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1. INTRODUCTION

The spectral geometry for the second order operators arising in Ri
emannian geometry has been studied by many authors [2,5,6,9,10,11].
Among them, the spectral geometry of the normal Jacobi operator for
minimal submanifolds was studied by H.Donnelly [2], T.Hasegawa [6].
The normal Jacobi operator arises in the second variation formula for
the functional area. This formula can be expressed in terms of an elliptic
differential operator J (called the normal Jacobi operator) defined on
the cross section I'(W M) of the normal bundle of the isometric minimal
immersion f : M — N, which is defined by J = A + R — S, where A

" is the rough Laplacian on NM and R and S are linear transformations

of NM defined by means of a partial Ricci operator R of N and of the
second fundamental form and its transpose, respectively.

The purpose of the present paper is to study Sasakian and cosym-
pletic analogoues for certain results of [2,6]. The spectral geometry
for the Jacobi operator of the energy of a harmonic map was studied
by H.Urakawa [11] (for manifolds), and S.Nishikawa, P.Tondeur and
L.Vanhecke [9] (for Riemannian foliations).

This research was in part supported by a grant from University of Ulsan,Korea
(1994) .
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2.PRELIMINARIES

Let (#,€,7,9) be an almost contact metric structure on a C°°-mani

fold N. This means that

$?=-I+¢®n, ¢(&) = 0,
(2.1) no¢ =0, n(€) =1,
9(6X,Y)=—g(X,4Y), n(X)=g(X,$),

where ¢ is a tensor field of type (1;1), € a vector field, n a l-fdrm, I the
identity transformation, g a Riemannian metric and X,Y vector fields
on N [cf.12].

Define a 2-form ® on N by
®(X,Y) = g(X, ¢Y)

for any vector fields X,Y on N.

If [§, ] +dn®E& = 0, where [¢, ¢] denotes the Nijenhuis tensor formed
with ¢ and d the operator of the exterior derivative, then the almost
contact metric structure (¢,&,7, g) is said to be normal. If ® = dy, the
almost contact metric structure (¢,£,7,9) is called a contact metric
structure.

N = (N, ¢,£,n,9) is called a Sasakian manifold if a C*®°-manifold
N admits a normal contact metric structure (¢,£,n,g). We note here
that in a Sasakian manifold N

(2.2) NVxd)(Y)=n(Y)X —g(X,Y)E, NVxt=¢X

where MV denotes the Levi-Civita connection of g and X,Y vector

fields on N. '

N = (N, ¢,€,n,9) is called a cosympletic manifold if a C°°-manifold
N admits a normal almost contact metric structure (¢, &, 7, g) such that
® is closed and dn = 0.

It can be shown [1] that the cosympletic structure is characterized

by

(2.3) NUx¢=0 and “Vxn=0,
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for any vector field X on N. Here and in the sequel, N' = (N, ¢,£,1,9)
will denote either a Sasakian manifold or a cosympletic manifold.

The curvature operator R of g is defined by R(X,Y)Z = [NVx, NVy|Z
—NV|x,y)Z for any vector fields X,Y,Z on N. In N = (N, 4,£,1,9)

we call a sectional curvature

_ 9(R(X,¢X)¢X, X)
9(X, X)g(8X, ¢X)

determined by two orthogonal vectors X and ¢X (which are orthog-
onal to £) the ¢-sectional curvature with respect to X of N. If the
¢-sectional curvature is always constant with respect to any vector at
every point of the manifold NV, then we call N' = (N, ¢,£,1,9) a man-
ifold of constant ¢-sectional curvature. It has been shown [cf.3,7,12]
that in M = (N, ¢,£,7n,g) with constant ¢-sectional curvature k,

k

J(R(X,Y)Z,W) = a{g(Y, Z)9(X, W) — g(X, Z)g(Y, W)}
+ B{n(X)(Z2)g9(Y, W) + n(Y )n(W)g(X, Z)
—n(X)n(W)g(Z,Y) — n(Z)n(Y)g(X, W)
+ &(X,2)B(W,Y) — &(X,W)®(2,Y)
—29(X,Y)®(Z,W)},

where a = L;'fi,ﬂ = k4;1 in the Sasakian case and a = 8 = % in the
cosympletic case.

