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All solutions of the Diophantine equation
20 X" + 2°Ys = 2°Z* where r, s and t are 2 or 4

Yasutaka Suzuki

1. Introduction

We shall determine all solutions of the equation 22 X" +2°Y* = 2¢Z* in nonzero
integers X, Y, Z, where a, b, c are non-negative integers, and 7, s, ¢ are 2 or 4, and
X,Y, Z are pairwise relatively prime. To discuss the solutions of this equation,
we may assume that X, Y, Z are all positive odd integers. We shall show that the
following results.

| The equations
& + Y2 = 2272 ,
X2 4+ 2my2 = 72 |
X? + Y2 = 22¢ |
X2 + 2my? = 74 |
X2 + Yt = 222 |
X4 + 2my2 VA
and
X2 + 2my4 = 22
have independently infinite solutions.
The equation
20X% 4+ 20y% = 2¢74
has only one trivial solution.
The equation
X% + Y = 222

has only one trivial solution. ( A.M.Legendre)
The equation
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X4 4+ 2my? = Zz4

has no solutions in nonzero integers.
The equations

X2 + Yt = 22¢ |

Xt + 2my¢ = Z2
and

X2 4+ 2my4 = Z4

have infinite solutions. In the latter half, we shall give one-to-one correspondences
between solutions of these three equations, and in section 7, determine all solutions
of these equations.

2. Pythagorian Triples

We remind first the following three theorems which are all well-known (see

[1],(2],(3],[4] or [5])).
Theorem 1. Let X,Y, Z be a solution of the equation
X2+v2=2°

with positive integers X,Y, Z such that (X,Y) =1 and X odd. Then there exist
unique integers u and v of opposite parity with (u,v) =1 and u > v > 0 such that

X = u?2-1%2 ,
Y = 2uv ,
Z = u?+90?

Theorem 2. The equation
X4+ =22

has no solutions in nonzero integers X,Y, Z.

Theorem 3. The equation
Xt+y2=24

has no solutions in nonzero integers X,Y, Z.
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3. On the Diophantine Equation 20.X?% + 2bY2 = 2¢72
Lemma 4. Let m ba a non-negative integer. If a set of three odd integers
X,Y, Z satisfies the equation
X?+y2=2m272%,
then m = 1.
Proof. Since the square of an odd integer is congruent to 1 modulo 4, we have
2mZ%2 = X24Y2=1+1=2(mod4).

This implies m = 1 and completes the proof.

Lemma 5. Let m be a non-negative integer. If a set of three odd integers
X,Y, Z satisfies the equation
X2 +2my? =22,
then m = 3.

Proof. Since the square of an odd integer is congruent to 1 modulo 8, we have
2mY2=22_-X2=1-1=0 (mod8).

This implies m = 3 and completes the proof.

Theorem 6. (see L.J. Mordell [4] p.13) Let X, Y, Z be a solution of the equation
X?+Y2=222

with positive odd integers X,Y,Z such that (X,Y) = 1. Then there ecist non-

negative integers ¢ and d of opposite parity with (c,d) = 1 and ¢ > d =20 such
that

u=c?®—-d?, v=2cd

and
X = u+t+v
Y = |Ju—v| ,
Z = c*+d? |

or the corresponding formulas hold with X and Y interchanged.
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X+Y\® [/X-Y
) +(%3

2
Proof. From X2 + Y2 = 222, we have ( ) = Z?2 where
X+Y , XY , Z are integers with pairwise relatively prime. We suppose that

2
X > Y. Then, by Theorem 1, there exist positive integers ¢ and d of opposite
parity with (¢,d) =1 and ¢ > d > 0 such that

X+Y=c2—d2,X"Y=2cd,z=c2+d2

2 2

o X+Y X—-Y
;“ =2d, So— = -, Z ="+

Then we have X =2~ d2+4+2cd and Y = |c? — d? — 2¢d|. If X < Y, then we have
Y =c?—d?+2cdand X = |c?—d?—2cd|]. When X =Y, wehave X =Y =Z =1,
and we set ¢ = 1 and d = 0. Hence the proof is complete.

Theorem 7. Let m be a non-negative integer. Let X,Y,Z be a solution of
the equation
X2+2my2 =22
with positive odd integers X,Y,Z such that (X,Y) = 1. Then m 23, and there
exist positive odd integers a and b with (a,b) = 1 such that

X = |a2 — 2m—2b2|
Y = ab
Z = a?+2m2)?

Proof. By Lemma 5, we have m 2 3. Since 2™Y?2 = 22— X2 = (Z+ X)(Z - X)
and (Z + X, Z — X)) = 2, there exist positive odd integers a amd b with (a,b) = 1
such that Y = ab and

Z+X=2d%,Z—-X=2m"1)2

or

Z+X =212 7 _ X =242,

Then we have Z = a?+2™72b2? and X = |a? — 2™ 2b2|. Conversely, X2 +2™Y?2 =
(a2 — 2"“21)2)2 +2m(ab)? = (a2 + 2”"‘2b2)2 = Z2. Hence the proof is complete.
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Theorem 8. Let X,Y,Z be a solution of the equation
X?+v?=22*
with positive odd integers X,Y, Z such that (X,Y) = 1. Then there exist non-

negative integers ¢ and d of opposite parity with (c,d) = 1 and ¢ > d =0 such
that

u=ct—-d?® , v=2cd |,
s=u?—-0v2 | t=2uww
and
X = |s+t
Y = |5_t| )
Z = c*+d?

or the corresponding formulas hold with X and Y interchanged.

2 2
Proof. From X2 + Y2 = 2274, we have (X + Y) + (X Y) = Z4 where

2 2
X X —
+ Y, 5 Y, Z are integers with pairwise relatively prime. If X # Y, then, by

Theorem 1, there exist positive integers U and V of opposite parity with (U, V) = 1
and U > V > 0 such that

X;Y=Uz-v2, |X'2’Y|=2UV, 72 =U%+V?
. X+Y X-vY
5 =2V, |=5—|=U%-V? Z2=U?+ V2.

Applying Theorem 1 again, there exist positive integers ¢ and d of opposite parity
with (¢,d) =1and ¢>d>0suchthat Z=c?2+d? and U =2 — d2, V = 2cd or
U=2cd, V=c?-d? Weset u =c?—d?, v=2cd, s=u2—v2andt=2uv. Then
we have X2 + Y2 = 224 = 2(c% + d2)4 = 2(u? + vz)? =2(s2+1t2) = (s+t)2+

(s—1)?, and X?Y2 = ((X ;_ Y)2 - (X ; Y)2>2 = ((u2 —0?)? - (21“))2)2 _

(.sz—tz)2 = (s+t)?  (s—t)®. Thus X2 = (s+1)? Y2 = (s—t)% or X2 =
(s—t)% Y2 = (s+1t)% So we obtain that X = ls+t, Y =]s—tfjor X =
|s—t, Y =|s+¢t. If X =Y, then we set c = 1 and d = 0. Conversely,
(s+t)2+(s—t)° =2 (s2+12) = 2(u? + v2)2 = 2(c? + d2)4. Hence the proof is
complete.
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Theorem 9. Let m be a non-negative integer. Let X,Y,Z be a solution of
the equation
X2 + zmyz — Z4

with positive odd integers X,Y, Z such that (X,Y) = 1. Then m 25, and there
erist positive odd integers a and b with (a,b) = 1 such that

A=la®-2""42|, B=ab

and

X = |A2-2m2B? |
Y = AB :
Z = a®+2m 42

Proof. By Lemma. 5, we have m = 3. Since 2™Y?2 = Z4 - X2 = (224 X)(22%-
X) and (Z%2+ X,2% — X) = 2, there exist positive odd integers A and B with
(A, B) =1 such that Y = AB and

Z24+ X =2A% 72— X =2™1B%

or
Z24+ X =2m"1B% 72_ X =2A%.

