CERTAIN CLASSES OF MEROMORPHIC UNIVALENT FUNCTIONS WITH POSITIVE COEFFICIENTS

M. K. AOUF and H. E. DARWISH

<u>ABSTRACT.</u> In this paper we obtain convolution properties and integral transforms of functions in the classes $\sum_{p}^{*}(\alpha,\beta,A,B)$ $(0 \leq \alpha < 1,\ 0 < \beta \leq 1,\ -1 \leq A < B \leq 1,\ 0 < B \leq 1)$ and $\sum_{p}[\alpha,\beta,A,B,\gamma]$ $(0 \leq \alpha < 1,\ 0 < \beta \leq 1,\ -1 \leq A < B \leq 1,\ 0 < B \leq 1,\ \frac{A}{A-B} \leq \gamma \leq 1)$ of moremorphic univalent functions with positive coefficients in 0 < |z| < 1.

KEY WORDS- Univalent, convolution meromorphic.

AMS (1991) Subject Classification. 30C45.

1. Introduction

Let Σ denote the class of functions of the form

$$f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$$
 (1.1)

which are regular in $U^* = \{z: 0 < |z| < 1\}$ with a simple pole at the origin with residue 1 there. And let Σ_S denote the subclass of Σ consisting of analytic and univalent functions f(z) in U^* . A function f(z) in Σ_S is said to be meromorphically starlike of order α if

$$\operatorname{Re}\left\{-\frac{zf'(z)}{f(z)}\right\} > \alpha, \qquad (z \in U^*) \tag{1.2}$$

for some $\alpha(0 \le \alpha < 1)$. We denote $\Sigma^*(\alpha)$ the class of all meromorphically starlike functions of order α . A function f(z) in Σ_s is said to be meromorphically convex of order α if

$$\operatorname{Re}\left\{-\left(1+\frac{zf''(z)}{f'(z)}\right)\right\} > \alpha, \qquad (z \in U^*) \tag{1.3}$$

for some $\alpha(0 \le \alpha < 1)$. And we denote by $\Sigma_k(\alpha)$ the class of all meromorphically convex functions of order α . The class $\Sigma^*(\alpha)$ and similar classes have been extensively studied by Pommerenke [10], Clunie [5], Miller [8] and others.

Let $\Sigma_{\rm p}$ denote the class of functions of the form

$$f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n, \quad (a_n \ge 0)$$
 (1.4)

that are regular and univalent in U*.

Definition 1 [1]. A function f(z) in Σ is in the class $\Sigma^*(\alpha,\beta,A,B)$ if it satisfies the condition

$$\left| \frac{\frac{zf'(z)}{f(z)} + 1}{B \frac{zf'(z)}{f(z)} + [B + (A-B)(1-\alpha)]} \right| < \beta \quad (z \in U^*)$$
 (1.5)

for some $\alpha(0 \le \alpha < 1)$, $\beta(0 < \beta \le 1)$, $-1 \le A < B \le 1$, and $0 < B \le 1$.

Definition 2 [2]. A function f(z) in Σ is in the class Σ [α,β,A,B,γ] if it satisfies the condition

$$\frac{z^{2} f'(z) + 1}{[(B-A)\gamma + A]z^{2} f'(z) + [(B-A)\gamma \alpha + A]} < \beta (z \in U^{*})$$
 (1.6)

for some $\alpha(0 \le \alpha < 1)$, $\beta(0 < \beta \le 1)$, $-1 \le A < B \le 1$, $0 < B \le 1$, and $\gamma(\frac{A}{A-B} \le \gamma \le 1)$.

Let us write

$$\sum_{p}^{*}(\alpha,\beta,A,B) = \sum_{p}^{*}(\alpha,\beta,A,B)$$

and

$$\Sigma_{\mathbf{p}}\left[\alpha,\beta,\mathbb{A},\mathbb{B},\gamma\right] = \Sigma_{\mathbf{p}} \cap \Sigma[\alpha,\beta,\mathbb{A},\mathbb{B},\gamma].$$

The classes $\sum_{p}^{*}(\alpha,\beta,A,B)$ and $\sum_{p}[\alpha,\beta,A,B,\gamma]$ were introduced and studied by Aouf [1,2].