Throughout this paper, N'S(k)(NC(k) resp.) will denote a (2n + 1)-
dimensional Sasakian manifold(cosympletic manifold resp.) of constant
¢-sectional curvature k.

For a Riemannian manifold M which is isometrically immersed in
a Riemannian manifold N, the formulas of Gauss and Weingarten are
respectively given by

NVxY =VxY + B(X,Y), NVxV =—AYX + DxV

for vector fields X,Y tangent to M and a normal vector field V, where
V be the Levi-Civita connection on M, and A and B are called the
second fundamental forms of M, which are related by ¢(V,B(X,Y)) =
9(4v(X),Y).

— 45 —



TAE HO KANG AND HYUN SUK KIM

Furthermore, we can consider A as a cross section of the Riemannian
vector bundle Hom(NM,SM), where SM is the bundle of symmetric
transformations of the tangent bundle TM and NM is the normal
bundle of M in N. Then S :=*'Ao A € I'(Hom(NM, N M)), where
I'(e) denotes the space of smooth sections of e. Henceforth we adopt
the following notations ;

o := the trace of *A o A(i.e., the square norm of 4 ),

l, := the trace of S o S(i.e., the square norm of S ),

kn := the square norm of the curvature tensor of the normal
connection,

t  := the square norm of the covariant derivative of

the second fundamental form A.

A (2m + 1)-dimensional submanifold M of N is said to be invariant
if the structure vector field £ is tangent to M everywhere on M and
¢X is tangent to M for any tangent vector field X on M [cf.7,12]. We
easily see that any invariant submanifold M with induced structure
tensors which will be denoted by the same letters (¢,£,n,9) as in N,
is also a Sasakian manifold or cosympletic manifold according as N =
(N, ¢,€,7,9) is a Sasakian manifold or cosympletic manifold. Both the
invariant submanifolds will be denoted by M = (M, ¢,£¢,7n,g) unless
otherwise stated.

Let M = (M, ¢,£,n,9) be an invariant submanifold of a Sasakian or
cosympletic manifold N = (N, ¢,£, 7, g). Then we have from (2.1), (2.2)
and (2.3)

(2.4) B(X,£)=0, AY(¢)=0,

(2.6) $AY(X) = —AY($X) = 4%V (X)
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for any vector fields X,Y tangent to M. It is clear from (2.5) and (2.6)
that any invariant submanifold M of A is minimal [cf.12].

Let ¢ = (¢:7), &= (&), n=(n) and g = (gi;) be the com-
ponents of the tensor fields ¢, €, n and g, respectively, with respect to
a local coordinate system (z!,--- ,z?2™*1) on M = (M, ¢,£,7,9). And
also denote by R = (Rijki), p = (Rij) = (¢*' Riiji) and 7 = (Rijg*)
the corresponding curvature tensor, Ricci tensor and scalar curvature,
where (%) = (gi;) ™"

Now we consider the so-called contact Bochner curvature tensor BS
= (Bg;ix) and n-Einstein tensor Q° = (Qf:) defined on the invariant

submanifold M = (M, ¢,£,7n,9) of a Sasakla.n manifold NV respectively
by [cf. 8]

1
2m + 4

— ¢rnRjdi' + driRjidn' — bjiRuidn’ + dinRidi’
+ 2¢k;Radn' + 26inRrid;' — Rennjni + Reinjna

Bijih = Rpyjin — (9enRji — gkiRjn — ginRii + gji Rin

r
— Rjinkne + Rijnnin;) T3

r+2m

+ m + 4(¢kh¢]t - ¢kz¢]h - 2¢k1¢,h)

m(gkhmm gri;Mh + G5iMkNK — G5RMEN:),

4
4(gkhgji — gkigjn)

% = Rij — agij — bynj,

74+2m

wherer = 222 ¢.Fg . =4, a=3;%—1 and b=2m+1-3L.

Then we have

2 2
(m+1)(m+2)

8
2. S12 _ 2 _ 2
@7 B =IRP - sl +

4(3m? + 3m — 2)
(m+1)(m + 2)
8(13m + 14)

(m+1)(m +2)’

T —24m? 4 36m — 56
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1
(2.8) Q51 = |p|? - —2;1'2 + 27 - 2m(2m + 1).