Thus, we have Z2 = A2 4 2m~2B2 and X = |A% — 2™~2B2|. Hence, by Theorem
7, we obtain that m —2 = 3, so m = 5 and there exist positive odd integers a and b
with (a,b) = 1 such that A = |a%2 — 2™~ 42|, B = ab and Z = a? 4 2™~ 4b2. Hence
the proof is complete.

Theorem 10. Let X,Y,Z be a solution of the equation
X2+Y4=222

with positive odd integers X,Y, Z such that (X,Y) = 1. Then there exist integer b
and positive odd integer a with (a,b) = 1 such that

u = (a+b>%+b , v = 2ab,
s = u? — v? , t = 2uv
and
X = |s+t
Y = |a%2-2b% |,
Z = u?2+4?

Proof. Let X,Y, Z be a solution of the equation X2 + Y4 = 272 with positive
odd integers X, Y, Z such that (X,Y)=1. When X =Y, wehave X =Y =2 =1,
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and we set a =1 and b = 0. Thus we suppose that X # Y. Since X2+ Y* =222
and X,Y, Z are odd integers with pairwise relatively prime, we have

X +Y? 2+ X-Y\*_ .
2 2 B

X+Y?2 X-vY2 | , , X+Y? X-Y2
where 7 5 are integers of opposite parity, and 7 5

y
are pairwise relatively prime.

In the case of (I) X = 1 (mod 4) and X > Y2, by Theorem 1, there exist
positive integers u and v of opposite parity with (v,v) =1 and u > v > 0 such

2 _v2
that X+TY =u? —?, —X—2Y— = 2uv and Z = u? + v2. Hence we obtain that

X=u?2-124+2uw,Y?=u?2-1v2—-2uwandu—v>0.
In the case of (I) X = 1 (mod 4) and X < Y2, by Theorem 1, there exist
positive integer u and negative integer v of opposite parity with (u,v) = 1 and
X + Y2 2 2 Yz - X 2 2
u > —v > 0 such that —— = u* — v*, ——— = —2uv and Z = u? 4 v2.
Hence we obtain that X =u2 —v? +2uv , Y2 =42 —v2 —2uvandu—v > 0.

In the case of (I) X = —1 (mod 4) and X > Y2, by Theorem 1, there exist
positive integer u and negative integer v of opposite parity with (u,v) = 1 and
X - Y2 2 2 X + Y2 2 2
—v>u>Osuchthat——-—2——— = v° — u”°, ————2————2—2uvandZ=u + v*.
Hence we obtain that X = —(u? —v?2 4+ 2wv) , Y2 =u? —v? ~2uvand u—v > 0.
In the case of (V) X = —1 (mod 4) and X < Y?, by Theorem 1, there exist
positive integer v and negative integer v of opposite parity with (u,v) = 1 and
Y2-X 2 o2 X+Y? 2, o

u > —v > 0 such that ——— = 4* — 0%, — = —2uwv and Z = u® + v4.

Hence we obtain that X = —(u2 — v?2 +2uwv) , Y? =42 — v2 — 2uv and u — v > 0.

In any case of (I), (II), (Il) and (IV), from Y? = u? — v? — 2uwv, we obtain that
u is odd and v even,and 202 = (u — v)? = Y2 = (u—v+Y)(u—v—Y). Since Y2 =
u2—v2—2uv, Y and u odd, v even and (u,v) = 1, we have (u—v+Y,u—v-Y) = 2.
Then there exist nonzero integer b and positive odd integer a with (a,b) = 1 such
that v = 2ab and

u—v+Y =2a%, u—v-—Y = 4b?

or
u—v+Y =402, u—v—-Y = 2a2.

'Thus we have u—v = a2 +2b% and Y = |a? — 2b?|. So we obtain u = a?+2b%+v =
a? + 2b% + 2ab = (a + b)? + b2. Hence the proof is complete.
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Theorem 11. Let m be a non-negative integer. Let X,Y,Z be a solution of
the equation
X4 +2my? =22 |
with positive odd integers X,Y, Z such that (X,Y)=1. Thenm =3 orm 5.

In the case of m = 3, there exist non-negative integers ¢ and d of opposite
parity with (c,d) =1 and ¢ > d =0 such that

u=c®—d?, v=2cd, B=c*+d?

and
X=u+v, A=|u—1|
or
X=|lu—-v|, A= u+v
and
Y = . AB ,
Z = A?24+2B2

In the case of m 2 5, there exist positive odd integers a and b with (a,b) =1,
such that

A=a2+2™4%2%, B=ab

and
X = |a2_2m—4b2l ,
Y = AB ,
Z = A*+2m2B?

Proof. By Lemma 5, we have m = 3. Since 2™Y?2 = 22 — X4 = (Z + X2)(Z -
X?) and (Z + X2,Z — X?2) = 2, there exist positive odd integers A and B with
(A, B) =1 such that Y = AB and

(I) Z+ X% =2A%, Z - X2=2m"1B2

or
(M) Z+X2=2m"1B%, Z - X2=2A2,

In the case of (I) Z + X2 = 2A% and Z — X2 = 2™~ 1B2 we have Z =
A?4+2m-2B% and X2 = A2-2™"2B2, or X?2+2™2B? = A2, Hence, by Theorem
7, we obtain that mn — 2 2 3, so m 2 5 and there exist positive odd integers a and
b with (a,b) = 1 such that X = |a? — 2™~ 4b2|, B = ab and A = a2 + 2m—4)2.

In the case of (I) Z + X2 = 2™"1B2 and Z — X2 = 2A2, we have Z =
A2 4+2m"2B2% and X2 =2™"2B2 — A2 or X2 + A2 =2™"2B2 By Lemma 4, we
have m — 2 = 1, so m = 3. By Theorem 6, there exist non-negative integers ¢
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and d of opposite parity with (¢,d) =1 and ¢ > d 20, such that B = ¢? + d? and
X =u+4+v, A=|lu—v|lor X =|u—v|, A=u+v where u = c? — d? and v = 2cd.
Hence the proof is complete.

Theorem 12. Let m be a non-negative integer. Let X,Y,Z be a solution of
the equation

X2 +2myt =22
with positive odd integers X,Y, Z such that (X,Y) = 1. Then m 2 3, and there
exist positive odd integers a and b with (a,b) = 1 such that

X = |a4 _ 2m—2b4| ,
Y = ab ,
Z = at + am—2p4

Proof. By Lemma. 5, we have m = 3. Since 2mY* = 22 - X2 = (Z+X)(Z-X)
and (Z + X, Z — X) = 2, there exist positive odd integers a and b with (a,b) =1
such that Y = ab and

Z4+X =2a*, Z-X=2m"1pt
or
Z4+X=2""1 Z - X =2a*.

