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ON SOME CIRCLES IN PSEUDO-RIEMANNIAN MANIFOLDS
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\S 1. Introduction.

Let $\overline{M}$ be a Riemannian manifold. A totaly umbihcal submanifold $M$ of $\overline{M}$

with paralel mean curvature vector field is said to be an extrinsic sphere $[2]^{1)}$ .
One-dimensional extrinsic spheres are the curves $c$ to be caled circles, which

were considered under the name of geodesic circles or curvature circles characterized
by the folowing differential equations

$\nabla_{X}\nabla_{X}X+(\nabla_{X}X,$ $\nabla_{X}X\rangle$ $X=0$ ,

where (, \rangle is the metric, $\nabla$ is covariant differentiation along $c$ and $X$ is the unit tangent
vector field of $c$ . For a circle $c,$

$k$ $:=\langle\nabla_{X}X,$ $\nabla_{X}X)^{\frac{1}{2}}$ is a non-negative constant which
is caled the curvature of $c$ . Especialy $k=0$ , a circle $c$ is a geodesic. The folowing
theorems are wel-known:

Theorem A([2]). Le $t\underline{M}(\dim M\geq 2)$ be a con $n$ec $ted$ Riemannian submanifold of
a Riemannian $m$anifold M. For some $k>0$ , the following conditions are $eq$ uivalent:

(1) Every circle of $r$adius $k$ in $M$ is a circle in $\overline{M}_{2}$

(2) $M$ is an extrinsic sphere in $\overline{M}$ .
On the other hand, if the development of $c(s)$ in the tangent M\"obius space is a

circle, then $c(s)$ is caled a conformal circle (cf. [1], [3]). Then the equation of the
conformal circle is given by

(1.1) $\nabla_{X}\nabla_{X}X+((\nabla_{X}X,$ $\nabla_{X}X\rangle$ $+\frac{1}{n-2}(SX, X\rangle)X-\frac{1}{n-2}SX=0$ ,

where $S$ is the Ricci operator of $M$ $(\dim M=n\geq 3)$ . Remark that (1.1) is
represented by the Riemannian metric and the Riemannian connection. Also they
showed in $[1]\underline{t}hat$ , when every circle in $M$ is a conformal circle in $\overline{M},$ $M$ is totaly
umbilical in $M$ .

1) Numbers in brackets refer to the references at the end of the paper.
$*)$ Partially supported by TGRC-KOSEF.
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In this paper, we wil consider some similar theorems by the Q-circle with
respect to a tensor field $Q$ of type $(1,1)$ and conformal circle on a pseudo-Riemannian
manifold.

\S 2. Preliminaries.

First of al, we recal the general theory of pseudo-Riemannian submanifolds
immersed into a pseudo-Riemannian manifold to fix our notations. Let $M$ be an n-
dimensional pseudo-Riemannian manifold isometricaly immersed into an m-dimen-
sional pseudo-Riemannian manifold $\overline{M}$ . Then $M$ is caled a $ps\underline{eu}do$ -Riemannian
submanifold of $\overline{M}$. By (, \rangle , we mean the metric tensor field of $M$ as wel as the
metric induced on $M$ . A non-zero vector $x$ of $M$ is said to be null if ( $x,\underline{x)}=0$ and
unit if $(x, x)=+1$ or-l. We denote by $\tilde{\nabla}$ the covariant differentiation of $M$ and by
$\nabla$ the covariant differentiation of $M$ determined by the induced metric on $M$ . Then
we have Gauss’ formula

(2.1) $\tilde{\nabla}_{X}Y=\nabla_{X}Y+B(X, Y)$ ,

where $X$ and $Y$ are vector fields tangent to $M$ and $B$ is the second fundamental form
of $M$ . Weingarten’s formula is

(2.2) $\tilde{\nabla}_{X}\xi=-A_{\zeta}X+\nabla_{X}^{\perp}\xi$ ,

where $X$ (resp. $\xi$ ) is a vector field tangent (resp. normal) to $M$ and $\nabla^{\perp}$ is the
covariant differentiation with respect to the induced connection in the normal bundle
of $M$ in $\overline{M}$ and $A_{\zeta}$ is the shape operator of $M$ . We have the relation

$(A_{\zeta}X,$ $Y\rangle$ $=(B(X, Y),$ $\xi$ ).