A Sasakian manifold M = (M, ¢,£,7,9) is a called n— Einstein if
Q@7 vanishes identically. It is well known that a Sasakian manifold of
constant ¢-sectional curvature is 7-Einstein. For any 7-Einstein mani-
fold of dimension > 5, the scalar curvature is necessarily constant. Any
3-dimensional Sasakian manifold is n-Einstein, but in this case 7 may
not be constant. Moreover, it may be easily seen that Q° = 0 and
BS = 0 hold if and only if a Sasakian manifold M = (M, 4,€,n,9) has
a constant ¢-sectional curvature.

Next define the so-called cosympletic Bochner curvature tensor BC =
(B,?_;-ih) and 7- Einstein tensor Q€ = (QF;) on the invariant submanifold
M = (M, ¢,&,1,g) of a cosympletic manifold V respectively by [cf. 10]

1
B,(;;-,-,, = Rijin — 2—(m—+—2)(gthji — ginRii + gji Rin — griRja
— PknSji — $jnSki + 6jiSkh — SriSjn — GkiSjh — 26inSk;
— 2015 Sin — nennRji — ninnRei — njniRan + meniRjn)
+ T
4m+1)(m+2

]
C4m+1)(m+ 2)(9“.7;,- Mi + 95Nk = GinTkNi — Gkitlj k)

)(gkhgji — 9jhGki)

T

T T+ D(m o+ 2) PHrPsE T Snhi = 2oeiin):

C_p.._ T .o T
Qij = Ru zmgzj + zmnz"b,
where S;; = -—Rjqu,'-‘ and Sj; = —8S;;.

Then we also obtain

8 2
29 BC 2 — 2 _ 2 2
(29)  IBOP =IRP — ol e,
(2.10) QP = |of? — ——r2.
2m
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A cosympletic manifold M = (M, ¢,£,7, g) is said to be cosympletic
Bochner flat (n- Einstein resp.) if B¢ = 0(Q€ = 0 resp.). A cosympletic
manifold M = (M, ¢,&,n, g) has a constant ¢-sectional curvature if and
only if B¢ =0 and Q¢ = 0 hold. For any 7n-Einstein cosympletic
manifold, 7 is constant.

Let R be the partial Ricci transformation, which is defined by

2m+1-

R(V) := Z {R(e;, V)ei} ™,

where V is a normal vector field, {e; : ¢ = 1,--- ,2m+1} an orthnormal
basis of the tangent space T; M at £ € M and L denotes the normal
part of a vector with respect to the metric g.

Now we consider the differential operator J, which is usually called
the normal Jacob: operator, defined by

J=A+R-S,

where A = — E?:I'*'I(D,..De‘. - Dve’,e'.).

Throughout this paper M will denote a closed (compact without
boundary) manifold. In fact the operator J arising from the second
variation formula of M is self-adjoint, elliptic of second order, and has
a discrete spectrum as consequence of compactness of M.

Now we state the following Simon’s type formulaon M = (M, ¢,&,7, g)
1 . -
(2.11) -2-Aa=t—kn-ln+7~a,

where v denotes w (or L’—'—’{,ﬂﬁ) according as M is an invariant

submanifold of N5(k) (or NC(k)), and k, := — 2 ab Tr([A“,Ab]z), |
A% = A° {e,:a=2m+2,--- ,2n + 1} an orthonormal basis of the
normal space N, M at z € M,[A%, A}] = A% 0 A’ — A% 0 A®. And also
using (2.4) and (2.6) we can calculate the following identities (2.12) ~
(2.15). If M is an invariant submanifold of N'S(k), then

(2.12) k, =m(m+1)(k—1){4+ (k-1 (m+1)
+ 8m} + 8m?(2m + 1) — 2{(k — 1)(m + 1)
+4m}r + 2Jp|?,
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1
(213)  lL=m?(k?+6k—3)+m(k®+2k—1) — 2kr + §|R|2.

If M is an invariant submanifold of NY(k), then

(2.14) kn = m(m 4 1)%k? — 2(m + 1)kt + 2|p[%,

(2.15) I = m(m + 1)k? — 2kr + %|R|2.