Then we have Z = a* + 2™ 2p* and X = |a* — 2™~2b%|. Hence the proof is
complete.

Example 1. For example, applying Theorem 6,7,8,9,10,11 and 12, when .
m=29%, c=9, d=2, a=7 and b = 3, we have the following equations.

1132 + 412 = 2 - 852
232 +  25.217 = 1212
101772 + 9112 = 2.85%
25672 4+ 25.6512 = 674
192732 + 31* = 2-136452
1134 + 23.34852 = 161312
41* + 23.96052 = = 272192
314+ 25.1407% = 80172
17532 +  25.21% = 30492
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4. The equation 22X* + 2°Y* = 2°Z* has only one trivial
solution

Let a,b, c be non-negative integers. In this section, we shall determine the
solutions of the Diophantine equation 22X + 2bY* = 2°Z% in nonzero integers
X,Y,Z ([7]). The following theorem was proved by A.M.Legendre.

Theorem 18. Let X,Y, Z be a solution of the equation
Xt +Y* =222
in non-negative integers. Then

X2 =Y2=2727.

Proof. Let X,Y,Z be the solution of the equation X% + Y4 = 222 in non-
negative integers. Then, we obtain

(22%)? = (X* +Y*)? = (X* - Y4)® + ax4y*

2
(XY)*+ (M> =74,

and so

2
4 4

This equation implies that —a is an integer. By Theorem 3, we have that

4 _v4 4 _ 4
-)-(2—)/] = Z2 or thatu— = 0 and XY = Z. When

2 4 4
XY =0, since X* + Y4 =272 we obtain X =Y = Z = 0. When X—;-X- =0

and XY = Z, we obtain X2 =Y?2 = Z. Hence the proof is complete.

XY = 0 and |

Corollary 14. Let X,Y, Z be a solution of the equation
| Xt +v4=22¢

in non-negative integers. Then
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To prove Theorem 16,we shall recall the following Lemma 15. This lemma is
slightly stronger than, and implies Fermat’s last theorem for n = 4 (see [6] ).

Lemma 15. Let m be a non-negative integer. Then the equation
X*+2myt =24

has no solutions in odd integers X,Y, Z.

Theorem 16. Let a,b, c be non-negative integers. If X,Y,Z is a solution of
the equation '

20 X4 + 20yt =2¢24

in positive odd integers, then

X=Y=Z7Z and a+1=0b0+1=c.

Proof. Let a,b and c be non-negative integers. Let X,Y, Z be the solution of
the equation ’ '

2°X* +2°v4 =2°Z4

in positive odd integersX, Y, Z.
We shall first show that a = b. If a # b, then, without loss of generality, we
may assume that a < b. Set b = a + m. Consequently we obtain that ¢ = a and

Xt +2myt =24,

where X, Y and Z are positive odd integers, and m is a positive integer. By Lemma
15, this equation is imposible. Thus a = b.
It follows from a = b that c =a + 1 and

X4 4+vi=224

with positive odd integers X,Y, Z. Hence, according to Corollary 14, we have
X =Y = Z. This completes the proof.
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5. The equation X* 4 2™Y?% = Z* has no solutions in nonzero
integers

Let m be a non-negative integer. In this section, we shall prove that the
equation X4 + 2"‘Y2 Z* has no solutions in nonzero integers X, Y, Z.

Lemma 17. Let m be a non-negative integer. If a set of three odd integers
X,Y, Z satisfies the equation

X4+ 2™yt =22,
thenm 23 and m = -1 (mod 4).

Proof. Since the square of an odd integer is congruent to 1 modulo 8, we have
2mY4 =22 _X4=1-1=0(mod8). This implies m 2 3.

We suppose that there is a set of four integers X,Y, Z,m satisfying X4 +
2mY4 = 72 with X,Y,Z odd, m > 3 and m Z —1 (mod 4), and we assume that
the set of positive integers z,y, z, m satisfying z? + 2™y* = 22 with z,y, z odd,
m > 3 and m #Z —1 (mod 4), is such that m is least. Canceling the greatest
common divisor of z? and y%, we may assume that z,y, z are pairwise relatively
prime. We have 2my4 = 22 — 24 = (z + 22)(z — 72), and since z, z are both odd
integers and relatively prime, we have (z + z2,z — z?) = 2. Hence there exist
positive odd integers a and b with (a,b) = 1 such that

() z+ 22 = 2a*, z — 22 =2 1p?

or
() z 4+ 22 =214, z — 22 = 2a*.

In the case of (I) z + :1: = 2a% and z — 12 = 2™~ 1b%, we obtain 12 = a? —
2m—2pt 2m—2p% = g4 — 32 = (a? + z)(a%2 — ), m — 2 =3, and so m 25. Also
note that a and z both odd integers and relatively prime and (a2 + z,a2 — 1) =
Hence there exist positive odd integers A and B with (4,B) =1 such that

a2 +z=2A% a2 —z=2m"3B4
or
a2 +z=2m3B% a2 -z =2A%.

Thus, we obtain a? = A% 4+ 2™~4B4%, where q, A, B are odd integers. Hence, by
Lemma 5, we obtain that mn — 4 2 3, and since m # —1 (mod 4),we have m > 7.

Further m —4 < m and m —4 =m # —1 (mod 4). This contradicts the choice of
m.
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In the case of (II) z + % = 2™ 1% and z — 22 = 2a%, we obtain z2 =
2m=2p% — a4, Since 2™ 20t =22 +a* =141 =2 (mod 4), we have m — 2 = 1,
so m = 3. This contradicts the choice of m. Hence the lemma is proved.

Lemma 18. Let m be a non-negative integer. If a set of three odd integers
X, Y, Z satisfies the equation

X2 +2my4 — Z4,
thenm 25 and m =1 (mod 4).

Proof. Let m be a non-negative integer. Let X,Y,Z be a solution of the
equation X2 + 2™Y4 = Z4 in odd integers X, Y, Z. Hence, by Lemma 5, we have
m 2 3 and

(X2)2 = (2% - 2my4)2 = (z*+ 2my4)2 — gmt2ydze

and so 9
X% 4272y 2)% = (Z* + 2mYY)°,

where X,Y Z,Z% + 2™Y*4 are odd integers. By Lemma 17, we have m + 2 =
—1(mod4),som =1 (mod4). Also we note m 2 5. This completes the proof.

Theorem 19. Let m be a non-negative integer. Then the equation
X% +2my? =2z¢
has no solutions in odd integers X,Y, Z.

Proof. Let m be a non-negative integer. Suppose that there is a solution
X,Y,Z of the equation X* + 2mY?2 = Z4% in odd integers X,Y,Z. Hence, by
Lemma 5, we have m =2 3 and

(2mY?)? = (24 — Xx*)? = (2% + x*)% — axiz4.
X+ Z¢

Since X, Z are both odd integers, so is — and we obtain
2
(X Z)* + 22m=2y4 = (—X +Z 4)
2

X4+ Z4 ,
where X 2,7, ———— are odd integers and 2m — 2 # —1 (mod 4). By Lemma

17, the last equation is impossible. Hence the theorem is proved.