For the second fundamental form $B$ , we define an normal bundle-valued tensor field
$\overline{\nabla}B$ as

(2.3) $(\overline{\nabla}B)(Y, Z, X)=\nabla_{X}^{\perp}B(Y, Z)-B(\nabla_{X}Y, Z)-B(Y, \nabla_{X}Z)$ ,

where $X,$ $Y$ and $Z$ are tangent vector fields of $M$ . The mean curvature vector field
$H$ of $M$ is defined by

$H:=\frac{1}{n}\sum_{1=1}^{n}(e;,$ $ e_{i}\rangle$ $B(e_{i}, e_{i})$ ,

where $\{e_{1}, \cdots , e_{n}\}$ is an orthonormal frame at each point of M. $H$ is said to
be parallel if $\nabla_{X}^{\perp}H=0$ holds for any tangent vector field $X$ of $M$ . If the second
fundamental form $B$ satisfies

$B(X, Y)=(X, Y)H$ ,
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for any tangent vector fields $X$ and $Y$ of $M$ , then $M$ is said to be totally umbilical
submanifold of $\overline{M}$ . A totaly umbilical submanifold with parallel mean curvature
vector field is called an extrinsic sphere.

\S 3. Circles in pseudo-Riemannian manifolds.
Let $M$ be a n-dimensional pseudo-Riemannian manifold. A regular curve $c=$

$c(s)$ is said to be a unit speed curve in $M$ when (X, $ X\rangle$ $=+1$ or $-1$ for the tangent
vector field $X=c$‘

$(s)$ . A circle of $M$ as a unit speed curve is defined by the differential
equation

$\nabla_{X}\nabla_{X}X+(\nabla_{X}X, \nabla_{X}X)(X, X)X=0$ ,
where $\nabla_{X}$ is the covariant derivative along $c$ . On the other hand, a conformal circle
of $M$ is defined by

$\nabla_{X}\nabla_{X}X+((\nabla_{X}X, \nabla_{X}X\rangle\langle X, X)+\frac{1}{n-2}\langle SX, X\rangle)X-\frac{1}{n-2}\langle X, X\rangle SX=0$ ,

where $S$ is the Ricci operator of $M$ .
Let $Q$ be an arbitrary tensor field of type $(1,1)$ on $M$ . We cal $c(s)$ a Q-circle if

the unit tangent vector field $X$ of $c(s)$ satisfies

$\nabla_{X}\nabla_{X}X+(\{\nabla_{X}X,$ $\nabla_{X}X\rangle$ $(X, X)+(QX, X\rangle$$)X-\langle X,$ $X$ )$QX=0$ .

Concerning ordinary differential equations on $M$ , we have the folowing lemma:
Lemma 3.1. Let $p$ be a point of $M$ and $x,$ $y\in T_{p}M$ be orthogonal such that
$\langle x, x\rangle=\epsilon=+1$ or-l. Then there exists a real number $r>0$ and a uniq $ue$ solu tion
$\sigma,$ $X,$ $Y$ of the following differen tial $eq$uations:

$\frac{d\sigma}{dt}=X$ ,

$\nabla_{X}X=Y$,
$\nabla_{x}Y=(-\epsilon\langle Y, Y\rangle-\langle QX, X))X+\langle X,$ $X$ ) $QX$ on $(-r, r)$ ,
$\sigma(0)=p,$ $X(0)=x,$ $Y(0)=y$ .

$ MoIeover\sigma$ is a unit speed curve.

Proof. From the theory of ordinary differential equatons, it folows that theIe
exists a real number $r>0$ and a unique regular curve $\sigma$ such that the above dif-
ferential equations has a unique solution $\sigma(t),$ $X(t),$ $Y(t)$ on $(-r, r)$ with the initial
conditions $\sigma(0)=p,$ $X(O)=x,$ $Y(O)=y$ . Put

$\lambda(t)$ $:=\langle X(t),$ $ X(t))-\epsilon$ ,
$\mu(t)$ $:=\langle X(t), Y(t)\rangle$ .
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Therefore, we have

$\frac{d\lambda}{dt}=\frac{d}{dt}(X, X)=2(X, Y)=2\mu$ ,

$\frac{d\mu}{dt}=\frac{d}{dt}(X, Y)=(Y,$ $Y\rangle$ $+(Y,$ $\nabla_{X}Y\rangle$ $=(Y, Y)-\epsilon(Y, Y)(X,$ $ X\rangle$ $=-\epsilon(Y, Y)\lambda$ ,

$\lambda(0)=\mu(0)=0$

Thus $\lambda$ and $\mu$ satisfy the folowing linear homogeneous differential equations with
the given functions $0,2,$ $-\epsilon(Y, Y)$ :

(A) $\frac{d}{dt}\left(\begin{array}{l}\lambda\\\mu\end{array}\right)=\left(\begin{array}{lll}0 & & 2\\-\epsilon(Y & Y) & 0\end{array}\right)\left(\begin{array}{l}\lambda\\\mu\end{array}\right)$ .