We note that:

- (i) $\Sigma_p^*(\alpha,\beta,-1,1) = \Sigma_p^*(\alpha,\beta)$, is the class of meromorphically starlike functions of order $\alpha(0 \le \alpha < 1)$ and type $\beta(0 < \beta \le 1)$ with positive coefficients, studied by Mogra, Reddy and Juneja [9] and Uralegaddi and Ganigi [12].
- (ii) $\Sigma_p^*(\alpha,1,-1,1) = \Sigma_p^*(\alpha)$, is the class of meromorphically starlike functions of order $\alpha(0 \le \alpha < 1)$ with positive coefficients, studied by Juneja and Reddy [7].
- $(iii) \ \Sigma_p[\alpha,\beta,-1,1,\gamma] = \Sigma_p(\alpha,\beta,\gamma) \ (0 \le \alpha < 1, \ 0 < \beta \le 1, \\ and \ \frac{1}{2} \le \gamma < 1), \ is the class of meromorphic univalent \\ functions in U*, studied by Cho, Lee and Owa [4].$

(iv)
$$\sum_{p} [\alpha, 1, -1, 1, 1] = \sum_{p} [\alpha]$$
, is the class:

$$\Sigma_{p}[\alpha] = \left\{ f \in \Sigma_{p} \colon \operatorname{Re} \left\{ -z^{2} f'(z) \right\} > \alpha, \ 0 \leq \alpha < 1, \ z \in U^{*} \right\}.$$

(v) $\sum_{p}^{*}(0,1,A,B) = \sum_{p}^{*}(A,B)$, is the class:

$$\label{eq:sum_p_def} \Sigma_{\mathrm{p}}^{*}(\mathtt{A},\mathtt{B}) \ = \ \left\{ \mathbf{f} \ \in \ \Sigma_{\mathrm{p}} \colon \ - \ \frac{z \, \mathbf{f} \, '(z)}{\mathbf{f} \, (z)} \, \, \boldsymbol{\checkmark} \, \, \frac{1 + \mathtt{A} z}{1 + \mathtt{B} z} \ , \ z \ \in \, \boldsymbol{\mathsf{U}}^{*} \right\}.$$

(vi) $\Sigma_{D}[0,1,A,B,1] = \Sigma_{D}[A,B]$, is the class:

$$\Sigma_p[A,B] = \left\{ f \in \Sigma_p \colon -z^2 f'(z) \, \boldsymbol{\checkmark} \, \frac{1 + Az}{1 + Bz} \, , \, z \in \boldsymbol{U}^* \right\}.$$

We shall require the following lemmas in our investigation.

Lemma 1 [1]. Let $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$ be regular in U^* . If

$$\sum_{n=1}^{\infty} \left\{ (1+\beta B) n + \beta [(B-A)\alpha + A] + 1 \right\} |a_n| \le (B-A)\beta (1-\alpha), \quad (1.7)$$

 $0 \le \alpha < 1$, $0 < \beta \le 1$, $-1 \le A < B \le 1$, and $0 < B \le 1$, then $f(z) \in \sum^* (\alpha, \beta, A, B).$

Lemma 2 [1]. Let $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$, $a_n \ge 0$, be regular in U^* . Then $f(z) \in \sum_{p}^* (\alpha, \beta, A, B)$ if and only if (1.7) is satisfied.

Lemma 3 [2]. Let $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$ be regular in U^* . If

$$\sum_{n=1}^{\infty} n \left[1 + (B - A)\beta \gamma + A\beta \right] |a_n| \leq (B - A)\beta \gamma (1 - \alpha), \quad (1.8)$$

for some $\alpha(0 \le \alpha < 1)$, $\beta(0 < \beta \le 1)$, $-1 \le A < B \le 1$, $0 < B \le 1$, and $\gamma(\frac{A}{A-B} \le \gamma \le 1)$, then f(z) is in the class $\sum [\alpha, \beta, A, B, \gamma]$.

Lemma 4 [2]. Let $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$, $a_n \ge 0$. be regular in U^* . Then $f(z) \in \sum_{p} [\alpha, \beta, A, B, \gamma]$ if and only if (1.8) is satisfied.