A Riemannian manifold (M, g) which is isometrically immersed in
N = (N,¢,€,1m,9) is called a normal anti-invariant submanifold of
N = (N,8,€,1,9) if £ is normal to M and ¢(TM) C NM [cf.12].
On a Sasakian manifold N' = (N, ¢,£,1,9), if £ is normal to M, then
¢(TM) C NM(i.e., M is an anti-invariant submanifold of N’ = (N, ¢, £, 7, g)).
Assume that dimM = n. Then the following identities hold when the
ambient manifold is a (2n + 1)-dimensional Sasakian manifold N =

(N, é,6,m,9);

(2.16) Dx(¢Y) = ¢VxY — g(X,Y)E,
(2.17) ¢B(X,Y) = —A*Y X,

(2.18) 9(B(X,Y),£) =0,

(2.19) 9(B(X,Y),42) = g(B(X, Z), ¢Y)

for any vector fields X,Y,Z tangent to M, where (2.16) and (2.17)
follow from (2.2),(2.18) from (2.16), and (2.19) from (2.17).

In the case of a (2n + 1)-dimensional cosympletic manifold N =
(N, 8,€,1m,9), (2.17) ~ (2.19) still holds.
If a normal anti-invariant submanifold M of N5(k)(or NC(k)) is

minimal, then the Simon’s type formula is given by

(2.20) -;—Aa =t—k,—1, + 60
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with the aid of (2.17) ~ (2.19), where § denotes an + S.

Finally we introduce the Wely conformal curvature tensor C = (Ckjin)
and the Einstein tensor G = (G;;) on M, which are respectively defined
by

1 A
ijih = Ryjin — 'T;':"é'(gkhpji — 9irPki t+ 95iPkh — GkiPjh

1
+ m—Dn=2) (9ikgit — gjigix)T,

-
Gij = pij — —9ij-

Then we have

- 2 72
(2.21) 'CI = IRl Ipl + (n—1)(n-2) °

(2.22) G = [l — =72

G = 0 holds if and only if M is Einstein. C =0 and G = 0 hold if and

only if M has a constant sectional curvature (n > 4).

3. THE CACULATION OF SPECTRAL INVARIANTS

In this section we apply the normal Jacobi operator J acting on
['(NM) to the Gilkey’s results and obtain Sasakian or cosympletic spec-
tral invariants.

Now consider the semigroup e~?’

given by
eV (z) = /M K(t,z,y, J)V(y)dv, (y),
where K(t,z,y,J) € Hom(NyM,N,M) is the kernel function and dv,

denotes the volume element of M with respect to g. Then we have
asymptotic expansions for L2-trace

Tr(e™*) = f: e N ~ (47rt)_2_m5ﬂ itjaj(J) (t L 0h),
=1 7=0
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where each a;(J) is the spectral invariants of J, which depends only on
the discrete spectrum ;

Spec(M,J) = {\ Sdg < -+ < Ai--- T +oo)
Applying the normal Jacobi operator J to the Gilkey’s results [4,p.327]

, we obtain

Theorem [cf. 5,6].

(i) ao(J) =¢q-Vol(M,g),

(i) ar(J) =1 /M rdv, + /M Tr(E)dv,,
(i) a()=5L / (572 — 2|p|? + 2| R|?)dv,

360/{ 30k, + Tr(607E + 180E?)}dv,,

where q is the codimension 2(n — m) and E := —R + S.

M =(M,¢,E&n,g)isa(2m+1)-dimensional invariant submanifold
of N'S(k) with dimension 2n + 1, then we obtain

(3.1) T=(k-=1ym(m+1)+2m(2m+1) -0
(3.2) Tr(E)=km(n+1)+2n+3mn—m —171
(3.3)

