Nihonkai Math.J.
vol.4 (1993),133-136

VARIATIONS ON CALIBRATIONS

Benny N. Cheng

Abstract The theory of calibrations and calibrated foliations is developed in a
couple of papers (cf. [1],[2]) by R.Harvey and H.B.Lawson Jr. This article derives
some formulas for the first and second variation of a calibration. In particular, we
show that on any compact oriented minimal submanifold, the first variation of a
calibration vanishes. We also demonstrate that a classical result on the vanishing
of the Lie derivative of characteristic forms on harmonic foliations also holds for
calibrations. ’

1 Introduction

Let M be a smooth Riemannian manifold. Among the class of all smooth differential
forms on M, we are interested in a special subclass of forms called calibrations. A cali-
bration ¢ is a closed differential p-form having commas 1, where comass denotes the sup

norm
|#]lx = sup{¢(¢) : £ is a unit simple p-vector € APT M}.

(Recall that a p-vector is simple if it can be decomposed into a product of 1-vectors.)
Calibrations are very useful objects in the theory of minimal surfaces, for the following
reasons. A p-dimensional oriented submanifold N C M is said to be calibrated by ¢
if #(€) = 1 for every tangent unit p-vector £ on N. In this case, we say that N is
a ¢-submanifold. As shown in [2], ¢-submanifolds are homologically mass-minimizing,
i.e. such objects minimizes the volume functional in its homology class. In the case
where M is ordinary Euclidean space, ¢-submanifolds are absolutely volume minimizing
surfaces, absolute in the sense that any compact portion of the surface is a solution to the
Plateau problem for the portion’s boundary (replace the submanifolds in the proof above
by compactly-supported pieces). All that we have said so far are also true in the more
general setting of currents, which will not be discussed here.

2 Variational Formulas

Given a calibration ¢ on M and an oriented submanifold N of dimension p, we would
like to investigate the infinitesimal nature of ¢ with respect to a small variation of N.
For the purpose of simplifying the proofs, we will restrict ourselves to the case where
N is compact, although this restriction can be easily removed by considering compactly-
supported variations in the general case. Let n be a normal vector field on N and let
fi : N — M denote a C* variation (f; is an immersion for each t) with respect to
n = fox(0/0t) for t € (—¢,€), with fo = id. Let || - || denote the norm induced by the
Riemannian metric on M, and define

_ ft*é
(&) =4 (uft*eu) ‘
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Theorem 1 Let ¢ be a calibration on a C™ Riemannian manifold M with metric (-,-),
and N a compact oriented submanifold of M with mean curvature vector field H. Then

d
[ Z9theo= [ (H,n)9
for all normal vector fields n on N.

Proof. fy(N) and N are homologous to each other, hence f;(N) — N = 9S; for some
p + 1-dimensional surface S;. Let g(t) = [1,(n)¢. By Stoke’s formula and the closure of
&, g(t) =constant, and hence ¢’(0) = 0. By a change of variables, observe that

9() = [ #(fub)dVollN) = [ 44(©)l|funélla Vo),

where ¢ is the unit tangent p-plane field of N, and the conclusion of the theorem follows
by straightforward differentiation.

The following corollaries are some immediate consequence of theorem 1.

Corollary 2 Let ¢ and M be as above, and N C M a submanifold with compact support
and fized boundary ON. Then the variational formula in Theorem 1 holds for all normal
vector fields n which vanishes on ON.

Proof. In this case, we choose a variation f; with compact support in N and the additional
property that fi|sn = i¢d for all . The rest of the proof is similar to that of theorem 1.

Corollary 3 Let ¢ and M be as in Theorem 1. Then N is a compact oriented minimal
submanifold of M if and only if P
/N 2{¢t|t=0 =0

for all normal vector fieldsm on N.

Remark It is interesting to note that corollary 3 applies to any oriented minimal sub-
manifold, including those that are not calibrated by ¢. Of course if N is a ¢-submanifold,
then the result is trivial since ¢; attains its maximum on the tangent space of N.

Proof. The “only if” part is obvious by theorem 1. For the “if” part, suppose H # 0.
Then it is possible to find a normal vector field 7 such that the right-hand side of Theorem

1 is positive, a contradiction.