Remark. It is shown that let 1n be a non-negative integer, then the equation
X4 +42mY? = Z*% has no solutions in nonzero integers X, Y, Z (see [7]).
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6. On the Diophantine Equations X* + 2™Y* = Z? and
X% 4 omyd =74

In this section, we shall give ono-to-one correspondences between solutions of
the equation z2 4+ y4 = 22% and of z% + 23 - y* = 22, between solutions of the
equation x4+ 24¢-1.y% = 22 and of z2 + 24%*+1.y* = 24 and between solutions of
the equation z2 + 243+1. 4% = 2% and of z% + 248+3 . y4 = 22,

Theorem 20. Let x,y, z be a solution of the equation
xz + y4 premend 224 ---------------------------- @

in positive odd integers x,y, z which are pairwise relatively prime.
Set

U = yz ,

V = yt+22¢

Then z,U,V is a solution of the equation
t+28. Ut =Vv?

in positive odd integers x,U,V which are pairwise relatively prime.
Conversely, let ,U,V be a solution of the equation

x4 +23.U4=V2 ...................... (*—3)

in positive odd integers x,U,V which are pairwise relatively prime. Then there
exist unique positive odd integers y, z with (y,z) = 1 such that

i V — z2
y - 2 ’
4 V + 22
z =
4
and
z? + yt =221

Furthermore, above two correspondences(® — (*-3) and (x-3) —=® are mutual
inverses.

Proof. Let z,y,z be a solution of the equation ® in positive odd integers
z,y, z which are pairwise relatively prime. We set U = yz and V = y% + 224

Then we have z* + 23 . U* = (224 - y4)2 + 23 (yz2)t = (224 + y4)2 = V2, Since
(z,y) = (z,2z) = 1, we have (r,yz) = 1. Also we note that z,U, V are positive odd
integers and pairwise relatively prime.
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Conversely, let z,U,V be a solution of the equation (*—3) in positive odd
integers x, U, V' which are pairwise relatively prime. Since 23 -U% = V2 — 14 =
(V 4+ 22)(V — z?) and (V + 22,V — 22) = 2, there exist positive odd integers y, 2
with (y, z) = 1 such that

(D V+z2=2y4, V- 2% =424

or
(D) V + 22 =424, V — 22 = 2y2.

Suppose that (I) V + z2 = 2y* and V — 22 = 424, we have 22 = y* — 224
or z2 + 22% = y* with positive odd integers z,y,z. But by Lemma 5, the last
V—-z2 V + 2

5 2= YR and
z? = 2z* — y*. Hence z2 + y? = 22%. Also we note that z,y, z are positive odd
integers and pairwise relatively prime.

Furthermore, we can prove that if 2 + y% = 2z% U = yz and V = y* + 224,

V—:z:z__y4+2z4—-m2__y4+y4 V+az2  yt422% 4 2?

equation is impossible. Thus we obtain (II) y? =

the;n 2 5 5 = y* and 1 2 4V 2—

—z-f—il=z4,andthatifa:4+23-U4=V2, y4=V;x and z% = V_Zw,
2 2 2_.4 23'U4

then (yz)* = V-3 .V-L—a: _ Y 3 i 5 = U4 and y* + 22¢ =

V —z2 V + z2

+2.

mutual inverses. And the proof is complete.

= V. Hence this shows that above two correspondences are

Theorem 21. Let a be a positive integer. Let x,y,z be a solution of the
equation

$4 + 240—1 . y4 — 22 ................. (*—4a _— 1)

in positive odd integers x,y, z which are pairwise relatively prime.
Set

U = l$4 — 924a-1, y4| ,

|4 Ty

Then U,V, z is a solution of the equation

U2 + 94da+1 | V4 — 24

in positive odd integers U, V, z which are pairwise relatively prime.
Conversely, let U,V, z be a solution of the equation

U242+l . yyd 4 (.. oL, (*—4a+1)
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in positive odd integers U,V, z which are pairwiae relatively prime. Then there
ezist unique positive odd integers x,y with (z,y) = 1 such that

=— ¥ = if U=1(mod4)
or 2y 2,y
z4 — zc 4+ .
zt = 5 yt = 7ia tf U=-1(mod4)
and ‘

zd p a1 g4 _ 2

Furthermore, above two correspondences (x—4a—1) — (*—4a+1) and (*~da+1) —
(*—a — 1) are mutual inverses.

Proof. Let z,y,z be a solution of the equation (*—4a — 1) in positive odd
integers z,y,z which are pairwise relatively prime. We set U = |r% — 2%a-1

y*| and V = zy. Then we have U2 + 24+l . V4 = (g4 _ 2%a-1. y‘l)2 + 24at+l .
(zy)* = (z + 2%e-1. y4)2 = z%. And U, V, z are positive odd integers and pairwise
relatively prime.

Conversely, let U, V, z be a solution of the equation (*—4a+1) in p031t1ve odd
integers U, V, z which are pa1rw1se relatively prime. Since 248+1.V4 = 24 _[J2 =

(22 + U)(22 — U) and (22 + U, 22 — U) = 2, there exist positive odd mtegers z,y
with (z,y) = 1 such that

22+U=2z%22-U=2%.4y* if U=1(mod4)

or
22+U=2%.¢y4 22_U=2z% if U=-1(mod4).

Thus, we obtain z2 = z¢ + 240— Lyt
Furthermore, note that z* > 24¢~1.4% if and only if U = 1 (mmod 4), and it is

easily proved that above two correspondences are mutual inverses. This completes
the proof.

Theorem 22. Let a be a positive integer. Let x,y,z be a solution of the
equation

in positive odd integers x,y, z which are pairwise relatively prime.
Set
U
|4

Yyz )
24 + 24a+1 . y4
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Then x,U,V is a solution of the equation
$4 + 24a+3 . U4 — VZ

in positive odd integers x, U,V which are pairwise relatively prime.
Conversely, let x, U,V be a solution of the equation

Tt 424043 4 2 L (¥—ta +3)

in positive odd integers z,U,V which are pairwise relatively prime. Then there
ezist unique positive odd integers y, z with (y,z) = 1 such that

s _ V- x2
y - 24a+2 )
4 V + z2
z =
2

and
z2 4 9da+1 -y4 — .4

Furthermore, above two correspondences (x—4a+1) — (x—4a +3) and (*—4a + 3)
— (* —4a+1) are mutual inverses.

Proof. Let x,y,z be a solution of the equation (*—4a + 1) in positive odd
integers x,y,2z which are pairwise relatively prime. We set U = yz and V =
z% +2%+1.y4 Then we have g 4 249+3. U4 = (24 — 240+1. y‘*)2 + 24013 . (y2)t =
(2% + 29at1. y4)2 = V2. And z,U, V are positive odd integers and pairwise rela-
tively prime.