Tr(E?) = -;-{z + (k + 3)m}2(n — m) + {2(k + 3)m}o + I,

= S {2+ (b +3)m)2(n — m) + 2+ (k + 3)m})
{(k = 1)ym(m + 1) + 2m(2m + 1)} + m?(k? + 6k — 3)
+m(k? + 2k = 1) = {2(k +1) + (k + Hm}r + 2 |RP
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(3.4) kn =kn + (k—1)°m(n —m) +2(k—1)o
=m(m+ 1)(k - 1){4 4+ (k — 1)(m + 1) + 8m}
+8m?(2m + 1) + (k — 1)’m(n — m)
+2(k — 1) {(k—1)m(m+ 1) +2m(2m + 1)}
- 2{(c— 1)(m + 2) + 4m}7 + 2|p|",
where (3.1) follows from the equation of Gauss, (3.2) from the definition
of E, (3.3) from (2.13) and (3.1), and (3.4) from the equation of Ricci,
(3.1) and (2.2)
Next, if M = (M, ¢,€,1,9) is a (2m + 1)-dimensional invariant sub-
manifold of N'C(k) with dimension (2n + 1), then we also have

(3.5) T =m(m+ 1)k — o,

(3.6) Tr(E)=m(n+ 1)k — T,

(37)  Tr(E?) = %(n — m)m2k? + mko +1,
= —7;—71(m2 + mn 4 4m + 2)k? — (2 4+ m)kr

1
+ '2_|R|2a

(3.8) kn = m(n — m)k? + 2ko + k,
= {m(n —m)+2m(m +1) + m(m + 1)%} k2
— 2(m + 2)kr + 2|p|*.

Substituting (3.1) ~ (3.4) into Theorem, we obtain

Theorem 1. Let M = (M, ¢,£,1,9) be a (2m + 1)- dimensional com-
pact invariant submanifold of a (2n + 1)-dimensional Sasakian manifold
NS(k) with constant ¢-sectional curvature k. Then the coefficients
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ao(J),a1(J) and az(J) of the asymptotic expansion for the normal Ja-
cobi operator J are respectively given by

(3.9) ao(J) = qVol(M, g),

(3.10)
ay(J) = {km(n+1) +2n + 3mn —m}Vol(M,g)

+_q_:—._6/ Tdvg
6 Jm

(3.11)
(1) = 355 | Ka+4O)IRF = (a+30)1oP + (3q - 30)r%lde,

+ bo / Tdvg + b1 Vol(M, g),
M

where b and b, are constants determined by m,n and k.

In the cosympletic case, substituting (3.5) ~ (3.8) into Theorem, we
also obtain

Theorem 2. Let M = (M, $,€,1,9) be a (2m + 1)-dimensional com-
pact invariant submanifold of a (2n + 1)-dimensional cosympletic mani-
fold N (k) with constant ¢-sectional curvature k. Then the coefficients
ao(J),a1(J) and az(J) of the asymptotic expansion for the normal Ja-
cobi operator J are respectively given by

(3.12) ao(J) = qVol(M,g),
(3.13) a1(J) = (n+1)mkVol(M, g) + q_?6-6_ /M Tdvg,

(3.14)

(1) = 155 | @ +48)IRE = (g + 501

+ (gq - 30)7'2]dvg + co / Tdvg + a1Vol(M,g),
M
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where ¢y and ¢, are constants determined by m,n and k.

From now on we denote both the contact Bochner curvature tensor
BS (n-Einstein tensor QC resp.) and the cosympletic Bochner curva-
ture tensor BC (n-Einstein tensor Q° resp.) by the same letter B ( Q

resp.)

Corollary 1. Under the same situations as stated in Theorem 1 or 2,
the following quantities are its spectral invariants when the codimension
q is not equal to 6.

(1) dimM, Vol(M,g),/ Tdvg,
M

(2) ./M odvg,
® [ lta+45)IRE ~ (a-+ 30l + (5~ 30)r7)dvy
M

@ [ lta+ 45181 + LTI IR0 + bl
1,2 2m+8 .2 m+ 2
(5) /M[§|B| t Q" + m7’2 — t]dvy,
6) / (59 +210)]Q[" + 22— S02m+7) 2 _ o(q + 45)t]dv,.
M m

where by := iy {(n — m)(5m? +4m + 3) — 30m? — 45m + 75}.

Proof. We prove for the Sasakian case. (1) and (3) are clear. (2) follows
from (3.1) and (3.10). Substituting (2.7) and (2.8) into (3), we have
(4). (5) follows from (2.11) ~ (2.13). Eliminating B from (4) and (5),
we obtain (6).