 $\underline{\text{Lemma 5 [1.9.12]}}. \quad \text{Let } f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n \ z^n, \ a_n \ge 0,$ be regular in U^* . Then $f(z) \in \Sigma_p^*(\alpha), \ 0 \le \alpha < 1$, if and only if

$$\sum_{n=1}^{\infty} (n + \alpha) a_n \le (1 - \alpha). \tag{1.9}$$

 $\underline{\text{Lemma 6 [2,4]}}. \text{ Let } f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n, \ a_n \ge 0, \text{ be}$ regular in U^* . Then $f(z) \in \Sigma_p[\alpha]$ if and only if

$$\sum_{n=1}^{\infty} n a_n \le (1 - \alpha).$$
 (1.10)

In the present paper, we extend the study made in [1,2] to obtain convolution properties and integral transforms of functions in the classes $\Sigma_p^*(\alpha,\beta,A,B)$ and $\Sigma_p[\alpha,\beta,A,B,\gamma]$.

3. Integral transforms.

In this section we consider integral transforms of functions in the classes $\sum_{p}^{*}(\alpha,\beta,A,B)$ and $\sum_{p}[\alpha,\beta,A,B,\gamma]$ of the type considered by Bajpai [3] and Goel and Sohi [6].

Theorem 1. If f(z) is in the class $\Sigma_p^*(\alpha,\beta,A,B)$, then the integral transforms

$$F_{c}(z) = c \int_{0}^{1} u^{c} f(uz) du, \quad 0 < c < \infty,$$

are in the class $\sum_{p}^{*}(\delta)$, $0 \le \delta < 1$, where

$$\delta = \delta(\alpha, \beta, A, B, c) = \frac{\{2+\beta[(B-A)\alpha+(B+A)]\}(2+c)-(B-A)\beta(1-\alpha)c}{\{2+\beta[(B-A)\alpha+(B+A)]\}(2+c)+(B-A)\beta(1-\alpha)c}.$$
(2.1)

The result is best possible for the function f(z) given by

$$f(z) = \frac{1}{z} + \frac{(B-A)\beta(1-\alpha)}{2+\beta[(B-A)\alpha+(B+A)]} z.$$

Proof. Suppose
$$f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n \in \Sigma_p^*(\alpha, \beta, A, B)$$
.

Then we have

$$F_c(z) = c \int_0^1 u^c f(uz) du = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{c a_n}{n + c + 1} z^n.$$

In view of Lemma 5, it is sufficient to show that

$$\sum_{n=1}^{\infty} \frac{n+\delta}{1-\delta} \frac{c a_n}{n+c+1} \leq 1.$$
 (2.2)

Since $f(z) \in \sum_{D}^{*}(\alpha, \beta, A, B)$, by Lemma 2, we have

$$\sum_{n=1}^{\infty} \frac{(1+\beta B) n+\beta [(B-A)\alpha+A]+1}{(B-A)\beta (1-\alpha)} a_n \le 1.$$
 (2.3)

Thus (2.2) will be satisfied if, for each n,

$$\frac{(n+\delta)c}{(1-\delta)(n+c+1)} \leq \frac{(1+\beta B)n+\beta[(B-A)\alpha+A]+1}{(B-A)\beta(1-\alpha)}$$

or

$$\delta \leq \frac{\{(1+\beta B)n+\beta [(B-A)\alpha+A]+1\}(n+c+1)-(B-A)\beta (1-\alpha)cn}{\{(1+\beta B)n+\beta [(B-A)\alpha+A]+1\}(n+c+1)+(B-A)\beta (1-\alpha)cn}. (2.4)$$

Since the right hand side of (2.4) is an increasing function of n. putting n = 1 in (2.4) we get

$$\delta \leq \frac{\{2+\beta[(B-A)\alpha+(B+A)]\}(2+c)-(B-A)\beta(1-\alpha)c}{\{2+\beta[(B-A)\alpha+(B+A)]\}(2+c)+(B-A)\beta(1-\alpha)c}.$$

Hence the theorem.

Remark 1. It is interesting to note that for c=1 and $(\alpha,\beta)=(0,1)$, Theorem 1 gives that if $f(z)\in \sum_{p}^{*}(A,B)$, then

$$F_1(z) = \int_0^1 u f(uz) du$$

is in the class $\Sigma_p^* (\frac{3+B+2A}{3+2B+A})$.