Conversely, let z,U, V be a solution of the equation (¥—4a + 3) in positive odd
integers z, U, V which are pairwise relatively prime. Since 24¢+3.[/4 = V2 — 4 =
(V +22)(V — z2) and (V + 22,V — z2) = 2, there exist odd integers y, z with
(y,z) = 1 such that

(I) V4122 =224, V— g2 =24%0+2 4

or
(M V+a2=21012.44 v _ g2 =24,

Suppose that (I) V + z2 = 24¢+2 . y4 and V — 22 = 22¢, we have z2 = 24a+1.
y* — 24, or 22 + 2% = 299+1 . 44 with positive odd integers z,y, z. But by Lemma
V —x?

4, the last equation is impossible, since a > 0. Thus we obtain (I)y? = Siatz

V + z2

and 2% = , and z2 = z4 — 249+1 . 44 Hence z2 4 240+1 . 4 = 4,

Furthermore, it is easily shown that above two correspondences are mutual
inverses. This completes the proof.
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Example 2. Since 12 + 14 = 2- 14, applying Theorem 20, Theorem 21 and
Theorem 22, we obtain the following correspondences.

12 + 14 = 2.14 ......... @
14 + 23.14 -£ 32 ... (1-3)
7 4+ 25. 14 £ 34 ... (1-5)
7t 4+ 97 .34 £ 1132 ool (1-7)
79672 + 99 . 214 i 1134 ceeennnn (1-9)
79674 + 211.23734 i 2626216332 ........ (1-11)
60912456065182847% + 21!3.18905691% i 262621633% -....... (1-13)
Similarly, from 2392 + 14 = 2 - 134, we obtain that
2392 + 14 = 2.134 ...... ®
239¢ + 93 . 134 i 571232 ... (2-3)
32625801532 -+ 25 . 31074 i 571234 ..... (2-5)
3262580153 + 27-1774811614 £ 106503933557156218732 ... .. (2-7).
Example 3. Similarly, we obtain that
27502572 + 13434 = 2.15254 ... @
27502574 + 23 - 2048075 = 140702129964512 - - (3-3)

835453168961784283676545992% + 25 - 5632732605275% = 14070212996451% - - (3-5)

83545316896178428367654599% + 27 - 792537475082736055588790254
= 714051295813378103996130257946595039961060341908508012 - - (3-7)
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We have

72 + yt = 224 @ @ @ e
42894 =22 : (1-3) (2-3) (3-3)

2 4+25. 44 =24 : (1-5) (2-5) (3-5)

zt 427 .yt =22 | (1-7y  (2-7) (3-7)

2 4+2%9. 9yt =24 . (1-9) : :

'S
Il

zt +211. 22 (1-11)

y
2+ 213 .44 =24 (1-13)

7. All Solutions of the Diophantine Equation X2 + Y* = 2274

Let m be a non-negative integer and let z,y, z be positive odd integers. We
shall determine the solutions of the Diophantine equation z2 + y* = 2z%. Finally,
in this section, we shall show that the equation 12+ 14 = 2-14 induces all solutions
of the equation z2 +y* = 224, of the equation 2% +2™-y* = 22 and of the equation
z2+ 2™ . y* = z%(see L.J.Mordell [4]), and that above three Diophantine equations
x? +yt =224, 1% + 2™ . y? = 22, 2% + 2™ . y* = 2% have infinite solutions.

Lemma 23. Let z,y, z be a solution of the equation
x2 + y4 o 224

with positive odd integers x,y, z which are pairwise relatively prime. And a set of
four integers c, d, a, b satisfies the conditions :

2 —d?=(a+b)2+02%,
c>0,a>0,(c,d) =1, (a,b) =1, cd = abd,
c and a odd, d and b even,

y =|a? - 20?|, z =c? +d?.

Setu=c?—d? v=2cd, s=u?—v2 t=2uv. Then we have

d=0 ifandonlyif z=1 ,
d>0 ifandonlyif zxz=1(mod4) and x> y?
d<0 ifandonlyif z=-1(mod4) or z<y?,

L
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P +t2 =24 dst =22 —y?, £ = s+t

and

202 =u—-v+y,d?=u—v—y ifandonly if y=1(mod4) ,
22 =u—-v—y, 4% =u—v+y ifandonlyif y=—-1(mod4).

Proof. First, we notice that (c? +<12)2 = u? 4+ v?, (u? +'02)2 = 8% + t2
and y2 = (a2 — 21)2)2 = (a2 + 2()2)2 — 8a20? = (c2 —d? - 2(11))2 — 8(ab)? =
(c2 —d? - 20d)2—8(cd)2 = (u—v)2-2v% = u2—v2—2uyv = s—t > 0. So we obtain
24 = gcz + (12)4 = (u? + 1)2)2 = s2+t2. Since 2 = 224 —y* = 2(s2+1?)—(s—1)2 =
(s+t)*, we have z = |s+t|. Also, z2—y? = (s+t)2—(s—t)2 = 4st. It is easily proved
that z=1if andonlyifzr=y=2=1,andifand onlyifc=a=1,d=b=0,
and if and only if d = 0.

Next, we shall show that d > 0 if and only if z = 1 (mod 4) and z > y2.
We note that u = c?2 —d? = (a+ 0)2+62 > 0. If d > 0, then v = 2¢d > 0 and
t =2uv > 0. Since s—t > 0and ¢t > 0, so s > 0. Since z2 — y* = 4st > 0, we have
x > y2. Further,z = |s+t| =s+t=1u2—v2+2uv = 1 (mod 4). Conversely,
suppose that z =1 (mod 4) and £ > y2. Since z = |s+¢t| and s+t =1 (wmod 4),
we have z = s+t,s0o s+t > 0. And 4st = 22 —y%4 > 0, so we have s > 0 and
t>0. Sinceu=c2—-d?2>0andt=2uv >0, we have v > 0. Thus d > 0. Also
we note that d < 0 if and only if z = —1 (mod 4) or z < y2.

Finally, we have 202 +4b% = 2 (a2 + 202) = 2 (c? — d? — 2ab) = 2(u—v) = (u—
v+y)+(u—v—y) and (2a2) (46?) = (a® + 2b2)2— (a2 - 2b2)2 = (c? —d? - 2ab)2—
y2 = (u—v)2-y% = (u—v+y)(u—v—y). We notice that 2a2 =2 (mod 4), 402 =
0 (mod4)andu—v=c®—d2—2cd =1 (mod 4). And since y = 1 (mod 4)
if andonly if u —v+y =2 (mod 4), u—v—y =0 (mod 4), we have 242 =
u—v+y, 40> =u—v—yif and only if y = 1 (mod 4). Similarly, we have
22 =u—v—y, 40> =u—v+y if and only if y = —1 (mod 4). Hence the proof
is complete.

Lemma 24. Let x,y, z be a solution of the equation
z? + y? = 22¢

with positive odd integers x,y, z which are pairwise relatively prime. And a set of
four integers c,d, a, b satisfies the conditions :

¢ — d? = (a+b)2 + 2,
c>0,a>0, (¢d)=1, (a,b) =1, cd =abd,
c and a odd, d and b even,

y = |a% — 20?|, z = c2 + d?.
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And a set of four integers ¢/, d’,a’, b satisfies the conditions :
C/2 _ d’2 — (a/ + b/)2 + b/2,
¢>0,a >0, (d,d)=1, (V) =1, cd =a'V,
¢’ and a’ odd, d’ and V' even,
y=la? =207, z =%+ d'2.