It is clear that $(\overline{\frac{\lambda}{\mu}})\equiv\left(\begin{array}{l}0\\0\end{array}\right)$ is a solution of $(A)$ with the initial conditions $\left(\begin{array}{l}\overline{\lambda}(0)\\\overline{\mu}(0)\end{array}\right)=$

$\left(\begin{array}{l}0\\0\end{array}\right)$ . By the uniqueness theorem of ordinary differential equation theory, we obtain
$\lambda\equiv\overline{\lambda}\equiv 0$ and $\mu\equiv\overline{\mu}\equiv 0$ . Therefore, we have (X, $X$ ) $=\epsilon$ along $\sigma$ . $\square $

\S 4. Main theorems.

Let $M(\dim M\geq 2)$ be a pseudo-Riemannian submanifold in a pseudo-Rie-
mannian manifold $\overline{M}$. First of al, we consider the case that every Q-circle $c$ in $M$ is
a Q-circle $f\circ c$ in $\overline{M}$ , where $f$ is the isometric immersion. By assumption, the curve
$c$ satisfies the folowing two equations

(4.1) $\overline{\nabla}_{X}\tilde{\nabla}_{X}X+((\tilde{\nabla}_{X}X,\tilde{\nabla}_{X}X\rangle$ $(X,X)+(\tilde{Q}X,X\rangle)X-(X, X)\tilde{Q}X=0$ ,

(4.2) $\nabla_{X}\nabla_{X}X+((\nabla_{X}X, \nabla_{X}X\rangle(X,X)+(QX,X))X-(X,$ $ X\rangle$ $QX=0$ ,

where $\tilde{Q}$ (resp. $Q$ ) is a tensor field of type $(1,1)$ on $\overline{M}$ (resp. $M$ ) and $X=\frac{dc}{ds}$ . From
(2.1), (2.2), (2.3) and (4.2), it folows that

$\overline{\nabla}_{X}\overline{\nabla}_{X}X=\nabla_{X}\nabla_{X}X+B(X, \nabla_{X}X)-A_{B(X,X)}X+\nabla_{X}^{\perp}B(X,X)$

$=-(\nabla_{X}X, \nabla_{X}X)(X,X\rangle X-\langle QX, X)X+(X, X)QX$

$+3B(X, \nabla_{X}X)-A_{B(X,X)}X+\overline{\nabla}B(X, X,X)$ .
Substituting this equation into (4.1), we have

$A_{B(X,X)}X-(B(X,X),$ $B(X,X))(X,X)X$

(4.3) $-(\tilde{Q}X-QX,X)X+(X,$ $ X\rangle$ $(\tilde{Q}X-QX)$

$-3B(X, \nabla_{X}X)-\overline{\nabla}B(X,X,X)=0$ .

–134–



For the component normal to $M$ in (4.3), we obtain
(4.4) $\overline{\nabla}B(X, X, X)+3B(X, \nabla_{X}X)-\langle X, X\rangle(\overline{Q}X)^{\perp}=0$ ,
where $(\tilde{Q}X)^{\perp}$ denotes the normal part of $\tilde{Q}X$ .

Let $p$ be an arbitrary point of $M$ and $x$ and $y$ any orthonormal vectors in $T_{p}M$ .
From Lemma 3.1, there exists a Q-circle $c_{1}$ of $M$ such that

$c_{1}(0)=p,$ $c_{1}^{\prime}(0)=x$ and $(\nabla_{c_{1}^{l}}c_{1}^{\int})(0)=ky$ ,
where $k$ is a positive constant. Since $foc_{1}$ is a $\tilde{Q}$-circle of $\overline{M}$, we get from (4.4)

(4.5) $\overline{\nabla}B(x, x, x)+3kB(x, y)-(x,$ $ x\rangle$ $(\tilde{Q}x)^{\perp}=0$ .
From Lemma 3.1, there also exists a Q-circle $c_{2}$ of $M$ such that

$c_{2}(0)=p,$ $c_{2}^{l}(0)=x$ and $(\nabla_{c_{2}^{\prime}}c_{2}^{l})(0)=-ky$ .
Thus we get

(4.6) $\overline{\nabla}B(x, x, x)-3kB(x, y)-\langle x,$ $x$ ) $(\tilde{Q}x)^{\perp}=0$ .
Making use of (4.5) and (4.6), we have

(4.7) $B(x, y)=0$ ,
where $x$ and $y$ are orthonormal.

Let $\{e_{1}, \cdots e_{n}\}$ be an orthonormal frame at each point of $M$ . Let $(e;,$ $e_{i}$ } $=$

$\epsilon_{i}(=\pm 1)$ and $(e_{j}, e_{j}\rangle$ $=\epsilon_{j}(=\pm 1)(1\leq i\neq j\leq n)$ . Here, we divide the situation
into two cases where $\epsilon;=\epsilon_{j}$ (Case 1) and $\epsilon;=-\epsilon_{j}$ (Case 2).