If M is an n-dimensional, minimal, normal anti-invariant submani-
fold of a (2n + 1)-dimensional Sasakian manifold A'5(k) or cosympletic
manifold N'C(k) with constant ¢-sectional curvature k, then we also
have

(3.15) r=an(n—1)—o

(3.16) Tr(E) =2an? +28n —7
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(3.17)
Tr(E?) = (an + 38)*(n + 1) — 28(an + 3B8)(n + 3)
+ 8%(n + 3)* + 2(an + 3B8)o + 1,
(3.18) kn = 28%(n? — n) — dafn(n — 1) + 487 + ky,,

where a = k—"ii,,B = %‘—1 in the Sasakian case and a = 8 = {- in the
cosympletic case.

Substituting (3.1) ~ (3.18) into Theorem, we get

Theorem 3. Let M be n-dimensional compact, minimal, normal anti-

invariant submanifold of a (2n+1)-dimensional Sasakian manifold N'5(k)
or cosympletic manifold N°(k) with constant ¢-sectional curvature k.

Then the coefficients ao(J),a1(J) and az(J) of the asymptotic expan-

sion for the normal Jacobi operator J are respectively given by

(3.19)
ao(J) = (n +1)Vol(M,g),

(3.20)

al(.])=n_5

6

/ Tdvy + (2an? + 26n)Vol(M),
M

(3.21)
@x(7) = 355 [ R+ DIRE = 20 + Dpi?

+ 5(n — 11)7% — 30k, + 180l,]dv,

41 / [an? + (8 — 3a)n — 108]rdv, + doVol(M),
3/ m

where dy is a number determined by n and k.
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Corollary 2. Under the same situations as stated in Theorem 3, the
following quantities are its spectral invariants when n is not equal to 5.

(1) dimM, Vol(M,g), / Tdvg, / (kp + I — t)dvy,
M M

(2) / odvg,
M
' n+1 2 2 n—11 2 1 : ~
— — 1, — &

© L [ AR = lolydog + 2 [ oy gy [ (6t~ Ru)an,

(a) "“/ (|C|2+6_n|G|2)dvg+d1/ T2dvg+i/ (61, — Fon)do,,
M M 12 /m

180 n—2
n + 1 2 6 —-nNn 2 / 2 _1_. / _ ~
(5) 130 /M(ICI + 2|G| )dvg + di MT dvg + T M(6t Tky)dvg,

5n2—62n2459n+6

where di = ** 550 m0)

4. SOME APPLICATIONS

In this section, by using the Sasakian or cosympletic spectral invari-
ants, we obtain some spectral properties. -

Denote M = (M, ¢,£,1,9) and M' = (M',¢',¢', 7', ¢') by (2m +1)-
dimensional invariant submanifolds of A'S(k) or N¢(k). Then M is
totally geodesic if and only if M is of constant ¢-sectional curvature
k. Andif n —m < T—("—;—ﬂ)—, then any invariant submanifolds of N'5(k)
or N¢(k) with constant ¢-sectional curvature are also totally geodesic
[cf.12]. Now we assume that the codimension is not equal to 6.

First, from (2) in Corollary 1 we obtain

Proposition 1. Assume that Spec(M, J) = Spec(M’,J'), Then if M
is totally geodesic, so does M'.

Proposition 2. Assume that m = 1 (n > 2) orm = 2(n > 7) or
m=3(n>9) orm=4(n > 10) or m = 5(n > 12) or m = 6(n = 13)
orm = T(14 < n < 51) or m = 8(15 < n < 22), and Spec(M,J) =
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Spec(M',J"), Then M has a constant ¢-sectional curvature k if and
only if M' has the same constant ¢'-sectional curvature k.

Proof. Under the assumption the coefficient of |Q|* > 0, and b, > 0 in
(4) of Corollary 1. Hence if M has a constant ¢-sectional curvature k,
then we get

by / r2dv, = / (g +45)|B'Pdvy + / 96 —m) — 30m +300 24,
M M’ M’

m+ 2
+ by / %dvg > by / e
M’ M’

On the other hand,

/ Tzd’ng/ 'r'2dvg'
M M’

because f pTdvg = f M 7'dvg, T = constant and f pMvg = f A0 GUgr .
Therefore B' =0 = Q. Q.E.D.