Using arguments similar to those in the proof of Theorem 1, using Lemmas 4 and 6, we can obtain the following result.

Theorem 2. If f(z) is in the class $\sum_{p} [\alpha, \beta, A, B, \gamma]$, then the integral transforms

$$F_{c}(z) = c \int_{0}^{1} u^{c} f(uz) du, \quad 0 < c < \infty,$$

are in the class $\sum_{p} [\delta]$, $0 \le \delta < 1$, where

$$\delta = \delta(\alpha, \beta, A, B, \gamma, c) = \frac{(1+(B-A)\beta\gamma+A\beta)(2+c)-(B-A)\beta\gamma(1-\alpha)c}{(1+(B-A)\beta\gamma+A\beta)(2+c)}.$$

The result is best possible for the function f(z) given by

$$f(z) = \frac{1}{z} + \frac{(B - A)\beta\gamma(1 - \alpha)}{1 + (B - A)\beta\gamma + A\beta} z.$$

Remark 2. It is interesting to note that for c=1 and $(\alpha,\beta,\gamma)=(0,1,1)$, Theorem 1 gives that if $f(z)\in \Sigma_p[A,B]$, then

$$F_1(z) = \int_0^1 u f(uz) du$$

is in the class $\Sigma_p[\frac{3+2B+A}{3+3B}]$.

3. Convolution properties.

Robertson [11] has shown that if $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$ and $g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n$ are in the class Σ_s then so is their convolution $f(z)*g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n b_n z^n$. We prove the following theorems for functions in the classes Σ_s and $\Sigma_p[\alpha,\beta,\lambda,B,\gamma]$.

 $\frac{\text{Theorem 3. If } f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n \text{ and } g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n \text{ are in the class } \sum_{p=1}^{\infty} (\alpha, \beta, A, B) \text{ then, } f(z) * g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n b_n z^n \text{ is in the class } \sum_{p=1}^{\infty} (\varphi, \beta, A, B), \text{ where}$

$$\varphi = 1 - \frac{2(B-A)\beta(1+\beta B)(1-\alpha)^{2}}{\frac{(2+\beta[(B-A)\alpha+(B+A)])^{2}+(B-A)^{2}\beta^{2}(1-\alpha)^{2}}{(3.1)}}$$

The result is best possible for the functions

$$f(z) = g(z) = \frac{1}{z} + \frac{(B-A)\beta(1-\alpha)}{2+\beta[(B-A)\alpha+(B+A)]} z$$

<u>Proof.</u> In order to complete our theorem, we have to find the largest $\varphi = \varphi(\alpha, \beta, \lambda, B)$ such that

$$\sum_{n=1}^{\infty} \frac{(1+\beta B) n + \beta [(B-A)\varphi + A] + 1}{(B-A)\beta (1-\varphi)} a_n b_n \le 1$$
 (3.2)

for f(z) and g(z) in the class $\sum_{p}^{*}(\alpha,\beta,A,B)$. Since f(z) and g(z) are in the class $\sum_{p}^{*}(\alpha,\beta,A,B)$, in view of Lemma 2, we see that

$$\sum_{n=1}^{\infty} \frac{(1+\beta B) n + \beta [(B-A)\alpha + A] + 1}{(B-A)\beta (1-\alpha)} a_n \le 1,$$
 (3.3)

and

$$\sum_{n=1}^{\infty} \frac{(1+\beta B) n + \beta [(B-A)\alpha + A] + 1}{(B-A)\beta (1-\alpha)} b_n \le 1.$$
 (3.4)

Therefore, by the Cauchy-Schwarz inequality, we obtain

$$\sum_{n=1}^{\infty} \frac{(1+\beta B) n + \beta [(B-A)\alpha + A] + 1}{(B-A)\beta (1-\alpha)} \sqrt{a_n b_n} \le 1.$$
 (3.5)

This implies that we need only to show that

$$\frac{(1+\beta B) n+\beta [(B-A)\varphi+A]+1}{(1-\varphi)} a_n b_n \le \frac{(1+\beta B) n+\beta [(B-A)\alpha+A]+1}{(1-\alpha)} \sqrt{a_n b_n}$$
(3.6)

or

$$\sqrt{a_{n}b_{n}} \leq \frac{(1-\varphi)\{(1+\beta B)n+\beta[(B-A)\alpha+A]+1\}}{(1-\alpha)\{(1+\beta B)n+\beta[(B-A)\varphi+A]+1\}} \quad (n \geq 1). \quad (3.7)$$