- With respect to a smooth variation f;, recall that the second variational formula for
the volume of a minimal submanifold N of M is given by (cf. [4])

2V
dt?

= [ (IVnll? + Ric(n,n) - l|An]}®),

=

where Ric is the Ricci curvature tensor of M and A is the second fundamental form of N.
Denote by I(n) the integrand of the above integral. If [y I(n) > 0 for all normal vector
fields 7, then N is said to be stable.
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Theorem 4 Let ¢ be a calibration on a C* Riemannian manifold M, and N a compact
oriented minimal submanifold of M. Then

[ Ebdees =~ [ 106

for all normal vector fields n on N.

Proof. As noted in the proof of Theorem 1, the function g(t) = Jj,(v) ¢ =constant. Thus
g"(0) = 0 and we obtain the conclusion.

Remark As in the first variational formula, Theorem 5 also holds for compactly sup-
ported submanifolds with fixed boundary. We note that Theorem 5 does not require that
N be calibrated by ¢. However, if N turns out to be calibrated, then by above, it is
stable. This can also be deduced from the area-minimizing property of a ¢-submanifold.

We note that many examples of calibrations and their calibrated surfaces can be found
in the papers [1] and [2].

3 Calibrated Foliations

In the case where M is foliated manifold, Theorem 1 is actually a special case of the
following more general result on smooth differential forms. The Lie derivative of ¢ with
respect to 7 will denoted by £,¢.

Theorem 5 Let M be a C® foliated Riemannian manifold and ¢ a smooth p-form on
M. Let L denote the tangent bundle of the foliation with leaves of dimension p and mean
curvature vector field H. Then on L, we have

d
'('ﬁ¢t|t=o =Ly¢+ (H,m)¢
for all vector fields n transversal to L.

Proof. Let £ be the unit tangent p-vector field on the foliation F, considered as a section
of APL. Then for a smooth flow f; with respect to 7,

ft*ﬁb(f) = ¢t(§)”ft-€”

Differentiating both sides and evaluating at ¢t = 0 gives the desired result.

Remark Observe that for ¢ = xr =characteristic form of the foliation, then Theorem
4 reduces to a result of Rummler(cf. [5],p.66), since x attains its maximum on L. Note
¢ is not assumed to be closed.

The following result leads to a necessary and sufficient condition for a calibration to
be the characteristic form of the foliation. As usual, we define ker(¢) = {n : «(n) = 0}.
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Theorem 6 Let F be a foliation on a C* Riemannian manifold M with tangent bundle
L. Let ¢ be a smooth p-form on M of comass 1 such that ¢(£) = 1 for the unit tangent
p-vector field £ to the leaves, and assume that dim(ker(¢)) = dim M — p. Then the
following are equivalent.

(1) ¢ is a calibration.

(2) L,é =0 for all vector fields n € ker(p).

(8) ker(@) is involutive.

Proof.
(1)=>(2): This follows immediately from the rule £, = ¢(n)d + di(n).
(2)=(3): For any (,n € ker(¢), we have

0= ¢(()Lyd = Lne(()d — e([n,¢])p = —([n, <),

hence [, (] € ker(¢).
(3)=(1): By Frobenius theorem, there exists locally p independent 1-forms wy,---,w,

generating a differential ideal whose kernel equals ker(¢). In particular, in a local neigh-
borhood U of M, ¢ = w;y A -+ A wy+linear combination of p-forms each containing some
w;. Since ¢ = 1 on the leaves of F, and there is one and only one simple p-form with
comass 1 with the same property, the first term is just the characteristic form yr. Hence
the rest of the terms in the above expression for ¢ disappear, and ¢ = xr. By prop. 6.4
of [3],¢ is calibration and we’re done.

Corollary 7 Given a calibration ¢ of order p on M calibrating the leaves of a foliation
F, then ¢ is the characteristic form of F if and only if dim(ker(4)) = m — p.

Proof. Necessity is obvious, while the above proof shows that ¢ is decomposable, hence
the dimension condition is also sufficient.
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