The following Propositions 3,4 and 5 are due to (4) of Corollary 1.

orm = 78 < n < 51) or

Proposition 3. Assume that m < 6
0 < n < 13), and Spec(M,J) =

m =289 <n < 22)orm = 9(1
Spec(M', J").

If M has a constant ¢-sectional curvature k and [ M"rzdvg > [T 2dvg:,
then M' has the same constant ¢'-sectional curvature k.

Proof. 1t is clear from the fact that
(n — m)(6 — m) — 15m + 150 > 0. Q.E.D.

Proposition 4. Assume that m = 7(n > 53) or m = 8(n > 24)
orm = 9(n > 16), and Spec(M,J) = Spec(M',J"). If M is -
Einstein, the contact Bochner curvature tensor (or the cosympletic

Bochner curvature tensor) of M' vanishes and [ yTldvg > [ ™ 2dvg,,
then M and M’ have the same constant ¢-sectional curvature and ¢'-
sectional curvature respectively.

Proof. 1t is clear from the fact that
(n—m)(6—-m)—15m+150< 0 and b, > 0. Q.E.D.
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Proposition 5. Let M and M' be n-Einstein and n'-Einstein respec-
tively, Spec(M, J) = Spec(M', J'). Then M has a constant ¢-sectional
curvature k if and only if M' has the same constant ¢'-sectional cur-
vature k.

Proof. If M and M' are n-Einstein and 7’-Einstein respectively, then
T and 7' are constants. So [,,7%dv, = fM,'r’2dvg:. Q.E.D.

Proposition 6. Assume that Spec(M, J) = Spec(M’,J'). If M is of
constant ¢-sectional curvature k, then [, tdvy, < [, t'dvy, and the

equality holds if and only if M' is of constant ¢'-sectional curvature
k' = k.

Proof. From (5) of Corollary 1 we obtain

#::_—21—) . dv, — /M tdvg

= M,[%IB’Iz + 2220 + ;%%T’zldvg' - /M, t'dug
> r_n?—n:—;z—l_)- . T'zdvg: —/ ’t'dvg:

> Tn_(%% MT2dvg _/ ' t'dvg Q.E’.D‘.

Proposition 7. Suppose that n < m + 6 + =25 and Spec(M,J) =
Spec(M',J"). If M is n-Einstein, then [, tdvy, < [, t'dvy holds and
the equality holds if and only if M’ is n'-Einstein. Furthermore, if M is
n-Einstein and the second fundamental form of M' is parallel, then M’
is also n'-Einstein and the second fundamental form of M is parallel.

Proof. It is obvious from (6) of Corollary 1. Q.E.D.

From now on, we consider n (# 5)-dimensional, compact, miniaml,
normal anti-invariant submanifolds M and M' of N'5(k) or N'¢(k) with
dimension 2n + 1.

First of all we have from (2) of Corollary 2.
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Proposition 8. Assume that Spec(M,J) = Spec(M',J'). Then if M
is totally geodesic, so does M'.

Proposition 9. Assume that Spec(M, J) = Spec(M',J') and [,,(In—
t)ydv, < [, (I, — t')dvy. Then the second fundamental forms on M

commute each other if and only if the second fundamental forms on M’
commute each other and [, (In — t)dvy = [, (I}, — t')dv,.

Proof. This follows from (1) of Corollary 2. Q.E.D.
We get from (5) of Corollary 2.

Proposition 10. Let M and M’ be Einstein. 4ssﬁme that Spec(M, J) =
Spec(M',J"), [1,(6t — Tkn)dvy < [,,,(6t' — Tk’ )dvy. Then M has a

constant curvature k if and only if M' has the same constant curvature

k and [,,(6t — Tkn)dvg = [,,,(6t' — TE,)dv,.

Proposition 11. Assume that Spec(M, J) = Spec(M', J'). M has
a constant curvature k, and M' is Einstein and if [, p(6ln — kp)dvy <
S (61, — k! )dv,, then M' has the same constant curvature k and

fM(Gln - ’En)dvg = [y, (60}, — Z::‘)dvg:.
Proof. It follows from (4) of Corollary 2. Q.E.D.
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