Hence, by the inequality (3.5), it is sufficient to prove that

$$\frac{(B-A)\beta(1-\alpha)}{\{(1+\beta B)n+\beta[(B-A)\alpha+A]+1\}} \leq \frac{(1-\varphi)\{(1+\beta B)n+\beta[(B-A)\alpha+A]+1\}}{(1-\alpha)\{(1+\beta B)n+\beta[(B-A)\varphi+A]+1\}}$$

$$(n \geq 1). \quad (3.8)$$

It follows from (3.8) that

$$\varphi \leq 1 - \frac{(1+n)(B-A)\beta(1+\beta B)(1-\alpha)^{2}}{\{(1+\beta B)n+\beta[(B-A)\alpha+A]+1\}^{2}+(B-A)^{2}\beta^{2}(1-\alpha)^{2}} \quad (n \geq 1).$$
(3.9)

Defining the function $\psi(n)$ by

$$\psi(n) = 1 - \frac{(1+n)(B-A)\beta(1+\beta B)(1-\alpha)^{2}}{\{(1+\beta B)n+\beta[(B-A)\alpha+A]+1\}^{2} + (B-A)^{2}\beta^{2}(1-\alpha)^{2}} \quad (n \ge 1).$$
(3.10)

we see that $\psi(n)$ is increasing of n. Therefore, we conclude that

$$\varphi \leq \psi(1) = 1 - \frac{2(B-A)\beta(1+\beta B)(1-\alpha)^{2}}{\{2+\beta[(B-A)\alpha+(B+A)]\}^{2} + (B-A)^{2}\beta^{2}(1-\alpha)^{2}}$$

which completes the assertion of Theorem 3.

Using arguments similar to those in the proof of Theorem 3., we can obtain the following results.

$$\frac{\text{Theorem 4. If } f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n \in \Sigma_p^*(\alpha,\beta,A,B), \text{ and}}{g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n \in \Sigma_p^*(\varphi,\beta,A,B), \text{ then } f(z)^*g(z) \in \Sigma_p^*(\tau,\beta,A,B), \text{ where}}$$

$$\tau = 1$$

$$\frac{2(B-A)\beta(1+\beta B)(1-\alpha)(1-\varphi)}{\{2+\beta[(B-A)\alpha+(B+A)]\}\{2+\beta[(B-A)\varphi+(B+A)]\}+(B-A)^2\beta^2(1-\alpha)(1-\varphi)}.$$

The result is best possible for the functions

$$f(z) = \frac{1}{z} + \frac{(B-A)\beta(1-\alpha)}{2+\beta[(B-A)\alpha+(B+A)]} z$$

and

$$g(z) = \frac{1}{z} + \frac{(B-A)\beta(1-\varphi)}{2+\beta[(B-A)\varphi+(B+A)]} z.$$

 $\frac{\text{Theorem 5. If } f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n \text{ and } g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n \text{ are in the class } \sum_{p} \{\alpha, \beta, A, B, \gamma\}, \text{ then } f(z) * g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n b_n z^n \in \sum_{p} \{\delta, \beta, A, B, \gamma\}, \text{ where}$ $(B-A)\beta\gamma(1-\alpha)^2$

$$\delta = 1 - \frac{(B-A)\beta\gamma(1-\alpha)^2}{1+(B-A)\beta\gamma+A\beta}.$$

The result is best possible for the functions

$$f(z) = g(z) = \frac{1}{z} + \frac{(B - A)\beta\gamma(1 - \alpha)}{1 + (B - A)\beta\gamma + A\beta} z.$$

 $\frac{\text{Theorem 6.}}{\text{If}} \quad \text{f(z)} = \frac{1}{z} + \sum_{n=1}^{\infty} a_n \ z^n \in \Sigma_p[\alpha,\beta,A,B,\gamma]$ and $g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} b_n \ z^n \in \Sigma_p[\eta,\beta,A,B,\gamma], \text{ then } f(z)*g(z) \in \Sigma_p[\tau,\beta,A,B,\gamma], \text{ where}$

$$\tau = 1 - \frac{(B-A)\beta\gamma(1-\alpha)(1-\eta)}{1+(B-A)\beta\gamma+A\beta}.$$