Then we have thatc=c, d=d', a=a' andb=1V'.

Proof. We set u = ¢2 —d? v = 2cd, s = u2 — 02, t = 2uv and «/ =
¢?—d? v =20d, s’ = u'? — % ¢ = 2'v". Then by Lemma 23, s2 4+ 2 =

2 _ 4\?2
=524 t%and 212 = (xTy> = s'?. "%, Since s and s’ are odd, t and ¢/

even, so we have s2 = s'° and 2 = #'2. Since (v? + 1)2)2 = (u? - v2)2 + (2uv)?2 =

2 t\? t'\?
2412 = g2 42 = (u’2+v’2> and u? . v? = (?) = (?) = u'?. 02

u and v’ odd, v and v’ even, we have u? = v'? and v? = v'2 Similarly, since
2 1\ 2
A4+d?=z=c*+d? 2.4 = (%) = (1)2-—) =c?.d"? ¢ and ¢ odd, d

and d’ even, we have c2 = ¢’ and d2 = d’2. Further, ¢ and ¢’ are positive, dd’' = 0,
so we have ¢ = ¢’ and d = d’. Hence v = v’ and v = v’. Also by Lemma 23, if
y=1(mod4), then

20 =u—v+y=u —v +y=2d?
and

202 =u—v—y=1u —v —y =207,
Similarly, when y = —1 (mod 4 ), we have a2 = @’ and 2 = /2. Further, a and

a’ are positive, b’ 2 0, so we have a = a’ and b = /. Hence the proof is complete.

Theorem 25. Let z,y, z be a solution of the equation
x2 + y4 — 224 ........................... @

with positive odd integers x,y, z which are pairwise relatively prime. Then there
ezist unique integers c,d, a, b such that

c>0,a>0, (¢,d) =1, (a,b) =1, cd = ab,
c and a odd, d and b even,
y=|a? —2b?|, z =c? +d2

and
2 —d? = (a+b)%+ 02,

 Conversely, let c,d,a,b be a solution of the equation
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c2—d2=(a+b)2+b2 .......................

with integers c,d, a,b such that

c>0,a>0, (cd) =1, (a,0) =1, cd = ab,
c and a odd, d and b even.

Then there exist unique positive odd integers z,y, z with pairwise relatively prime
such that
y = |a® - 2b%|, z = c? + d?

and
2 +yt =224,

Furthermore, above two correspondences %) —>[E and E)-—» &) are mutual

tnverses.

Proof. Let z,y, z be a solution of the equation ® with positive odd integers
z,y, z which are pairwise relatively prime. When z =y, we havez =y =2 =1,
and we set c = a = 1and d = b = 0. Thus we suppose that £ # y. Since
z2 4+ y* = 2z% and z,y, z are odd integers with pairwise relatively prime, we have

2\ 2 — 2\ 2 2 2
(:z: -;y ) + (a: 2y ) = 2% where z _;y , i 2y are integers of opposite parity,
z+y? z—y?
2 ' 2
In the case of (I) = 1 (mod 4) and z > y2, by Theorem 1, there exist
positive integers U and V of opposite parity with (U,V) =1and U > V > 0

2 .2
such that =¥ — py2 —y2, = - = 2UV and 2% = U% + V2 Since y? =

U2 -V2_-2UV, U is odd and V even. Applying Theorem 1 again, there exist
positive integers ¢ and d of opposite parity with (¢,d) =1 and ¢ > d > 0 such that
U=c2—-d? V=2cd,andz=c?>+d? Wesetu=c?2—d?=U andv =2cd=V.
Since u =U > V = v > 0, we have u — v > 0. Hence we obtain y2 = u2 —v2 — 2uv
where u is odd, v even, u — v > 0 and u, v,y are pairwise relatively prime.

In the case of (II) z = 1 (mod 4) and z < y?, by Theorem 1, there exist positive

integers U and V of opposite parity with (U,V) =1 and U > V > 0 such that
T + y?

and , Z are pairwise relatively prime.

2 _
=U2-V?, y—-z—“’ —2UV and 22 = U?+ V2. Since y2 = U2~ V242UV,
U is odd and V even. Applying Theorem 1 again, there exist positive integers c
and negative integer d of opposite parity with (¢,d) = 1 and ¢ > —d > 0 such
that U = c2 —d? V = —2cd and z = c2 + d2. We set u = ¢2 — d? = U and
v=2cd=-V. Sinceu=U >V = —-v > 0, we have u — v > 0. Hence we obtain

y?2 = u? — v? — 2uv where u is odd, v even, u — v > 0 and u,v,y are pairwise
relatively prime.
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In the case of (I) x+ = —1 (mod 4) and = > y2, by Theorem 1, there exist
positive integers U and V of opposite parity with (U,V) = 1and U > V > 0

— 2 2
such that =¥ — U? —v? Tty = 2UV and 22 = U? + V2. Since y% =
V2 - U? +2UV, V is odd and U even. Applying Theorem 1 again, there exist
positive integer ¢ and negative integer d of opposite parity with (¢,d) = 1 and
¢ > —d > 0such that V = ¢? ~d? U = —2cd and z = ¢ + d2. We set
wu=c?~-d?® =V andv =2cd = -U. Since —v =U >V =u > 0, we have

w—v > 0. Hence we obtain y? = u? — v? — 2uv where u is odd, v even, u —v > 0
and u, v,y are pairwise relatively prime.

In the case of (IV) £ = —1 (mod 4) and z < y?, by Theorem 1, there exist
positive integers U and V of opposite parity with (U,V) =1and U >V > 0

2 . 2
such that y T = U2 —_ V2’ £+Ty_ = 20UV and 22 = U2 + Vz. Since y2 =
U2 - V242UV, U is odd and V even. Applying Theorem 1 again, there exist

- positive integer ¢ and negative integer d of opposite parity with (¢,d) = 1 and

¢ > —d > 0such that U = ¢2 —d? V = —2cd and z = c? + d2. We set
u=c?—d?=Uand v =2cd = —V. Sinceu =U >V = —v > 0, we have
u — v > 0. Hence we obtain y? = u? — v? — 2uv where u is odd, v even, u —v > 0
and u, v,y are pairwise relatively prime.

In any case of (I), (I), (II) and (IV), we have 20?2 = (u —v)? —y2 = (u —v +
y)(u—v—y)and (u—v+y,u—v—y)=2 Hence there exist even integer b and
positive odd integer a with (a,b) = 1 such that v = 2ad and

u—v4+y=2a%, u—v—y=4b?
or

u—v+y=40%, u—v—y=2a%.
Thus we have u — v = a? + 2b? and y = |a? — 2b?|. So we obtain u = ¢2 — d? =
a? + 202 + v = a® + 2b% + 2ab = (a + b)? + b2. Moreover, 2cd = v = 2ab, and

from ¢? — d? = (a + b)2 + b2 = 1 (1od 4), it is shown that ¢ is odd and d even.
Furthermore, by Lemma 24, these integers ¢, d, a and b are uniquely determined.