Case 1. Let $v=\tau_{2}^{1}(e_{i}+e_{j})$ and $w=\frac{1}{\sqrt{2}}(e_{i}-e_{j})$ . Then we can find easily that
$v$ and $w$ are orthonormal vectors in $T_{p}(M)$ . So, we have from (4.7),

$B(e_{i}, e_{i})=B(e_{j}, e_{j})$ .

Case 2. Let $v=\sqrt{2}e_{i}+e_{j}$ and $w=e;+\sqrt{2}e_{j}$ . Then also, we can find that $v$

and $w$ are non-nul orthonormal vectors in $T_{p}(M)$ . So we have from (4.7),
$B(e_{i}, e_{i})=-B(e_{j}, e_{j})$ .

It follows from Case 1 and Case 2 that
(4.8) $\epsilon_{i}B(e_{i}, e_{j})=\epsilon_{j}B(e_{j}, e_{j})(1\leq i\neq j\leq n)$ .

Let $X=\sum_{i=1}^{n}X^{i}e_{i}$ and $Y=\sum_{j=1}^{n}Y^{j}e_{j}$ . Then, by virtue of (4.7) and (4.8), we have

$B(X, Y)=\sum_{i,j=1}^{n}X^{i}Y^{j}B(e_{i}.e_{j})$

$=\sum_{1=1}^{n}X^{i}Y^{i}B(e_{i}.e_{i})=H\sum_{i=1}^{n}\epsilon_{i}X^{i}Y^{i}$

$=(X,$ $Y\rangle$ $H$ ,
for arbitrary tangent vectors $X$ and $Y$ in $T_{p}(M)$ . Thus we have the folowing.
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Theorem 4.1. Let $M(\dim M\geq 2)$ be a pseudo-Riemannian $su$ bmanifold in a
pseudo-Riemannian $m$anifold M. If every Q-circle in $M$ is a $\tilde{Q}$-circle in $\overline{M}$, then
$M$ is totally umbthc $al$ in $\overline{M}$ .

If, for any tangent vector field $X$ of $M,\tilde{Q}X$ is tangent to $M$ , then we call $M$ a
Q-invariant submanifold. By Theorem 4.1, we see that $M$ is totaly umbilical in $\overline{M}$.
Thus from (4.3), we obtain

(QX–QX, $X$ ) $X-(X, X)(\tilde{Q}X-QX)+\nabla_{X}^{\perp}H=0$ ,

where $H$ is the mean curvature vector field of $M$ . By taking the tangential (resp.
normal) part of the above equation, we get

(4.9) {X, $ X\rangle$ $((\tilde{Q}X)^{T}-QX)=(\tilde{Q}X-QX,$ $ X\rangle$ $X$ ,

(4.10) $\nabla_{X}^{\perp}H=(X, X)(\tilde{Q}X)^{\perp}$ ,

where $(\overline{Q}X)^{T}$ denotes the tangential part of $\tilde{Q}X$ . Fiom (4.9) and (4.10), we have
the folowings.

Proposition 4.2. Let $M(\dim M\geq 2)$ be a pseudo-Riemannian submanifold of a
pseudo-Riemannian manifold M. Assume that every Q-circle in $M$ is a $\tilde{Q}$-circle in
M. Then $M$ is a Q-invariant $su$ bmanifold if and only if $M$ is an extrinsic sphere in
$\overline{M}$.

Let $\tilde{Q}^{T}$ be the tensor field of type $(1,1)$ on $M$ defined by $\tilde{Q}^{T}X;=(\tilde{Q}X)^{T}$ .
Proposition 4.3. Let $M$ and $\overline{M}$ be as in Proposition 4.2. Assume that every Q-
circle in $M$ is a Q-circle in M. Then $\tilde{Q}^{T}=\sigma I$ if and only if $Q=\lambda I$, where $\sigma$ (resp.
$\lambda)$ is a smooth function on $\overline{M}$ (resp. $M$) and I an iden tity map of $TM$ .

On the other hand, in the case where Q-circle is a conformal one, we can state
as folows:

Corollary 4.4. Let $M(dimM\geq 3)$ be a pseudo-Riemannian submanifold of a
pseudo-Riemannian manifold $\overline{M}$ and every conform $al$ circle in $M$ be a conform $al$

circle in M. Then $M$ is an $Ri$cci-invariant $su$bmanifold if and only if $M$ is an extrinsic
sphere in $\overline{M}$ .

Corollary 4.5. Let $M$ and $\overline{M}$ be as in Corollary 4.4. Assume that every conform $al$

ciICle in $M$ is a conformal circle in M. If $\overline{M}$ is an Einstein manifold, then $M$ is an
Einstein manifold an $d$ an extrinsic sphere in $\overline{M}$ .
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