The result is best possible for the functions

$$f(z) = \frac{1}{z} + \frac{(B - \lambda)\beta\gamma(1 - \alpha)}{1 + (B - \lambda)\beta\gamma + \lambda\beta} z$$

and

$$g(z) = \frac{1}{z} + \frac{(B - A)\beta\gamma(1 - \eta)}{1 + (B - A)\beta\gamma + A\beta} z.$$

 $\frac{\text{Theorem 7. If } f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n \in \sum_{p}^* (\alpha, \beta, A, B) \text{ and}$ $g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n \text{ with } |b_n| \le 1, \quad n = 1, 2, \dots, \text{ then}$ $f(z) * g(z) \in \sum_{p}^* (\alpha, \beta, A, B).$

Proof. Since

$$\sum_{n=1}^{\infty} \frac{(1+\beta B) n+\beta [(B-A)\alpha+A]+1}{(B-A)\beta (1-\alpha)} |a_n b_n|$$

$$= \sum_{n=1}^{\infty} \frac{(1+\beta B) n+\beta [(B-A)\alpha+A]+1}{(B-A)\beta (1-\alpha)} a_n |b_n|$$

$$\leq \sum_{n=1}^{\infty} \frac{(1+\beta B) n+\beta [(B-A)\alpha+A]+1}{(B-A)\beta (1-\alpha)} a_n \leq 1,$$

by Lemma 1, it follows that $f(z)*g(z) \in \sum^* (\alpha, \beta, A, B)$.

Corollary 1. If
$$f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n \in \Sigma_p^*(\alpha, \beta, A, B)$$
 and

 $g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n \quad \text{with } 0 \le b_n \le 1, n = 1, 2, \dots, \text{ then}$ $f(z) * g(z) \in \sum_{p}^{*} (\alpha, \beta, \lambda, B).$

Using arguments similar to those in the proof of Theorem 7, and using Lemmas 3, and 4, we can obtain the following result.

 $\frac{\text{Theorem 8.}}{\text{If } f(z)} = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n \in \sum_{p} [\alpha, \beta, A, B, \gamma],$ and $g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n \text{ with } |b_n| \le 1, n = 1, 2, \dots, \text{ then }$ $f(z) * g(z) \in \sum_{n=1}^{\infty} [\alpha, \beta, A, B, \gamma].$

 $\frac{\text{Corollary 2. If } f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n \in \Sigma_p[\alpha,\beta,A,B,\gamma],}{\text{and } g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n \text{ with } 0 \le b_n \le 1, n = 1,2,\ldots,}$ then $f(z)*g(z) \in \Sigma_p[\alpha,\beta,A,B,\gamma].$