Conversely, let ¢, d, a, b be a solution of the equation with integers ¢, d, a, b
such that ¢ > 0,a > 0, (¢,d) = 1, (a,b) = 1, cd = ab, ¢ and a odd, d and b
even. And we set u = ¢? — d?, v = 2cd, s = u? — V2, t = 2uv, y = |a? — 20?|

and z = c? + d2. First we show that y2 = (a? - 2b2)2 = (a% + 21)2)2 — 8a?%b? =
(c2—d? - 2&1))2 —8(ab)? = (c? — d? — 2cd)2 —8(cd)? = (u—v)2 — 202 = w2 —v2 -
2uv = s — t. Hence, set T = |s + t|, we obtain 22 + y* = (s + )2 + (s — t)2 =
2
2(s2+ %) = 2((u2 - v2)2 + (2uv)2) =2(u? + 'vz)2 = 2((c2 - d2)2 + (2cd)2> =

2((62 + d2)2)2 = 2(c2 + d2)4 = 224, Since (c¢,d) = (a,b) =1, c and a odd, d and
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b even, it is proved that z,y, z are positive odd integers and pairwise relatively

prime.

Furthermore, it is easily shown that above two correspondences are mutual
inverses. Hence the proof of Theorem 25 is complete.

Example 4. Applying Theorem 25, we obtain the following correspondences.

12 + 14

i1l

12 - 02

2392 + 14

el

32 _ 22

27502572 + 13434

el

392 - 22

Figure 1. We have

2 —d? = (a+0)2+2

cd = ab

z2 + y? = 224

gt +23 .yt = 22
2% +25 .yt = 24
zt +27 .yt = 22
z2 429 .yt = 29
zt 4+ 211 .y = 52

T2 + 213 .yt = 24

2.14 Lo 22 ......... @
14+0=1
(1+0)2+0%2 ....... (T+ ,)
2.13% i e ®
(32+22=13)
(83—-2)2422 ... EI
2.15252 e e e ®
(392 + 22 = 1525)
(3+26)24+262 ittt @

z [
@ @ @ ......

(1-3) (2-3) (3-3)
(1-5) (2-5) (3-5)
1-7) (2-7) (3-7)
ao) :
(1-11)

(1-13)
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Theorem 26. Let z,y, z be a solution of the equation
.'E2 + y4 — 224 ........................... @
with positive odd integers x,y, z which are pairwise relatively prime. Set

da = y) Cb = Z,
Ca1 = (=T —yz,y2 +22%) , cop = (+z — yz,y% + 22?) ,
+z — yz
—_—, dpy = ——,
Ca,2 Ca,1
(I) Ci=can-ch, Dy =dg dp1, Ay =cq1da, By =cpdp,

(I) C2 = ca2-coy Dy =dg-dp2, A2 =ca2-da, Ba=cp-dpz.

dp,1 =

Then
and

are solutions of the equation _
C?-D? =(A+ B)? + B?
with integers C, D, A, B such that

C>0,A>0 (C,D)=1, (A,B)=1, CD = AB,
C and A odd, D and B even.
And z < Cy2+ D% ifz# 1, 2 < Co? + Dy2.
Conversely, let C, D, A, B be a solution of the equation

CZ—D2=(A+B)2+BZ ................... k —k
with integers C, D, A, B such that

C>0 A>0 (C,D)=1, (A B)=1, CD = AB,
C and A odd, D and B even.

Set

D
Ca =(C)A)) Cp = (C',B)) da'_“ (D)A)) db = T:

a

Ida2 - dp +2cb2 ~dp+ Ccq - Cp ’dal

z - )
Ca

Yy = da )

z = Cp
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Then z,y, z s a solution of the equation
2% 4yt = 224
with positive odd integers x,y,z which are pairwise relatively prime. And z <
C?+D?ifC?+ D? #£1.
Furthermore, AD + 2BC + AC # 0. And if AD + 2BC + AC > 0, then two

correspondences |[*—|— @& and ® — are mutual inverses. And if AD +
2BC + AC < 0, then two correspondences [*—*|—@® and ® —[*-1] are mutual

inverses.

Proof. Let z,y, z be a solution of the equation &) with positive odd integers
z,y, z which are pairwise relatively prime. Set

de =Yy, cp =z,
Ca,1 = (_:B - yz,y2 +222) y Ca,2 = (+.’B — Yz, y2 +222) ’

+zr —yz

dp,1 = y dp2 =

Ca,2 Ca,1
(I) Ch = Cq,1 ' Ch, D, =da'db.1, A = Cqg,1 -dy, By =cb'db,1)_
() C2 =ca2-¢ch, Dy =dg-dp2, A2 =co2-dg, By =cp-dp>.

Then it is easily proved that C; > 0, A; >, C; - D; = A; - B, C; and A; odd,
D, and B, even. And since (~z —yz,y) =1, (—z—yz,z —yz) =2, (2,y) =1
and (z,z — yz) = 1, we have (cq,1,ds) = (ca,1y@,1) = (cb,da) = (cpydb,1) = 1,
so (Cy1,D;) = 1. Similarly, we have (A;, B;) = 1. Similarly, we obtain that
C; >0, A, > 0, C2- Dy = Az - By, Cy and A, odd, Dy and B, even and
(C2, D3) = 1, (Az, Bz) = 1. Further, we note that (—z — y2)(z — yz) = —xz2 +
Y222 =yt - 22044222 = (2 + 222) (y2 — 22), (~z—yz,z—yz) = 2 and y2 + 222
is odd. Then we have y? + 222 = cg4,) - Ca,2. Since y2 + 222 = ¢, - c5 2 and
T — Yz = Cq,2 - dp,1, We have cq1 - (¢ — yz) = dp1 - (¥2+222), 50 co12 -z =
Ca1 b1+ (¥2 +222) + ca1? - yz = a1 - dpy - do® + 2¢0,1 - dby - 2 + Can? - dg -
cy = A1Dy + 2B,Cy + A;C;. From (cq,12- :c)2 + (can-9)* = 2(cq1 * 2)*, we
obtain (41D +2B,C; + A1C1)° + A1* = 2C1%. Then (A;D1)? + 4(B1C1)? +
(A1C1)*+4A,B,C1 Dy + 441 B1C12 +2A,2C1 Dy + A — 2044 = A4 +24,°B, +
2A1%B1%+2C12A,%+4C1% A, B +4C1 % B12 - A,2C1 %2+ A,2D12 - 2014 +2C, 2D, 2 =

— 138 —



(A% +2C1%) (412 + 241 By + 2B1%)— (4.2 + 2C12) (€12 — D1?) = 0. So we have
(A; + B1)? + B2 = €12 — D;2. Similarly, since y2 + 222 = Ca,1 * Cqz2 and —T —
Yz = Cq,1 * dp2, We have (Aj + By)? + By?2 = o2 — D% Further, if z # 1,
then £ — yz # 0, so dp; # 0, and D; # 0. Hence, if z # 1, then z = ¢ <
(Can  cb)? + D1® = C1?2 + Dy And since —z — yz # 0, we have D, # 0 and
Z=c < (Ca,lz - ¢p)? + D? = Cp% + D2

Conversely, let C, D, A, B be a solution of the equation with integers
C,D,A,Bsuchthat C >0, A>0, (C,D)=1, (A/B)=1, CD=AB,C and A
odd, D and B even. We set

D
Caz(C)A), Cbz(CaB)) da.:(D)A), dbz'd_
a

Then it is easily proved that C =cg ¢y, D =dy dp, A =cq:d, and B = cp - dp.
From the equation [*—*], we have (A2 + 2C?) (C? — D?) = (A%242C?)(A%+2AB+
2B2),s0 A*4+2A3B+2A%B2+2C?%A%24+4C?AB+4C?B?2 - A2C?+ A2D?-2C4 +
2C2D? = A2D? + 4B%C?% 4 A%2C? + (2A?B? + 2C2D?) + 4ABC? + 2A3B + A% -
2C* = (AD)? + (2BC)? + (AC)? + 4ABCD + 4ABC? + 2A2CD + A* — 2C* =
(AD + 2BC + AC)? + A* — 2C% = 0. Thus we have

(AD + 2BC + AC)? + A* = 2C*.

