C) such a

totally geodesic submanifold P,_;(C). Let M = {z € P{!),(C): t € I}. Then
the construction of M asserts that M is a ruled real hypersurface in P,(C).
The distribution T°M is integrable and its integral manifold is a totally geo-
desic submanifold P,_1(C).

Let H(X) be the sectional curvature of the holomorphic 2-plane spanned
by a unit tangent vector X which is orthogonal to £ , that is, H(X) = the
sectional curvature of span{X, $X}. They showed the followings:

Theorem K2. ([2]) Let M be a real hypersurface of P,(C) on which H is
constant and T°M is integrable then M is locally congruent to a ruled real
hypersurface (H = 4).

Remark. They completely classified the real hypersurface of P,(C) on which
H is constant.

Theorem K-M2. ([4]) Let M be a real hypersurface of P,(C). Then the
second fundamental tensor of M is n-parallel and T°M is integrable if and
only if M is locally congruent to a ruled real hypersurface of P,(C).

First we remark that ruled real hypersurfaces of P,(C) don’t admit the
recurrent second fundamental tensor.
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Proposition 3. There are no ruled real hypersurfaces of P,(C) which has the
recurrent second fundamental tensor.

Proof of Proposition 3. We know that we may write the second fundamental
tensor A of a ruled real hypersurface M in P,(C):

Al =pE+vU (v #0),
AU = v€,
AX =0 (for any X 1 &,U),
where U is a unit vector orthogonal to &, pu and v are differential functions

on M ([2] and [4]). By means of the assumption that the second fundamental
tensor A of M is recurrent, we have

9((V¢A)X,Y) = a(§)g(AX,Y)
=0.

for any nonzero tangent vector X,Y (L &,U). By Codazzi equation (1.7) we
get the following:

9((VeA)X,Y) = g((Vx A) + ¢X,Y)
= g(Vx(u& +vU) + AVxé + ¢X,Y)
= g((Xp)€ + pdAX + (Xv)U + vVxU + ABAX + $X,Y)
=vg(VxU,Y) + g(¢X,Y)
Consequently we have
vg(VxU,Y) +g(¢X,Y) =0.
On the other hand, we get
9((VxA),Y) = a(X)g(AL,Y)
=0
and
9((VxA),Y) = g(Vx(u€ +vU) — AAX,Y)
= g((Xp) + uVx€ + (Xv)U +vVxU,Y)
= pg(¢AX,Y) + vg(VxU,Y)
=vg(VxU,Y)
for arbitrary X,Y (L &, U) € TM.
So we conclude that vg(VxU,Y) = 0 and
9(¢X,Y)=0

for any X,Y(L &,U) € TM. If we put Y = ¢X, we have g(X,X) =0. It is
contradiction, so any ruled real hypersurface does not admit a recurrent second
fundamental tensor. ([

Using the idea of the proof of Theorem K-M2 we show the following theorem.

— 160 —



Theorem 4. Let M be a real hypersurface of P,(C). Then M is n-recurrent
and the holomorphic distribution T°M (= {X € T,(M) : X L ¢} forz € M)
is integrable if and only if M 1is locally congruent to a ruled real hypersurface
of Pp(C).

Proof of Theorem 4. We assume that T°M is integrable and M is n-recurrent.
We show that such a real hypersurface of P,(C) has a constant sectional cur-
vature of holomorphic 2-plane, i.e. H(X) = constant for arbitrary X € T°M.
- It follows from Lemma 1.4. that

(3.7) 9(AY,9Z) = g(dY, AZ)
for any Y,Z € T°M. We get

X (9(AY, $2)) = X(9(¢Y, AZ))
for arbitrary X,Y and Z € T°M and we have

9((VxA)Y + AVxY,$Z) + g(AY,(Vx$)Z + ¢VxZ)
(3.8) = g((Vxd)Y + ¢VxY,AZ) + g(¢Y,(Vx A)Z + AVx Z).

Now by the assumption we obtain
9((VxA)Y,$Z) = a(X)g(AY, $2)

and

9(¢Y,(Vx A)Z) = a(X)g(8Y, AZ).

Using Lemma 1.4. we have
(3.9) 9((VxA)Y, ¢Z) = g(¢Y,(Vx A)Z).
It follows from (1.5), (3.8) and (3.9) that

9(AV XY, $Z) — g(AX, Z)n(AY) + g(¢V x Z, AY)

(3.10)

= —g(AX,Y)(AZ) + g(¢VxY,AZ) + g(AVx Z,4Y)
We put
(3.11) VxY =(VxY)o +n(VxY)E,

where (*)o denotes the T° M-component of (*). Then, from (3.7) we have
(3.12) g(A(VxY)o,9Z) = g(¢(VxY)o, AZ)

for any X,Y and Z € T°M.
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Substituting (3.11) into (3.10), by (3.12) we have
N(VxY)g(AE, 62) — 9g(AX, Z)n(AY) + n(Vx Z)g(#¢, AZ)
= —9(AX,Y)n(AZ) +n(VxY)g($, AZ) + n(Vx Z)g(AL, 4Y).
Thus using (1.3) and (1.4) we obtain
9(Y, $AX)g(AE, 62) + g(AX, Z)n(AY)
= g(AX,Y)n(AZ) + 9(Z,$AX)g(A&, ¢Y)

for any X,Y and Z € T°M. We put

(3.13) AE = pt + U,

where £ and U are orthonormal.
Because of the hypothesis and Lemma 1.4., we may assume that v # 0. By
(1.3) we get

9(Y,¢AX)g(U, ¢Z) + 9(AX, Z)g(U,Y)

(3.14) = 9(AX,Y)g(U, Z) + 9(Z, pAX)g(U, ¢Y)
By putting Y = ¢U and Z = U, we see
9(A¢9U,X) =0

for any X € T°M. On the other hand, it follows from (3.13) that
| 9(AQU, €) = g(¢U, u€ + vU) = 0.
Therefore we get
(3.15) AgU = 0.
We put Z = U in (3.14), from (3.15) we have
9(AX,U)g(U,Y) = g(AX,Y)
for arbitrary X,Y € T°M. By this equation and (3.13) we obtain
(3.16) AX =0

for any X(L U) € T°M.

Now putting Y = U and Z = ¢U in (3.7), from (3.15) we get g(AU,U) = 0.
By (3.16) we have g(AU, X) = 0 for any X(L U) € T°M. So it follows from
(3.13) that

(3.17) AU = v¢.
Thus from (1.6), (3.16) and (3.17) we obtain
I(R(X,$X)$pX,X) =4

for arbitrary X € T°M.
Due to Theorem K2 we conclude that M is a ruled real hypersurface of
P,(C). O
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