 $\frac{\text{Theorem 9. If } f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n \text{ and } g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n \text{ are in the class } \sum_{p=1}^{\infty} (\alpha, \beta, A, B) \text{ and } z^n = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n \text{ are in the class } \sum_{p=1}^{\infty} (\alpha, \beta, A, B) \text{ and } z^n = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n \text{ are in the class } \sum_{p=1}^{\infty} (\alpha, \beta, A, B) \text{ and } z^n = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n \text{ are in the class } \sum_{p=1}^{\infty} (\alpha, \beta, A, B) \text{ and } z^n = \frac{1}{z} + \sum_{p=1}^{\infty} b_n z^n \text{ are in the class } \sum_{p=1}^{\infty} (\alpha, \beta, A, B) \text{ and } z^n = \frac{1}{z} + \sum_{p=1}^{\infty} b_n z^n \text{ are in the class } \sum_{p=1}^{\infty} (\alpha, \beta, A, B) \text{ and } z^n = \frac{1}{z} + \sum_{p=1}^{\infty} b_n z^n \text{ are in the class } \sum_{p=1}^{\infty} (\alpha, \beta, A, B) \text{ and } z^n = \frac{1}{z} + \sum_{p=1}^{\infty} b_n z^n \text{ are in the class } \sum_{p=1}^{\infty} (\alpha, \beta, A, B) \text{ and } z^n = \frac{1}{z} + \sum_{p=1}^{\infty} b_n z^n \text{ are in the class } \sum_{p=1}^{\infty} (\alpha, B, A, B) \text{ and } z^n = \frac{1}{z} + \sum_{p=1}^{\infty} b_n z^n \text{ are in the class } \sum_{p=1}^{\infty} (\alpha, B, A, B) \text{ and } z^n = \frac{1}{z} + \sum_{p=1}^{\infty} b_n z^n \text{ are in the class } \sum_{p=1}^{\infty} (\alpha, B, A, B) \text{ and } z^n = \frac{1}{z} + \sum_{p=1}^{\infty} b_n z^n \text{ are in the class } z^n = \frac{1}{z} + \sum_{p=1}^{\infty} b_n z^n \text{ are in the class } z^n = \frac{1}{z} + \sum_{p=1}^{\infty} b_n z^n \text{ and } z^n = \frac{1}{z} + \sum_{p=1}^{\infty} b_n z^n \text{ are in the class } z^n = \frac{1}{z} + \sum_{p=1}^{\infty} b_n z^n \text{ are in the class } z^n = \frac{1}{z} + \sum_{p=1}^{\infty} b_n z^n \text{ are in the class } z^n = \frac{1}{z} + \sum_{p=1}^{\infty} b_n z^n \text{ are in the class } z^n = \frac{1}{z} + \sum_{p=1}^{\infty} b_n z^n \text{ are in the class } z^n = \frac{1}{z} + \sum_{p=1}^{\infty} b_n z^n \text{ are in the class } z^n = \frac{1}{z} + \sum_{p=1}^{\infty} b_n z^n \text{ are in the class } z^n = \frac{1}{z} + \sum_{p=1}^{\infty} b_n z^n = \frac{1}{z}$

$$2 + 3(B - A)\alpha\beta + (3A - B)\beta \ge 0,$$

then

$$F(z) = \frac{1}{z} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) z^n$$

also belongs to the class $\Sigma_p^*(\alpha,\beta,A,B)$.

<u>Proof.</u> Since $f(z) \in \sum_{p}^{*}(\alpha, \beta, A, B)$, using Lemma 2, we have

$$\sum_{n=1}^{\infty} \frac{(1+\beta B) n+\beta [(B-A)\alpha+A]+1}{(B-A)\beta (1-\alpha)} a_n \leq 1.$$

and so

$$\sum_{n=1}^{\infty} \left[\frac{(1+\beta B) n + \beta [(B-A)\alpha + A] + 1}{(B-A)\beta (1-\alpha)} \right]^2 a_n^2 \le 1.$$

Similarly, since $g(z) \in \sum_{p}^{*}(\alpha, \beta, A, B)$,

$$\sum_{n=1}^{\infty} \left[\frac{(1+\beta B) n + \beta [(B-A)\alpha + A] + 1}{(B-A)\beta (1-\alpha)} \right]^2 b_n^2 \leq 1.$$

Hence

$$\sum_{n=1}^{\infty} \frac{1}{2} \left[\frac{(1+\beta B) n + \beta [(B-A)\alpha + A] + 1}{(B-A)\beta (1-\alpha)} \right]^{2} \left(a_{n}^{2} + b_{n}^{2} \right) \leq 1.$$

In view of Lemma 2, it is sufficient to show that

$$\sum_{n=1}^{\infty} \left[\frac{(1+\beta B) n + \beta [(B-A)\alpha + A] + 1}{(B-A)\beta (1-\alpha)} \right] \left(a_n^2 + b_n^2 \right) \le 1.$$
 (3.11)

Thus the inequality (3.11) will be satisfied if, for n = 1, 2, ...

$$\frac{(1+\beta B) n + \beta [(B-A)\alpha + A] + 1}{(B-A)\beta (1-\alpha)} \le \frac{1}{2} \left[\frac{(1+\beta B) n + \beta [(B-A)\alpha + A] + 1}{(B-A)\beta (1-\alpha)} \right]^{2}, \quad (3.12)$$

or if

$$(1 + \beta B)n + 3(B - A)\alpha\beta + (3A - 2B)\beta + 1 \ge 0, \qquad (3.13)$$

for $n=1,\ 2,\ \dots$ The left hand side of (3.13) is an increasing function of n, hence (3.13) is satisfied for all n if

$$2 + 3(B - A)\alpha\beta + (3A - B)\beta \ge 0,$$

which is true by our assumption. Hence the theorem.