This equation implies AD+2BC+AC # 0 and (cg'dg-dg-dp+2cpdpCq-Ch+Cq dg Ca

|dg? - dp + 2¢p2 - dp + cq - Cp - dg| _ 4
- y Y =dq

and z = cp, then we obtain z2 + y* = 2z* where z,y, z are positive odd integers.

cy)?+ (ca-da)? =2(cq-cp)?. Weset =

Since (C,D) = 1, so (cp,d,) = 1. Hence z,y, z are pairwise relatively prime.
We note that C? + D2 = 1 if and only if D = 0. Thus if C? + D? # 1, then
z=1cp < (cq-cp)?+ D? =C? + D2

Furthermore, since (z — yz)(—z — yz) = (y2 — 22) (y? +22%) , (z —yz,—z —
yz) = 2 and y?+222 odd, we have y2+222 = (z — yz,y% + 222)-(—z — yz,y? + 222).

If AD+2BC+ AC > 0, then dy2 - dy + 20,2 - dp + ¢y - cp - dy = A2+ 2BC+AC
Ca

—139—



2 2, . . d2 2+2) d
0. Hence z = do Gh+ 207 dytcacy dy = (a +c Cb) ° + cp - dg, sO
Cqa a

dy T—cpdy  T—Yy2

Ca  dg®+2cs2  y®+222

z—yz=dy- (z-yz,y?+222) and y?2 +22%2 = ¢, - (z —yz, 2 + 222). Hence we
T —yz

(x — Yz, y2 + 222) .

that if AD +2BC + AC > 0, then two correspondences [*—x]—® and &® — [*1]

are mutual inverses.

Since (cq,dp) = 1, the last equation show that

Thus we note

obtain that ¢, = (—x —yz,y% + 2z2) and dp =

Similarly, if AD+2BC+ AC < 0, then we obtain that ¢, = (T —yz,y2 + 222)

. . And we note that if AD + 2BC + AC < 0, then
(—z — yz,y% + 222)

two correspondences [ *—* |—® and (® —[*—1 | are mutual inverses. Hence the proof

of Theorem 26 is complete.

and dp =

Example 5. Applying Theorem 26 to the equation (1), we obtain that

12 + 14 = 2.1¢4 i @
12 - 02 = (1+0)2+4+02 ... 1-1|=

and ‘
32 - 22 = (3-2)2+422 @ ....... 1-1 | =[2]

Similarly, we obtain that
2392 4+ 14 = 2.13% .. @
392 — 22 = (3+426)2+262 = ....... (1] =[3]
and

14692 — 842 = (113 -1092)2+10922 ....... =[4]
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Example 6. For example, applying Theorem 26 to the equation (3),

27502572 + 13434 = 2 - 15254

we have z = 2750257, y = 1343, z = 1525. Set d, =y = 1343, ¢, = z = 1525,

Cai = (—z—yz,y?2+22%) = (—4798332,6454899)
Ca2 = (+z—-yz,y2+22%) = ( 702182,6454899)
+r —yz - 702182
= —_— = == 2
dp 1 P 113 6214 ,
—-T —yz —4798332
= e— s —— = —84
X Cal 57123 84,
Ci = b57123-1525 = 87112575, D; = 1343.6214
Ay = 57123.1343 = 76716189, B; = 1525-6213
Co = 123.1525 = 172325, D, = 1343-(-84)
A, = 123-1343 151759, B, 1525 - (—84)
Hence, we obtain that
27502572 + 13434 215254

871125752 — 83454022
and
1723252 — 1128122

e

= (151759 —128100)2 + 1281002
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(76716189 + 9476350)2 + 94763502

75123,
113,

8345402 ,
9476350 ,
—112812,
—128100 .

[e]=[e]
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Figure 2. We have

2 — d? = (a+ b)2 + b2

cd = ab
-1} [-m] (2] [zzm] [s-m] (1]
| | | I | |
T & & O
® @ ©

z? +y? =224

Applying Theorem 25 to the equation [4], [5] and [6], we obtain the following
correspondences.

1469% — 842 = (113 —1092)%2 + 10922 ... [4]
3503833734241% + 232159* = 2-2165017* ... )

1723252 — 1128122 = (151759 — 128100)2 + 1281002  ..... [5]
2543305831910011724639% + 9788425919% = 242422452969 ..... ®
871125752 — 83454022 = (76716189 + 9476350)2 + 94763502 .. ...

762854334708055785041475599810412 + 57057712360387214
= 2.76582464576722294 N
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Applying Theorem 26 to the equation @ and (5), we obtain that

35038337342412 + 2372159% =2-2165017¢ ... @
1236722660912 — 147405960262

= (135504838557 — 13453415638)2 + 134534156382
z=c?+d? = 15512114571284835412957

and

5685803000127612 — 3587784404549522

= (622980270315647 — 327449139293976)2

+ 3274491392939762 _
z=c% 4+ d? = 452005526897888844293504165425

25433058319100117246392 + 9788425919% = 2 .424224529692  ..... ®

11141053874584478377% — 14804556464080402322
= (2570652399347305727 + 6416206298351572632)2 - [51]
+ 64162062983515726322
z=c?+d? = 126314830357375266295717376544111167953
and
5968929491057551114130192 — 1102711716565404122454502

= (137725237580311623413469 — 477908668068463057622950)2 - - -
+ 4779086680684630576229502

z=c2+d? ,
= 3684409239906717632227674144151367493861848396861

— 143 —



Figure 3. We have

z2 + yt = 224 2 —d?>=(a+b)2+0b%, cd=ab

By Theorem 25 and Theorem 26, above figure shows the following Note 27.
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Note 27. Let the equation ® be

with positive odd integers x,y, z which are pairwise relatively prime. Then the first
s1z solutions of the equation &, that is, with smallest values of z, are

12 4+ 14 = 2.14..... @,

2392 + 14 = 2:134 ... @,

27502572 + 13434 = 2.15254 ..... ®),

35038337342412 + 23721594 =  2.21650174 ... .. @,

25433058319100117246392 + 9788425919¢ = 2. 424224529694 . .. . . ®),
762854334708055785041475599810412 + 57057712360387214

= 2.76582464576722294 - .. .. ®.
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