Using arguments similar to those in the proof of Theorem 9, and using Lemma 4, we can obtain the following result.

 $\frac{\text{Theorem 10.}}{\sum_{n=1}^{\infty}} \text{ If } f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n \text{ and } g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n \text{ are in the class } \sum_{p} [\alpha, \beta, \lambda, B, \gamma] \text{ and } z^n = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n \text{ are in the class } \sum_{p} [\alpha, \beta, \lambda, B, \gamma] \text{ and } z^n = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n \text{ are in the class } \sum_{p} [\alpha, \beta, \lambda, B, \gamma] \text{ and } z^n = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n \text{ are in the class } \sum_{p} [\alpha, \beta, \lambda, B, \gamma] \text{ and } z^n = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n \text{ are in the class } \sum_{p} [\alpha, \beta, \lambda, B, \gamma] \text{ and } z^n = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n \text{ are in the class } \sum_{p} [\alpha, \beta, \lambda, B, \gamma] \text{ and } z^n = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n \text{ are in the class } \sum_{p} [\alpha, \beta, \lambda, B, \gamma] \text{ and } z^n = \sum_{n=1}^{\infty} b_n z^n \text{ are in the class } z^n = \sum_{n=1}^{\infty} b_n z^n \text{ are in the class } z^n = \sum_{n=1}^{\infty} b_n z^n \text{ and } z^n = \sum_{n=1}^{\infty} b_n z^n \text{ are in the class } z^n$

$$1 + 2\gamma (B - A)\alpha\beta - ((B - A)\gamma - A)\beta \ge 0,$$

then

$$F(z) = \frac{1}{z} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) z^n$$

also belongs to the class $\sum_{p} [\alpha, \beta, \lambda, B, \gamma]$.

Remark 3.

- (i) Putting A = -1 and B = 1, in Theorems 1,3,4,7 and 9, we get the corresponding results obtained in [9].
- (ii) Putting A = -1 and B = 1, in Theorems 2.5,6,8 and 10, we get the corresponding results for the class $\sum_{p} (\alpha, \beta, \gamma)$ defined by Cho, Lee and Owa [4].

References

- M.K.Aouf, A certain subclass of meromorphic starlike functions with positive coefficients Rend. Mat. (7) 9, Roma (1989), 225-235.
- 2. M.K.Aouf, On a certain class of meromorphic univalent functions with positive coefficients. Rend. Mat. (7) 11, Roma (1991), 209-219.
- 3. S.K. Bajpai, A note on a class of meromorphic univalent functions, Rev. Roum. Math. Pures Appl. 22 (1977), 295-297.
- 4. N.E.Cho, S.H.Lee and S.Owa, A class of meromorphic univalent functions with positive coefficients, Kobe J. Math. 4 (1987), 43-50.
- 5. J. Clunie, On meromorphic schlicht functions. J. London Math. Soc. 34 (1959), 215-216.
- R.M. Goel and N.S. Sohi, On a class of meromorphic functions, Glasnik Mat. 17 (1981), 19-28.
- 7. O.P. Juneja and T.R. Reddy, Meromorphic starlike univalent functions with positive coefficients,

- Ann. Univ. Mariae Curie-Sklodowska Sect. A 39 (1985), 65-76 (1988).
- 8. J.E. Miller, Convex meromorphic mapping and related functions, Proc. Amer. Math. Soc. 25 (1970), 220-228.
- 9. M.L.Mogra, T.R. Reddy and O.P. Juneja, Meromorphic univalent functions with positive coefficients, Bull. Austral. Math. Soc. 32 (1985), 161-176.
- 10. CH. Pommerenke, On meromorphic starlike functions, Pacific J. Math. 13 (1963), 221-235.
- 11. M.S.Robertson, Convolution of schlicht functions, Proc. Amer. Math. Soc. 13 (1962), 585-589.
- 12. B.A. Uralegaddi and M.D. Ganigi, A certain class of meromorphically starlike functions with positive coefficients, Pure Appl. Math. Sci. 26 (1987), 75-81.

Received May 31,1993

Department of Mathematics
Faculty of Science
University of Mansoura
Mansoura, Egypt